Mailer y Webhook con Mailtrap

o mailkrap

Chapter 1: Instalar el Mailer

jHola amigos! jBienvenidos a "Symfony Mailer con Mailtrap"! Soy Kevin, y seré tu postmaster para este curso, que trata sobre el envio de correos
electronicos bonitos con el componente Mailer de Symfony, incluyendo la adicién de HTML, CSS - y la configuracién para produccién. En ese
sentido, hay muchos servicios que puedes utilizar en produccion para enviar tus correos electrénicos. Este curso se centrara en uno llamado
Mailtrap: (1) porque es genial y (2) porque ofrece una forma fantastica de previsualizar tus correos electronicos. Pero no te preocupes, los
conceptos que trataremos son universales y pueden aplicarse a cualquier servicio de correo electrénico. jY ademas! También veremos cémo
rastrear eventos de correo electronico como rebotes, aperturas y clics en enlaces aprovechando algunos componentes relativamente nuevos de
Symfony: Webhook y RemoteEvent.

Correos electrénicos transaccionales vs masivos

Antes de empezar a enviar informacion importante por correo electronico, tenemos que aclarar algo: Symfony Mailer es sélo para lo que se llama
correos electronicos transaccionales. Son correos especificos de usuario que se producen cuando ocurre algo concreto en tu aplicacion. Cosas
como: un correo electronico de bienvenida después de que un usuario se registre, un correo electronico de confirmacion de pedido cuando
realizan un pedido, o incluso correos electrénicos como "tu post ha sido votado" son ejemplos de correos electronicos transaccionales. Symfony
Mailer no es para emails masivos o de marketing. Por ello, no tenemos que preocuparnos de ningun tipo de funcionalidad para darse de baja.

Existen servicios especificos para enviar correos masivos o boletines informativos, Mailtrap incluso puede hacerlo a través de su sitio web.

Nuestro proyecto

Como siempre, para sacar el maximo partido a tu dinero en screencast, jdeberias codificar conmigo! Descarga el codigo del curso en esta pagina.
Cuando descomprimas el archivo, encontraras un directorio start/ con el codigo con el que empezaremos. Sigue el archivo README.md para

poner en marcha la aplicacion. Yo ya lo he hecho y he ejecutado symfony serve -d para iniciar el servidor web.

Bienvenido a "Viajes Universales": una agencia de viajes donde los usuarios pueden reservar viajes a diferentes lugares galacticos. Aqui tienes
los viajes disponibles actualmente. Los usuarios ya pueden reservarlos, pero no se envian correos electrénicos de confirmacion cuando lo hacen.

iVamos a arreglar eso! Si voy a gastar miles de créditos en un viaje a Naboo, jquiero saber que mi reserva se ha realizado correctamente!

Instalar el componente Mailer

Paso 1: jinstalemos el Mailer de Symfony! Abre tu terminal y ejecuta:

composer require mailer

La receta de Symfony Flex para el mailer nos pide que instalemos alguna configuracién de Docker. Esto es para un servidor SMTP local que nos

ayude con la previsualizacion de los correos electronicos. Vamos a utilizar Mailtrap para esto, asi que di "no". jInstalado! Ejecuta::

git status

para ver lo que tenemos. Parece que la receta afiadié algunas variables de entorno en .env y afiadié la configuracién del mailer en
config/packages/mailer.yaml.
MATLER DSN

En tu IDE, abre .env. La receta del Mailer afiadi6 esta variable de entorno MAILER_DSN. Se trata de una cadena especial con aspecto de URL

que configura el transporte de tu mailer: como se envian realmente tus correos electrénicos, por ejemplo a través de SMTP, Mailtrap, etc. La

receta utiliza por defecto null://null y es perfecta para el desarrollo local y las pruebas. Este transporte no hace nada cuando se envia un
correo electronico Finge entregar el correo electronico, pero en realidad lo envia por una esclusa de aire. Previsualizaremos nuestros correos

electrénicos de otra forma.

iVale! jEstamos listos para enviar nuestro primer correo electronico! jHagamoslo a continuacion!

Chapter 2: Enviar nuestro primer correo electronico

iVamos de viaje! "Visitar Krypton", jEsperemos que aun no haya sido destruido! Sin molestarme en comprobarlo, jreservémoslo! Utilizaré el

nombre: "Kevin", el correo electrénico "kevin@example.com" y una fecha cualquiera en el futuro. Pulsa "Reservar viaje".

Esta es la pagina de "detalles de la reserva". Fijate en la URL: tiene un token Unico especifico para esta reserva. Si un usuario necesita volver
aqui mas tarde, actualmente, tiene que marcar esta pagina o enviarse a si mismo la URL si es como yo jLamentable! Enviémosles un correo

electronico de confirmacion que incluya un enlace a esta pagina.

Quiero que esto ocurra después de guardar la reserva por primera vez. Abre TripControllery busca el método show() . Esto hace la reserva:
si el formulario es valido, crea o recupera un cliente y crea una reserva para este cliente y viaje. Luego redirigimos a la pagina de detalles de la

reserva. Deliciosamente aburrido hasta ahora, tal y como me gusta mi codigo, y los fines de semana.

Inyecta MailerInterface

Quiero enviar un correo electronico después de crear la reserva. Date un poco de espacio moviendo cada argumento del método a su propia

linea. Después, aflade MailerInterface $mailer para obtener el servicio principal de envio de correos electronicos:

src/Controller/TripController.php

T // ... lines 1 - 17

18 final class TripController extends AbstractController
19 {

$ // ... lines 20 - 27

28 #[Route('/trip/{slug:trip}', name: 'trip_show"')]
29 public function show(

T // ... lines 30 - 33

34 MailerInterface $mailer,

35): Response {

$ // ... lines 36 - 54

55 }

56 }

Crear el correo electréonico

Después de flush(), que inserta la reserva en la base de datos, crea un nuevo objeto de correo electrénico: $email = new Email() (el de
Symfony\Component\Mime). Envuélvelo entre paréntesis para que podamos encadenar métodos. ; Qué necesita cada correo electronico? Una
direccion de correo electréonico from: ->from() qué tal info@univeral-travel.com. Una direccion de correo electrénico to:
->to($customer->getEmail()) . Ahora, el subject: ->subject('Booking Confirmation').Y por ultimo, el correo electrénico necesita un

cuerpo: ->text('Your booking has been confirmed') - suficiente por ahora:

src/Controller/TripController.php

$ // ... lines 1 - 18

19 final class TripController extends AbstractController
20 {

$ // ... Lines 21 - 29

30 public function show(

T // ... lines 31 - 35

36): Response {

$ // ... lines 37 - 38

39 if ($form->isSubmitted() && $form->isvalid()) {
T // ... lines 40 - 48

49 $email = (new Email())

50 ->from('info@universal-travel.com")
51 ->to($customer->getEmail())

52 ->subject('Booking Confirmation')

53 ->text('Your booking has been confirmed!")
54 H

T // ... lines 55 - 56

57 }

$ // ... lines 58 - 62

63 }

64 }

Envia el correo electrénico

Termina con $mailer->send($email):

src/Controller/TripController.php

T // ... lines 1 - 18

19 final class TripController extends AbstractController
20 |

$ // ... lines 21 - 29

30 public function show(

$ // ... Lines 31 - 35

36): Response {

$ // ... Lines 37 - 38

39 if ($form->isSubmitted() && $form->isvalid()) {
$ // ... lines 40 - 55

56 $mailer->send($email);

$ // ... lines 57 - 58

59 }

$ // ... Lines 60 - 64

65 }

66 }

iVamos a probarlo!

De nuevo en nuestra aplicacion, vuelve a la pagina de inicio y elige un viaje. Para el nombre, utiliza "Steve", correo electrénico,

"steve@minecraft.com"”, cualquier fecha en el futuro, y reserva el viaje.

Vale... esta pagina tiene exactamente el mismo aspecto que antes. 4 Se ha enviado un correo electronico? Nada en la barra de herramientas de

depuracion web parece indicarlo...

En realidad, el correo electrénico se envié en la peticién anterior: el envio del formulario. Ese controlador nos redirigié a esta pagina. Pero la barra
de herramientas de depuracion web nos ofrece un atajo para acceder al perfilador de la peticion anterior: pasa el raton por encima de 200 y haz

clic en el enlace del perfilador para acceder a él.

Correo electronico en el perfilador

Echa un vistazo a la barra lateral: jtenemos una nueva pestafia "Correos electronicos"! Y muestra que se ha enviado 1 correo electrénico. jLo

hicimos! jHaz clic en él y aqui esta nuestro correo electronico! Los campos "De", "Para”, "Asunto" y "Cuerpo" son los esperados.

Recuerda que estamos utilizando el transporte de correo null, asi que este correo no se ha enviado realmente, jpero es genial que podamos

previsualizarlo en el perfilador!

Aunque... Creo que ambos sabemos que este correo... es... bastante cutre. jNo da ninguna informacioén util! {Ni URL a la pagina de detalles de la

reserva, ni destino, ni fecha, ni nada! Es tan inutil que me alegro de que el transporte null lo tire por la ventana espacial.

iEso a continuacion!

Chapter 3: Un correo electronico mejor

Creo que tU, yo, cualquiera que haya recibido alguna vez un correo electrénico, podemos estar de acuerdo en que nuestro primer correo

electrénico apesta. No aporta ningun valor. jMejorémosio!

Address_Objeto

En primer lugar, podemos afiadir un nombre al correo electrénico. Esto aparecera en la mayoria de los clientes de correo electronico en lugar de

solo la direccion de correo electrénico: tiene un aspecto mas fluido. Envuelve el from connew Address(), el de Symfony\Component\Mime. El

primer argumento es el correo electrénico, y el segundo es el nombre: qué tal Universal Travel:

src/Controller/TripController.php

I
20
21

3
31

I
37

i
40

3
50
51

?
55

3
60

3
66
67

// ... lines 1 - 19
final class TripController extends AbstractController
{
// ... lines 22 - 30
public function show(
// ... lines 32 - 36
): Response {
// ... lines 38 - 39

if ($form->isSubmitted() && $form->isvalid()) {
// ... lines 41 - 49
$email = (new Email())

->from(new Address('info@universal-travel.com',

// ... lines 52 - 54
// ... lines 56 - 59
}
// ... lines 61 - 65
}
}

‘Universal Travel'))

También podemos envolver el to con new Address().y pasar $customer->getName() para el nombre:

src/Controller/TripController.php

i
20
21

3
31

?
37

3
40

3
50

?
52

3
55

3
60

?
66
67

Para el subject, afiade el nombre del viaje: 'Booking Confirmation for

// ... lines 1 - 19
final class TripController extends AbstractController
{
// ... lines 22 - 30
public function show(
// ... lines 32 - 36
): Response {
// ... lines 38 - 39

if ($form->isSubmitted() && $form->isvalid()) {
// ... lines 41 - 49
$email = (new Email())

// ... Lline 51
->to(new Address($customer->getEmail()))
// ... lines 53 - 54
5
// ... lines 56 - 59
¥
// ... Llines 61 - 65
}
}

. $trip->getName():

src/Controller/TripController.php

$ // ... lines 1 - 19

20 final class TripController extends AbstractController
21 {

T // ... lines 22 - 30

31 public function show(

T // ... lines 32 - 36

37): Response {

$ // ... Lines 38 - 39

40 if ($form->isSubmitted() && $form->isvalid()) {
$ // ... Lines 41 - 49

50 $email = (new Email())

T // ... lines 51 - 52

53 ->subject('Booking Confirmation for '.$trip->getName())
$ // ... line 54

55 K

T // ... lines 56 - 59

60 }

T // ... lines 61 - 65

66 }

67 }

Para el cuerpo text. Podriamos alinear todo el texto aqui. Eso se pondria feo, asi que jutilicemos Twig! Necesitamos una plantilla. En
templates/, afiade un nuevo directorio email/ y, dentro, crea un nuevo archivo:booking_confirmation.txt.twig. Twig puede utilizarse para
cualquier formato de texto, no sélo para html. Una buena practica es incluir el formato - .html o .txt - en el nombre del archivo. Pero a Twig

no le importa eso: es solo para satisfacer nuestro cerebro humano. Volveremos a este archivo en un segundo.

Plantilla de correo Twig

Vuelve a TripController: :show(), en lugar de new Email(), utiliza new TemplatedEmail() (el de Symfony\Bridge\Twig):

src/Controller/TripController.php

$ // ... lines 1 - 19

20 final class TripController extends AbstractController
21 {

T // ... lines 22 - 30

31 public function show(

$ // ... lines 32 - 36

37): Response {

$ // ... Lines 38 - 39

40 if ($form->isSubmitted() && $form->isvalid()) {
$ // ... Lines 41 - 49

50 $email = (new TemplatedEmail())

$ // ... lines 51 - 64

65 }

$ // ... Lines 66 - 70

71 }

72}

Sustituye ->text() por ->textTemplate('email/booking_confirmation.txt.twig'):

src/Controller/TripController.php

$ // ... lines 1 - 19

20 final class TripController extends AbstractController
21 {

T // ... lines 22 - 30

31 public function show(

T // ... lines 32 - 36

37): Response {

$ // ... Lines 38 - 39

40 if ($form->isSubmitted() && $form->isvalid()) {
$ // ... Lines 41 - 49

50 $email = (new TemplatedEmail())

T // ... lines 51 - 53

54 ->textTemplate('email/booking_confirmation.txt.twig")
$ // ... Lines 55 - 59

60 K

T // ... lines 61 - 64

65 }

T // ... lines 66 - 70

71 }

72}

Para pasar variables a la plantilla, utiliza ->context() con 'customer' => $customer, ‘'trip' => $trip, 'booking' => $booking:

src/Controller/TripController.php

$ // ... lines 1 - 19

20 final class TripController extends AbstractController
21 {

T // ... lines 22 - 30

31 public function show(

T // ... Lines 32 - 36

37): Response {

T // ... lines 38 - 39

40 if ($form->isSubmitted() & $form->isvalid()) {
T // ... lines 41 - 49

50 $email = (new TemplatedEmail())
$ // ... Lines 51 - 54

55 ->context ([

56 ‘customer' => $customer,
57 "trip' => $trip,

58 'booking' => $booking,
59 D)

60 H

T // ... Lines 61 - 64

65 }

$ // ... Llines 66 - 70

71 }

72}

Ten en cuenta que aqui técnicamente no estamos renderizando la plantilla Twig: Mailer lo hara por nosotros antes de enviar el correo electronico.

Esto es codigo Twig normal y aburrido. Vamos a mostrar el nombre del usuario utilizando un truco barato, el nombre del viaje, la fecha de salida y
un enlace para gestionar la reserva. Necesitamos utilizar URLs absolutas en los correos electrénicos -como https://univeral-travel.com/booking-,
asi que aprovecharemos la funcion Twig url() en lugar de path(): {{ url('booking_show', {'uid': booking.uid}) }}. Terminaremos

educadamente con, Regards, the Universal Travel team:

templates/email/booking_confirmation.txt.twig

=

Hey {{ customer.name|split(' ')|first }},

Get ready for your trip to {{ trip.name }}!

Departure: {{ booking.date|date('Y-m-d') }}

Manage your booking: {{ url('booking_show', {uid: booking.uid}) }}

W 00 N O U1 A W N

Regards,

=
®

The Universal Travel Team

https://univeral-travel.com/booking-

iCuerpo del correo electrénico listo! Pruébalo. De vuelta en tu navegador, elige un viaje, nombre: Steve, correo
electronico: steve@minecraft. com, cualquier fecha en el futuro, y reserva el viaje. Abre el perfil de la Gltima peticion y haz clic en la pestafia

Emails para ver el correo electronico.

iMucho mejor! Observa que las direcciones From y To ahora tienen nombre. Y nuestro contenido de texto es definitivamente mas valioso! Copia

la URL de la reserva y pégala en tu navegador para asegurarte de que va al lugar correcto. Parece que si, jbien!

A continuacion, utilizaremos la herramienta de pruebas de Mailtrap para obtener una vista previa mas robusta del correo electrénico.

https://mailtrap.io/

Chapter 4: Previsualizar correos electronicos con Mailtrap (Pruebas de correo
electrdénico)

Previsualizar correos electrénicos en el perfilador esta bien para correos basicos, pero pronto afadiremos estilos HTML e imagenes de gatos
espaciales. Para ver correctamente el aspecto de nuestros correos electrénicos, necesitamos una herramienta mas robusta. Vamos a utilizar la
herramienta de prueba de correo electrénico de Mailtrap. Esto nos proporciona un servidor SMTP real al que podemos conectarnos, pero en lugar
de entregar los correos electronicos a bandejas de entrada reales, jvan a una bandeja de entrada falsa que podemos comprobar! Es como si
enviaramos un correo electrénico de verdad y luego piratearamos la cuenta de esa persona para verlo... jpero sin las molestias ni todas esas

cosas ilegales!

Bandeja de entrada falsa

Ve a https://mailtrap.io y registrate para obtener una cuenta gratuita. Su plan gratuito tiene algunos limites, pero es perfecto para empezar. Una
vez dentro, estaras en la pagina de inicio de su aplicacion. Lo que nos interesa ahora es probar el correo electronico, asi que haz clic en él.

Deberias ver algo asi. Si aun no tienes una bandeja de entrada, afiade una aqui.

Abre esa nueva y brillante bandeja de entrada. A continuacion, tenemos que configurar nuestra aplicacion para que envie correos electrénicos a
través del servidor SMTP Mailtrap. Esto es muy facil Aqui abajo, en "Ejemplos de cédigo”, haz clic en "PHP" y luego en "Symfony". Copia el

archivo MAILER_DSN.

MAILER DSN_para Bandeja de entrada falsa

Como se trata de un valor sensible, y puede variar entre desarrolladores, no lo afiadas a .env, ya que esta compilado en git. En su lugar, crea un

nuevo archivo .env.localen la raiz de tu proyecto. Pega aqui MAILER_DSN para anular el valor de .env.
iYa estamos preparados para probar Mailtrap! jHa sido facil! jA probar!

De vuelta en la aplicacion, reserva un nuevo viaje: Nombre: Steve, Email: steve@minecraft.com, cualquier fecha en el futuro, y... jreserval Esta

peticion tarda un poco mas porque se esta conectando al servidor SMTP externo Mailtrap.

Correo electronico en Mailtrap

De vuelta en Mailtrap, jbam! jEl correo electronico ya esta en nuestra bandeja de entrada! Haz clic para comprobarlo. Aqui tienes una vista previa
"Texto" y una vista "Sin procesar". También hay un "Analisis de Spam" - jgenial! la "Informacion técnica" muestra todas las "cabeceras de correo

electronico" en un formato facil de leer.

Estas pestafas "HTML" estan en gris porque no tenemos una versién HTML de nuestro correo electrénico... todavia... jCambiemos eso a

continuacion!

https://mailtrap.io/
https://mailtrap.io/

Chapter 5: Correos electrénicos en HTML

Los correos electrénicos siempre deben tener una versién en texto plano, pero también pueden tener una versién en HTML. jY ahi es donde esta

la diversion! jEs hora de hacer este correo electrénico mas presentable afiadiéndole HTML!

Plantilla de correo electronico HTML

En templates/email/, copia booking_confirmation.txt.twig y ndmbrala booking_confirmation.html.twig. La version HTML actiua un

poco como una pagina HTML completa. Envuélvelo todo en una etiqueta <html>, afiade una <head> vacia y envuelve el contenido en una

<body>. También envolveré estas lineas en etiquetas <p> para conseguir algo de espaciado... y una etiqueta
 después de "Saludos", para

afiadir un salto de linea.

Ahora esta URL puede vivir en una etiqueta <a> adecuada. Déjate algo de espacio y corta "Gestiona tu reserva". Ailade una etiqueta<a> con la

URL como atributo href y pega el texto dentro.

templates/email/booking_confirmation.html.twig

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

<html>

<head></head>

<body>

<p>Hey {{ customer.name|split(' ')|first }},</p>

<p>Get ready for your trip to {{ trip.name }}!</p>
<p>Departure: {{ booking.date|date('Y-m-d') }}</p>

<p>

Manage your booking

</p>

<p>
Regards,

The Universal Travel Team
</p>
</body>
</html>

Por ultimo, tenemos que decirle a Mailer que utilice esta plantilla HTML. En TripController::show(), encima de ->textTemplate(), afade

->htmlTemplate() con email/booking_confirmation.html.twig:

src/Controller/TripController.php

i
20
21

3
31

?
37

3
50

3
54
55

i
61

3
66

I
72
73

// ... lines 1 - 19
final class TripController extends AbstractController
{
// ... lines 22 - 30

public function show(
// ... lines 32 - 36

): Response {
// ... lines 38 - 49

$email = (new TemplatedEmail())

// ... lines 51 - 53

->htmlTemplate('email/booking_confirmation.html.twig")
->textTemplate('email/booking_confirmation.txt.twig")

// ... lines 56 - 60
// ... lines 62 - 65
}
// ... lines 67 - 71
}

}

Pruébalo reservando un viaje: Steve, steve@minecraft.com, cualquier fecha en el futuro, reserva... y luego comprueba Mailtrap. El correo

electrénico tiene el mismo aspecto, jpero ahora tenemos una pestafia HTML!

Ah, y la "Comprobaciéon de HTML" esta muy bien. Te da un indicador de qué porcentaje de clientes de correo electrénico admiten el HTML de este
correo. Por si no lo sabias, los clientes de correo electrénico son un cofiazo: es como volver a los 90 con distintos navegadores. Esta herramienta

te ayuda con eso.
De nuevo en la pestafia HTML, haz clic en el enlace para asegurarte de que funciona. jFunciona!

Asi que ahora nuestro correo electrénico tiene una version en texto y otra en HTML, pero... es un poco pesado mantener ambas. De todas

formas, ¢,quién utiliza un cliente de correo electrénico sélo de texto? Probablemente nadie o un porcentaje muy bajo de tus usuarios.

Generar automaticamente la version de texto

Probemos algo: en TripController::show(), eliminala linea ->textTemplate(). Nuestro correo electrénico ahora sdlo tiene version HTML.

Haz otro viaje y comprueba el correo electrénico en Mailtrap. ¢ Todavia tenemos una version de texto? Se parece casi a nuestra plantilla de texto,
pero con algun espaciado extra. Si envias un correo electronico sélo con una version HTML, Symfony Mailer crea automaticamente una versién
de texto pero elimina las etiquetas. Es una buena alternativa, pero no es perfecta. ;Ves lo que falta? El enlace Eso es... algo critico... El enlace ha

desaparecido porque estaba en el atributo href de la etiqueta de anclaje. Lo perdimos al eliminar las etiquetas.

Entonces, ¢ necesitamos mantener siempre manualmente una versién de texto? No necesariamente. Aqui tienes un pequefio truco.

De HTML a Markdown

En tu terminal, ejecuta:

composer require league/html-to-markdown

Este es un paquete que convierte HTML a markdown. Espera, ¢qué? ;No solemos convertir markdown a HTML? Si, pero para los correos
electronicos HTML, jesto es perfecto! 4 Y adivina qué? jNo tenemos que hacer nada mas! jSymfony Mailer utiliza automaticamente este paquete

en lugar de limitarse a eliminar las etiquetas si estan disponibles!

Reserva otro viaje y comprueba el correo electrénico en Mailtrap. EI HTML parece el mismo, pero comprueba la version de texto. jNuestra
etiqueta de anclaje se ha convertido en un enlace markdown! Todavia no es perfecto, jpero al menos esta ahi! Si necesitas un control total,

necesitaras esa plantilla de texto aparte, pero creo que esto es suficiente. De vuelta en tu IDE, borra booking_confirmation.txt.twig.

A continuacion, javivaremos este HTML con CSS!

Chapter 6: CSS en el correo electrénico

EI CSS en el correo electronico requiere... cierto cuidado especial. Pero, jpffff, somos desarrolladores de Symfony! jAvancemos temerariamente y

veamos qué pasal!

Anade una clase CSS

En email/booking_confirmation.html.twig, afiade una etiqueta <style> en <head> y afiade una clase .text-red que establezca color

en red:

templates/email/booking_confirmation.html.twig

1 <html>
<head>
<style>
.text-red {
color: red;

</style>
</head>
// ... lines 9 - 26
27 </html>

2
3
4
5
6 ¥
7
8
T

Ahora, afiade esta clase a la primera etiqueta <p>:

templates/email/booking_confirmation.html.twig

$ // ... Lines 1 - 8

9 <body>

10 <p class="text-red">Hey {{ customer.name|split(' ')|first }},</p>
$ // ... lines 11 - 25

26 </body>

T // ... lines 27 - 28

En nuestra aplicacion, reserva otro viaje para nuestro buen amigo Steve. jRealmente estd acumulando parsecs! ; Crees que le interesaria la

tarjeta de crédito platino Universal Travel?

En Mailtrap, comprueba el correo electrénico. Vale, este texto esta en rojo como esperabamos... entonces, ¢ cual es el problema? Comprueba el

cédigo HTML para obtener una pista. Pasa el raton por encima del primer error:
“La etiqueta style no es compatible con todos los clientes de correo electrénico.”

El problema mas importante es el atributo class: tampoco es compatible con todos los clientes de correo electrénico. ; Podemos viajar al espacio

pero no podemos utilizar clases CSS en los correos electrénicos? Si, es un mundo extrafo.

CSS en linea

¢ La solucién? Haz como si estuviéramos en 1999 e inlinea todos los estilos. Asi es, por cada etiqueta que tenga un class, tenemos que
encontrar todos los estilos aplicados de la clase y afiadirlos como atributo style. Manualmente, esto seria suuuuuck... Por suerte, jSymfony

Mailer te tiene cubierto!

inline css_Filtro Twig

En la parte superior de este archivo, afiade una etiqueta Twig apply con el filtro inline_css. Si no estas familiarizado, la etiqueta apply te

permite aplicar cualquier filtro Twig a un bloque de contenido. Al final del archivo, escribe endapply:

templates/email/booking_confirmation.html.twig

1 {% apply inline_css %}
2 <html>

$ // ... Lines 3 - 27
28 </html>

29 {% endapply %}

Reserva otro viaje para Steve. Uy, jun error! El filtro inline_css forma parte de un paquete que no tenemos instalado, jpero el mensaje de error

nos da el comando composer require para instalarlo! Cdépialo, salta a tu terminal y pégalo:

composer require twig/cssinliner-extra

De vuelta en la aplicacion, vuelve a reservar el viaje de Steve y comprueba el correo electronico en Mailtrap.

El HTML parece el mismo, pero comprueba la Fuente HTML. jEste atributo style se afiadié automaticamente a la etiqueta <p>! Es increible y

mucho mejor que hacerlo manualmente.

Si tu aplicacién envia varios correos electrénicos, querras que tengan un estilo coherente a partir de un archivo CSS real, en lugar de definirlo
todo en una etiqueta <style> en cada plantilla. Por desgracia, no es tan sencillo como enlazar a un archivo CSS en la etiqueta <head>. Eso es

algo que tampoco gusta a los clientes de correo electronico.

iNo hay problema!

Archivo CSS externo

Crea un nuevo archivo email.css en assets/styles/. Copia el CSS de la plantilla de correo electrénico y pégalo aqui:

assets/styles/email.css
1 .text-red {
2 color: red;

3}

De vuelta en la plantilla, celébralo eliminando la etiqueta <style>.

Entonces, ¢como podemos hacer que nuestro correo electrénico utilice el archivo CSS externo? jCon trucos, por supuesto!

Espacio de nombres "styles" de Twig

Abre config/packages/twig.yaml y crea una clave paths. Dentro, afiade %kernel.project_dir%/assets/styles: styles:

onfig/packages/twig.yaml

|

1 twig:

$ // ... line 2

3 paths:

4 '%kernel.project_dir%/assets/styles': styles
$ // ... lines 5 - 9

Lo sé, esto parece raro, pero crea un espacio de nombres Twig personalizado. Gracias a esto ahora podemos renderizar plantillas dentro de este
directorio con el prefijo @styles/. Pero, jespera un momento! email.css jel archivo no es una plantilla Twig que queramos renderizar! No pasa

nada, solo necesitamos acceder a ella, no parsearla como Twig.

inline css()._con source().

De vuelta en booking_confirmation.html.twig, para el argumento de inline_css, utilizasource('@styles/email.css"):

templates/email/booking_confirmation.html.twig
1 {% apply inline_css(source('@styles/email.css"')) %}
T // ... lines 2 - 24

La funcion source() toma el contenido en bruto de un archivo.

Salta a nuestra aplicacion, reserva otro viaje y comprueba el correo electronico en Mailtrap. jParece el mismo! Aqui el texto es rojo. Si

comprobamos el codigo fuente HTML, las clases ya no estan en <head>, pero los estilos siguen alineados: se estan cargando desde nuestra hoja

de estilos externa, jes genial!

A continuacioén, vamos a mejorar el HTML y el CSS para que este correo electronico sea digno de la bandeja de entrada de Steve y del costoso

viaje que acaba de reservar.

Chapter 7: Estilo de correo electrénico real con Inky y Foundation CSS

Para que este correo electrénico tenga un aspecto realmente elegante, tenemos que mejorar el HTML y el CSS.

Empecemos por el CSS. Con el CSS estandar de un sitio web, es probable que hayas utilizado un framework CSS como Tailwind (que utiliza
nuestra aplicacién), Bootstrap o Foundation. ¢ Existe algo asi para los correos electronicos? Si Y es aun mas importante utilizar uno para los

correos electrénicos porque hay muchos clientes de correo electrénico que los renderizan de forma diferente.

CSS de Foundation para correos electronicos

Para los correos electrénicos, recomendamos utilizar Foundation, ya que tiene un marco especifico para correos electronicos. Busca en Google

"Foundation CSS" y encontraras esta pagina.
Descarga el kit de inicio para la "Version CSS". Este archivo zip incluye un archivo foundation-emails.css que es el "framework" real.
Ya lo he incluido en el directorio tutorials/. Copialo enassets/styles/.

En nuestro booking_confirmation.html.twig, el filtro inline_css puede tomar varios argumentos. Haz que el primer argumento sea

source('@styles/foundation-emails.css")y utiliza email.css para el segundo argumento:
templates/email/booking_confirmation.html.twig
1 {% apply inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}
T // ... lines 2 - 24

Esto contendra estilos personalizados y anulaciones.

Abriré email.css y pegaré algo de CSS personalizado para nuestro correo electrénico:

assets/styles/email.css

1 .trip-name {
font-size: 32px;

.accent-title {
color: #666666;

O 0 N OV A~ W N

.trip-image {
10 border-radius: 12px;

iTablas!

Ahora tenemos que mejorar nuestro HTML. Pero jqué noticia mas rara! La mayoria de las cosas que utilizamos para dar estilo a los sitios web no
funcionan en los correos electrénicos. Por ejemplo, no podemos utilizar Flexbox ni Grid. En su lugar, tenemos que utilizar tablas para la

maquetacion. jTablas! Tablas, dentro de tablas, dentro de tablas. jQué asco!

Lenguaje de plantillas Inky

Por suerte, hay un lenguaje de plantillas que podemos utilizar para hacer esto mas facil. Busca "inky templating language" para encontrar esta
pagina. Inky esta desarrollado por la Fundacion Zurb. Zurb, Inky, Foundation... jestos nombres encajan perfectamente con nuestro tema espacial!

iY todos funcionan juntos!

Puedes hacerte una idea de como funciona en la vista general. Este es el HTML necesario para un simple correo electrénico. jEs un infierno de
tabla! Haz clic en la pestafia "Cambiar a Inky". jGuau! jEsto es mucho mas limpio! Escribimos en un formato mas legible e Inky lo convierte en la

tabla-horror necesaria para los correos electronicos.

Incluso hay "componentes Inky": botones, llamadas, cuadriculas, etc.

En tu terminal, instala un filtro Twig de Inky que convertira nuestro marcado Inky en HTML.

composer require twig/inky-extra

inky to html Filtro Twig

En booking_confirmation.html.twig, afiade el filtro inky_to_htmla apply, canalizando inline_css a continuacion:
templates/email/booking_confirmation.html.twig
1 {% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}
$ // ... lines 2 - 24
En primer lugar, aplicamos el filtro Inky y, a continuacion, alineamos el CSS.

Copiaré algunas marcas Inky para nuestro correo electrénico.

templates/email/booking_confirmation.html.twig

1 {% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}

2 <container>

3 <row>

4 <columns>

5 <spacer size="40"></spacer>

6 <p class="accent-title">Get Ready for your trip to</p>

7 <hl class="trip-name">{{ trip.name }}</h1>

8 </columns>

9 </row>

10 <row>

11 <columns>

12 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}</p>
13 </columns>

14 </row>

15 <row>

16 <columns>

17 <button class="expanded rounded center" href="{{ url('booking_show', {uid: booking.uid}) }}">
18 Manage Booking

19 </button>

20 <button class="expanded rounded center secondary" href="{{ url('bookings', {uid: customer.uid}) }}">
21 My Account

22 </button>

23 </columns>

24 </row>

25 <row>

26 <columns>

27 <p>We can't wait to see you there,</p>

28 <p>Your friends at Universal Travel</p>

29 </columns>

30 </row>

31 </container>

32 {% endapply %}

Tenemos un <container>, con <rows> y<columns>. Este sera un correo electrénico de una sola columna, pero puedes tener tantas columnas

como necesites. Este <spacer> afiade espacio vertical para respirar.

iVeamos este correo electronico en accion! Reserva un nuevo viaje para Steve, jups, debe ser una fecha en el futuro, y reserval

Comprueba Mailtrap y encuentra el correo electrénico. jVaya! jEsto tiene mucho mejor aspecto! Podemos utilizar este pequefio widget que

Mailtrap proporciona para ver como se vera en moviles y tabletas.

Mirando el "HTML Check", parece que tenemos algunos problemas, pero, creo que mientras estemos usando Foundation e Inky como es debido,

deberiamos estar bien.

Comprueba los botones. "Gestionar reserva", si, funciona. "Mi cuenta", si, también funciona. jEso ha sido un éxito rapido gracias a Foundation e

Inky!

A continuacién, vamos a mejorar aiin mas nuestro correo electrénico incrustando la imagen del viaje y haciendo felices a los abogados afiadiendo

un archivo adjunto en PDF con las "condiciones del servicio".

Chapter 8: Archivos adjuntos e imagenes

¢, Podemos afadir un archivo adjunto a nuestro correo electrénico? Por supuesto que si Hacerlo manualmente es un proceso complejo y delicado.

Por suerte, el Mailer de Symfony te lo pone muy facil.
En el directorio tutorial/, veras un archivo terms-of-service.pdf. Muévelo a assets/, aunque podria estar en cualquier sitio.

En TripController: :show(), necesitamos obtener la ruta a este archivo. Aflade un nuevo argumentostring $termsPath y con el atributo

#[Autowire] y%kernel.project_dir%/assets/terms-of-service.pdf"':

src/Controller/TripController.php

$ // ... lines 1 - 20

21 final class TripController extends AbstractController
22 {

T // ... lines 23 - 31

32 public function show(

T // ... lines 33 - 38

39 #[Autowire('%kernel.project_dir%/assets/terms-of-service.pdf')]
40 string $termsPath,

41): Response {

T // ... lines 42 - 75

76 }

77}

Genial, ¢ verdad?

Adjunta

Abajo, donde creamos el correo electronico, escribe ->attach y mira lo que te sugiere tu IDE. Hay dos métodos: attach() y
attachFromPath().attach() es para afadir el contenido en bruto de un archivo (como cadena o flujo). Como nuestro adjunto es un archivo

real en nuestro sistema de archivos, utiliza attachFromPath() y pasa$termsPath y luego un nombre amigable como Terms of Service.pdf:

src/Controller/TripController.php

$ // ... lines 1 - 20

21 final class TripController extends AbstractController
22 {

T // ... lines 23 - 31

32 public function show(

$ // ... lines 33 - 40

41): Response {

$ // ... Lines 42 - 53

54 $email = (new TemplatedEmail())

T // ... lines 55 - 57

58 ->attachFromPath($termsPath, 'Terms of Service.pdf')
$ // ... lines 59 - 64

65 5

T // ... Lines 66 - 69

70 }

T // ... lines 71 - 75

76 }

77}

Este sera el nombre del archivo cuando se descargue. Si no se pasa el segundo argumento, por defecto sera el nombre del archivo.

Adjunto hecho. jHa sido facil!

Incrustar imagenes

A continuacién, vamos a afiadir la imagen del viaje al correo electronico de confirmacion de la reserva. Pero no la queremos como archivo
adjunto. La queremos incrustada en el HTML. Hay dos formas de hacerlo: Primero, la forma estandar de la web: utilizar una etiqueta con
una URL absoluta a la imagen alojada en tu sitio. Pero vamos a ser inteligentes e incrustar la imagen directamente en el correo electrénico. Esto

es como un archivo adjunto, pero no esta disponible para su descarga, sino que haces referencia a ella en el HTML de tu correo electrénico.

Primero, como hicimos con nuestros archivos CSS externos, tenemos que hacer que nuestras imagenes estén disponibles en Twig.

public/imgs/ contiene las imagenes de nuestro viaje y todas se llaman<trip-slug.png>.

En config/packages/twig.yaml, afiade otra entrada paths:%kernel.project_dir%/public/imgs: images:

config/packages/twig.yaml

1 twig:

T // ... line 2

3 paths:

$ // ... line 4

5 '%kernel.project_dir%/public/imgs': images
T // ... lines 6 - 10

Ahora podemos acceder a este directorio en Twig con @images/ . Cierra este archivo.

La variable email

Cuando utilizas Twig para procesar tus correos electronicos, por supuesto tienes acceso a las variables pasadas a ->context() pero también
hay una variable secreta disponible llamada email. Esta es una instancia de WrappedTemplatedEmail y te da acceso a cosas relacionadas con
el correo electrénico como el asunto, la ruta de retorno, de, a, etc. Lo que nos interesa es este método image() . jEs el que se encarga de

incrustar imagenes!
iVamos a utilizarlo!

En booking_confirmation.html.twig, debajo de este <h1>, afiade una etiqueta con algunas clases: trip-image de nuestro archivo

CSS personalizado y float-center de Foundation.

Para el src, escribe {{ email.image() }}, este es el método de ese objetoWrappedTemplatedEmail. Dentro, escribe

'@images/%s.png' | format(trip.slug).Afade un alt="{{ trip.name }}" y cierra la etiqueta:

templates/email/booking_confirmation.html.twig

1 {% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}

2 <container>

3 <row>

4 <columns>

$ // ... lines 5 - 6

7 <hl class="trip-name">{{ trip.name }}</h1>
8 <img

9 class="trip-image float-center"
10 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"
11 alt="{{ trip.name }}">
12 </columns>
13 </row>

$ // ... Lines 14 - 34
35 </container>

36 {% endapply %}
ilmagen incrustada! {Vamos a comprobarlo!

De vuelta en la aplicacion, reserva un viaje... y comprueba Mailtrap. Aqui esta nuestro correo electrénico y... jaqui esta nuestra imagen! jSomos lo

maximo! Encaja perfectamente e incluso tiene unas bonitas esquinas redondeadas.

Aqui arriba, en la parte superior derecha, vemos "Adjunto (1)", tal y como esperabamos. Haz clic en él y elige "Condiciones de servicio.pdf" para
descargarlo. Abrelo y... jahi esta nuestro PDF! Nuestros abogados espaciales han hecho divertido este documento, jy sélo nos ha costado 500

créditos/horal jCréditos de inversor bien invertidos!

A continuacién, vamos a eliminar la necesidad de poner manualmente un from a cada correo electrénico, utilizando eventos para afiadirlo

globalmente.

Chapter 9: Global Desde (y Diversion) con Eventos de Correo Electronico

Apuesto a que la mayoria, si no todos, los correos electronicos que envie tu aplicacion tendran la misma direccidon de correo electrénico, algo

ingenioso comohal90@e@universal-travel.com o el probado pero mas soporiferoinfo@universal-travel.com.

Como todos los correos tendran la misma direccion de origen, no tiene sentido establecerla en todos los correos. Curiosamente, no hay ninguna
opcién de configuracién minuscula para esto. Pero eso es genial para nosotros: jnos da la oportunidad de aprender sobre eventos! Muy potente,
muy friki.

| MessageEvent
Antes de enviar un correo electrénico, Mailer envia un mensaje MessageEvent.

Para escucharlo, busca tu terminal y ejecuta:

symfony console make:listener

Llamalo GlobalFromEmailListener. El nos da una lista de eventos que podemos escuchar. Queremos el primero: MessageEvent. Empieza a

escribir Symfony y se autocompletara por nosotros. Pulsa intro.
iEscucha creada!

Para ser mas guays, pongamos nuestra direccion global de origen como parametro. En config/services.yaml, debajo de parameters, afiade

una nueva: global_from_email.

Cadena especial de direccion de correo electronico

Esto sera una cadena, pero fijate en esto: ponlo en Universal Travel , luego entre paréntesis angulares, pon el correo electrénico:

<info@universal-travel.com>:

config/services.yaml

T // ... lines 1 - 5

6 parameters:

7 global_from_email: 'Universal Travel <info@universal-travel.com>'
$ // ... lines 8 - 26

Cuando Symfony Mailer vea una cadena con este aspecto como direccion de correo electrénico, creara el objeto Address adecuado con un
nombre y un correo electrénico establecidos. jGenial!

MessageEvent Receptor

Abre la nueva clase src/EventListener/GlobalFromEmaillistener.php.Afiade un constructor con un argumento

private string $fromEmail y un atributo #[Autowire]con el nombre de nuestro parametro: %global_from_email%:

src/EventListener/GlobalFromEmaillListener.php

$ // ... lines 1 - 8
9 final class GlobalFromEmaillListener

10 {

11 public function __ construct(

12 #[Autowire('%global_from_email%')]
13 private string $fromEmail,

14) {

15 }

$ // ... lines 16 - 21

22}

Aqui abajo, el atributo #[AsEventListener] es lo que marca este método como un oyente de eventos. En realidad, podemos eliminar este

argumento event - se deducira de la sugerencia de tipo del argumento del método: MessageEvent:

src/EventListener/GlobalFromEmaillListener.php

$ // ... lines 1 - 9

10 final class GlobalFromEmaillListener

1 {

$ // ... lines 12 - 17

18 #[AsEventListener]

19 public function onMessageEvent(MessageEvent $event): void
20 {

$ // ... lines 21 - 31

32 }

33 }

Dentro, primero coge el mensaje del evento: $message = $event->getMessage():

src/EventListener/GlobalFromEmaillListener.php

$ // ... lines 1 - 9
10 final class GlobalFromEmaillListener

11 {

$ // ... Lines 12 - 18

19 public function onMessageEvent(MessageEvent $event): void
20 {

21 $message = $event->getMessage();

T // ... lines 22 - 31

32 }

33 }

Salta al método getMessage() para ver lo que devuelve. RawMessage ... salta a esto y mira qué clases lo extienden. TemplatedEmail j!

iPerfecto!

De vuelta a nuestro oyente, escribe if (!$message instanceof TemplatedEmail),y dentro, return;:

src/EventListener/GlobalFromEmaillListener.php

$ // ... lines 1 - 9
10 final class GlobalFromEmaillListener

11 {

T // ... lines 12 - 18

19 public function onMessageEvent(MessageEvent $event): void
20 {

$ // ... lines 21 - 22

23 if (!$message instanceof TemplatedEmail) {
24 return;

25 }

$ // ... lines 26 - 31

32 }

33 }

Es probable que esto no ocurra nunca, pero es una buena practica volver a comprobarlo. Ademas, ayuda a nuestro IDE a saber que $message es

ahora un TemplatedEmail.

Es posible que un correo electronico aun establezca su propia direccion from. En este caso, no queremos anularla. Asi que afiade una clausula

de proteccion if ($message->getFrom()), return;:

src/EventListener/GlobalFromEmaillListener.php

$ // ... lines1 -9
10 final class GlobalFromEmaillListener

11 {

$ // ... lines 12 - 18

19 public function onMessageEvent(MessageEvent $event): void
20 {

$ // ... Lines 21 - 26

27 if ($message->getFrom()) {
28 return;

29 }

$ // ... lines 30 - 31

32 }

33 }

Ahora, podemos establecer la global from: $message->from($this->fromemail):

src/EventListener/GlobalFromEmaillListener.php
$ // ... lines1 -9
10 final class GlobalFromEmaillListener
11 {
$ // ... Lines 12 - 18
19 public function onMessageEvent(MessageEvent $event): void
20 {
$ // ... Lines 21 - 30
31 $message->from($this->fromEmail);

iPerfecto!
De vuelta en TripController: :show(), elimina el ->from() para el correo electrénico.

iEs hora de probarlo! En nuestra aplicacion, reserva un viaje y comprueba Mailtrap para el correo electrénico. Redoble de tambores... jel from

esta configurado correctamente! jNuestro oyente funciona! Nunca dudé de nosotros.

Reply-To
Un detalle mas para que esto sea completamente hermético (como la mayoria de nuestros barcos).

Imagina un formulario de contacto en el que el usuario rellena su nombre, correo electronico y un mensaje. Esto lanza un correo electrénico con
estos datos a tu equipo de soporte. En sus clientes de correo electrénico, estaria bien que, cuando pulsen responder, vaya al correo del

formulario, no a tu "global de".

Podrias pensar que deberias establecer la direccion from en el correo electrénico del usuario, pero eso no funcionara, ya que no estamos

autorizados a enviar correos electronicos en nombre de ese usuario. Pronto hablaremos mas sobre la seguridad del correo electronico.

Afortunadamente, existe una cabecera de correo electréonico especial llamada Reply-To precisamente para este escenario. Cuando construyas

tu correo electrénico, configurala con ->replyTo() y pasa la direccién de correo electrénico del usuario.

Abrdchate el cinturén porque los tanques de refuerzo estan llenos y listos para el lanzamiento! Es hora de enviar correos electrénicos reales en

produccion! Eso a continuacion.

Chapter 10: Envio en produccién con Mailtrap

Muy bien, jpor fin ha llegado el momento de enviar correos electronicos reales en produccion!

Transportes de Mailer

Mailer viene con varias formas de enviar correos electronicos, llamadas "transportes". Este smtp es el que estamos utilizando para nuestras
pruebas con Mailtrap. Podriamos configurar nuestro propio servidor SMTP para enviar correos... pero... eso es complejo, y tienes que hacer un

montdn de cosas para asegurarte de que tus correos no se marcan como spam. Boo.

transportes de terceros

Te recomiendo encarecidamente que utilices un servicio de correo electrénico de terceros. Estos gestionan todas estas complejidades por ti y

Mailer proporciona puentes a muchos de ellos para que la configuraciéon sea pan comido.

Puente Mailtrap

Utilizamos Mailtrap para las pruebas, pero Mailtrap también tiene funciones de envio a produccion jFantastico! Incluso tiene un puente oficial

En tu terminal, instalalo con:

composer require symfony/mailtrap-mailer

Una vez instalado, comprueba tu IDE. En .env, la receta afiade algunos stubs de MAILER_DSN. Podemos obtener los valores DSN reales de

Mailtrap, pero antes tenemos que hacer algunos ajustes.

Dominio de envio

En Mailtrap, tenemos que configurar un "dominio de envio". Esto configura un dominio de tu propiedad para permitir que Mailtrap envie correos

electrénicos correctamente en su nombre.

Nuestros abogados aun estan negociando la compra de universal-travel.com, asi que, por ahora, estoy utilizando un dominio personal que

poseo: zenstruck.com. Afade tu dominio aqui.

Una vez afhadido, estaras en esta pagina de "Verificacion del dominio". Esto es super importante, pero Mailtrap lo hace facil. Sélo tienes que
seguir las instrucciones hasta que aparezca esta marca de verificacion verde. Basicamente, tendras que afiadir un montén de registros DNS
especificos a tu dominio. DKIM, que verifica los correos electronicos enviados desde tu dominio, y SPF, que autoriza a Mailtrap a enviar correos
electrénicos en nombre de tu dominio, son los mas importantes. Mailtrap proporciona una gran documentacion sobre ellos si quieres profundizar
en como funcionan exactamente. Pero basicamente, le estamos diciendo al mundo que Mailtrap esté autorizado a enviar correos electrénicos en

nuestro nombre.

Producciéon MAILER DSN

Una vez que tengas la marca de verificacion verde, haz clic en "Integraciones" y luego en "Integrar" en la seccién "Flujo de transacciones".

Ahora podemos decidir entre utilizar SMTP o API. Yo utilizaré la API, pero cualquiera de las dos funciona. Y jhey! Esto me resulta familiar: como

con las pruebas de Mailtrap, elige PHP y luego Symfony. jEste es el MAILER_DSNque necesitamos! Copialo y salta a tu editor.

Se trata de una variable de entorno sensible, asi que afiadela a .env.local para evitar confirmarla en git. Comenta el DSN de prueba de

Mailtrap y pégalo a continuacion. Eliminaré este comentario porque nos gusta mantener la vida ordenada.

jCasi listo! Recuerda que sélo podemos enviar correos en produccién desde el dominio que hemos configurado. En mi caso, zenstruck.com.

Abre config/services.yaml y actualiza elglobal_from_email a tu dominio.

iVeamos si funciona! En tu aplicacion, reserva un viaje. Esta vez utiliza una direccion de correo electrénico real. Pondré el nombre Kevin y
utilizaré mi correo electrénico personal: kevin@symfonycasts.com. Por mucho que te quiera a ti y a los viajes espaciales, pon aqui tu propio

correo electronico para evitar enviarme spam. jElige una fecha y reserva!

Estamos en la pagina de confirmacién de la reserva, jes una buena sefall Ahora, comprueba tu correo electrénico personal. Yo voy al mio y

espero... actualizo... jaqui esta! Si hago clic, jesto es exactamente lo que esperamos! La imagen, el archivo adjunto, jtodo esta aqui!

A continuacién, vamos a ver como podemos rastrear los correos electronicos enviados con Mailtrap, jademas de afhadir etiquetas y metadatos

para mejorar ese rastreo!

Chapter 11: Seguimiento de correos electronicos con etiquetas y metadatos

Ya estamos enviando correos electrénicos de verdad. Comprobemos que nuestros enlaces funcionan... jTodo bien!

Registros de correo electrénico Mailtrap

Mailtrap puede hacer algo mas que enviar y depurar correos electrénicos: también podemos rastrear correos electrénicos y eventos de correo
electronico. Entra en Mailtrap y haz clic en "Email API/SMTP". Este panel nos muestra un resumen de cada correo electrénico que hemos
enviado. Haz clic en "Registros de correo electronico” para ver la lista completa. jAqui esta nuestro correo electronico! Haz clic en él para ver los

detalles.

Esto te resulta familiar... es similar a la interfaz de pruebas de Mailtrap. Podemos ver detalles generales, un analisis de spam y mucho mas. Pero
esto es realmente genial: haz clic en "Historial de Eventos". Esto muestra todos los eventos que ocurrieron durante el flujo de este correo
electrénico. Podemos ver cuando se envid, cuando se entrego, jincluso cuando lo abri6 el destinatario! Cada evento tiene detalles adicionales,
como la direccioén IP que abrié el correo electronico. Super Util para diagnosticar problemas de correo electrénico. Mailtrap también tiene una

funcién de seguimiento de enlaces que, si esta activada, mostraria qué enlaces se pulsaron en el correo electrénico.

De vuelta a la pestafia "Informacion del correo electrénico”, desplazate un poco hacia abajo. Observa que falta la "Categoria". En realidad, esto no
es un problema, pero una "categoria" es una cadena que ayuda a organizar los distintos correos electronicos que envia tu aplicacion. Esto facilita

la busqueda y puede darnos estadisticas interesantes como "; cuantos correos electronicos de registro de usuarios enviamos el mes pasado?".

Etiqueta de correo electrénico (categoria Mailtrap)

Symfony Mailer llama a esto una "etiqueta" que puedes afiadir a los correos electronicos. El puente Mailtrap toma esta etiqueta y la convierte en

su "categoria". jVamos a afiadir una!

En TripController: :show(), después de la creacién del correo electrénico, escribe: $email->getHeaders()->add(new TagHeader()); -

utiliza booking como nombre:

src/Controller/TripController.php

$ // ... lines 1 - 21

22 final class TripController extends AbstractController
23 {

T // ... lines 24 - 32

33 public function show(

$ // ... lines 34 - 41

42): Response {

$ // ... lines 43 - 44

45 if ($form->isSubmitted() && $form->isvalid()) {
$ // ... lines 46 - 66

67 $email->getHeaders()->add(new TagHeader('booking"'));
$ // ... lines 68 - 71

72 }

$ // ... lines 73 - 77

78 }

79 }

Metadatos del correo electronico (Variables personalizadas de Mailtrap)

Mailer también tiene una cabecera especial de metadatos que puedes afadir a los correos electréonicos. Se trata de un almacén clave-valor de

forma libre para afiadir datos adicionales. El puente Mailtrap los convierte en lo que ellos llaman "variables personalizadas".

Vamos a afiadir un par:

src/Controller/TripController.php

T // ... lines 1 - 22

23 final class TripController extends AbstractController
24 {

$ // ... Lines 25 - 33

34 public function show(

$ // ... lines 35 - 42

43): Response {

$ // ... lines 44 - 45

46 if ($form->isSubmitted() && $form->isvalid()) {
T // ... lines 47 - 68

69 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking->getUid()));
$ // ... lines 70 - 74

75 }

$ // ... Lines 76 - 8o

81 }

82 }

Y:
src/Controller/TripController.php

$ // ... lines 1 - 22

23 final class TripController extends AbstractController
24 {

$ // ... lines 25 - 33

34 public function show(

$ // ... lines 35 - 42

43): Response {

T // ... lines 44 - 45

46 if ($form->isSubmitted() && $form->isvalid()) {
$ // ... Llines 47 - 69

70 $email->getHeaders()->add(new MetadataHeader('customer_uid', $customer->getUid()));
 // ... lines 71 - 74

75 }

T // ... lines 76 - 80

81 }

82 }

A cada correo electronico de reserva se adjunta ahora una referencia al cliente y a la reserva. jFantastico!

Para ver como se veran en Mailtrap, salta a nuestra aplicacién y reserva un viaje (recuerda que aun estamos utilizando el envio de produccion,
asi que utiliza tu correo electrénico personal). Comprueba nuestra bandeja de entrada... aqui esta. De vuelta en Mailtrap, vuelve a los registros de
correo electronico... y actualiza... jahi estd! Haz clic en él. Ahora, en esta pestafia "Informacion de correo electrénico”, jvemos nuestra categoria

"reserva"! Un poco mas abajo, estan nuestros metadatos o "variables personalizadas".

Filtrar por categoria

Para filtrar por "categoria", ve a los registros de correo electronico. En este cuadro de busqueda, elige "Categorias". Este filtro enumera todas las

categorias que hemos utilizado. Selecciona "reserva" y "Buscar". Esto ya esta mas organizado que los tubos Jeffries de ingenieria

iEsto es el envio de correos electrénicos de produccion con Mailtrap! Para facilitar las cosas en los préximos capitulos, volvamos a utilizar

Mailtrap en pruebas. En .env.local, descomenta la prueba de Mailtrap MAILER_DSN y comenta el envio de produccién MAILER_DSN.

A continuacién, vamos a utilizar Symfony Messenger para enviar nuestros correos electrénicos de forma asincrona. jOoo!

Chapter 12: Envio asincrono y reintentable con Messenger

Cuando enviamos este correo electronico, se envia inmediatamente, de forma sincrénica. Esto significa que nuestro usuario ve un retraso
mientras nos conectamos al transporte de correo para enviar el correo electrénico. Y si hay un problema de red por el que el correo falla, el

usuario vera un error 500: no inspira precisamente confianza en una empresa que va a atarte a un cohete.

En lugar de eso, enviemos nuestros correos electronicos de forma asincrona. Esto significa que, durante la peticion, el correo electrénico se
enviara a una cola para ser procesado mas tarde. jSymfony Messenger es perfecto para esto! Y obtenemos las siguientes ventajas: respuestas
mas rapidas para el usuario, reintentos automaticos si el correo electrénico falla, y la posibilidad de marcar los correos electrénicos para su

revision manual si fallan demasiadas veces.

Instalacion de Messenger y Doctrine Transport

iVamos a instalar Messenger! En tu terminal, ejecuta:

composer require messenger

Al igual que Mailer, Messenger tiene el concepto de transporte: aqui es donde se envian los mensajes para ponerlos en cola. Utilizaremos el

transporte Doctrine, ya que es el mas facil de configurar.

composer require symfony/doctrine-messenger

En nuestro IDE, la receta afiadia este MESSENGER_TRANSPORT_DSN a nuestro .envy por defecto era Doctrine: jperfecto! Este transporte afiade
una tabla a nuestra base de datos, asi que técnicamente deberiamos crear una migracion para ello. Pero... vamos a hacer un poco de trampa y

hacer que cree automaticamente la tabla si no existe. Para permitirlo, configuraauto_setup en 1:

.env

T // ... lines 1 - 40
41 ###> symfony/messenger #H#
$ // ... lines 42 - 44

45 MESSENGER_TRANSPORT_DSN=doctrine://default?auto_setup=1
46 #it#< symfony/messenger #it#

Configurar los transportes de Messenger

La receta también ha creado este archivo config/packages/messenger.yaml. Descomenta la linea failure_transport:

config/packages/messenger.yaml

1 framework:

2 messenger:

$ // ... line 3

4 failure_transport: failed
$ // ... lines 5 - 24

Esto activa el sistema de revisién manual de fallos que he mencionado antes. A continuacion, descomenta la linea async debajo de transports:

config/packages/messenger.yaml

1 framework:

2 messenger:

$ // ... lines 3 - 5

6 transports:

$ // ... line 7

8 async: '%env(MESSENGER_TRANSPORT_DSN)%'
$ // ... lines 9 - 24

Esto habilita el transporte configurado con MESSENGER_TRANSPORT_DSN y lo nombra async. No es obvio aqui, pero los mensajes fallidos se
vuelven a intentar 3 veces, con un retraso creciente entre cada intento. Si un mensaje sigue fallando después de 3 intentos, se envia

afailure_transport, llamado failed, asi que descomenta también este transporte:

config/packages/messenger.yaml

1 framework:

2 messenger:

T // ... lines 3 - 5

6 transports:

$ // ... lines 7 - 8

9 failed: 'doctrine://default?queue_name=failed’
T // ... lines 10 - 24

Configurar el enrutamiento de Messenger

La seccién routing es donde le decimos a Symfony qué mensajes deben enviarse a qué transporte. Mailer utiliza una clase de mensaje

especifica para enviar correos electronicos. Asi que enviaSymfony\Component\Mailer\Messenger\SendEmailMessage al transporte async:

config/packages/messenger.yaml

1 framework:

2 messenger:

$ // ... Llines 3 - 11

12 routing:

$ // ... lines 13 - 14

15 'Symfony\Component\Mailer\Messenger\SendEmailMessage': async
$ // ... lines 16 - 24

iYa esta! Symfony Messenger y Mailer se acoplan perfectamente, asi que no tenemos que cambiar nada en nuestro cédigo.

iVamos a probarlo! De vuelta en nuestra aplicacion... reserva un viaje. Volvemos a utilizar el transporte de pruebas de Mailtrap, asi que podemos

utilizar cualquier correo electrénico. Ahora observa cuanto mas rapido se procesa.

iBum!

Estado: En cola

Abre el perfil de la ultima peticion y comprueba la seccion "Correos electronicos". Parece normal, pero fijate en que el Estado es "En cola". Se
envié a nuestro transporte Messenger, no a nuestro transporte Mailer. Tenemos esta nueva seccion "Mensajes". Aqui podemos ver

elSendEmailMessage que contiene nuestro objeto TemplatedEmail.

Salta a Mailtrap y actualiza... todavia nada. jPor supuesto! Tenemos que procesar nuestra cola.

Procesar la cola

Vuelve a tu terminal y ejecuta:

symfony console messenger:consume async -vv

Esto procesa nuestro transporte async (el -vv sélo afiade mas salida para que podamos ver lo que ocurre). jMuy bien! EI mensaje se ha recibido

y gestionado correctamente. Es decir: esto deberia haber enviado realmente el correo electrénico.
Comprueba Mailtrap... jya esta aqui! Parece correcto... pero... haz clic en uno de nuestros enlaces.

¢ Pero qué? Comprueba la URL: jes el dominio equivocado! Averigliemos qué parte de nuestro cohete de correo electrénico ha causado esto y

arreglémoslo a continuacion

Chapter 13: Generar URLs en el entorno CLI

Cuando cambiamos al envio asincrono de correo electrénico, jrompimos nuestros enlaces de correo electrénico! Esta utilizando localhost como

nuestro dominio, raro e incorrecto.

De vuelta en nuestra aplicaciéon, podemos obtener una pista de lo que esta pasando mirando el perfil de la peticion que envié el correo
electrénico. Recuerda que ahora nuestro correo electrénico esta marcado como "en cola". Ve a la pestafia "Mensajes" y busca el mensaje:
SendEmailMessage. Dentro esta el objeto TemplatedEmail. Abrelo. Interesante! htmlTemplate es nuestra plantilla Twig pero html es null!
¢ No deberia ser el HTML renderizado de esa plantilla? Este pequefio detalle es importante: la plantilla de correo electrénico no se renderiza

cuando nuestro controlador envia el mensaje a la cola. No! la plantilla no se renderiza hasta mas tarde, cuando ejecutamos messenger:consume.

Generacion de enlaces en la CLI

¢ Qué importancia tiene esto? Bueno messenger:consume es un comando CLI, y cuando se generan URLs absolutas en la CLI, Symfony no sabe
cual debe ser el dominio (o si debe ser http o https). Entonces, ¢ por qué lo hace cuando esta en un controlador? En un controlador, Symfony

utiliza la peticion actual para averiguarlo. En un comando CLI, no hay peticién, asi que se rinde y utiliza http://localhost.

Configurar la URL por defecto

Vamos a decirle cudl debe ser el dominio.

De vuelta a nuestro IDE, abre config/packages/routing.yaml. En framework, routing, estos comentarios explican exactamente esta

cuestion. Descomenta default_uri y ajustalo ahttps://universal-travel.com - jnuestros abogados estan a punto de llegar a un acuerdo!

config/packages/routing.yaml

1 framework:

2 router:

$ // ... lines 3 - 4

5 default_uri: https://universal-travel.com
$ // ... lines 6 - 19

En desarrollo, sin embargo, tenemos que utilizar la URL de nuestro servidor local de desarrollo. Para mi, es127.0.0.1:8000, pero puede ser

diferente para otros miembros del equipo. Sé que Bob utiliza bob.is.awesome:8000 y mas o menos es asi.

URL predeterminada del entorno de desarrollo

Para que esto sea configurable, hay un truco: el servidor Symfony CLI establece una variable de entorno especial con el dominio llamado
SYMFONY_PROJECT_DEFAULT_ROUTE_URL.

De vuelta en nuestra configuraciéon de enrutamiento, afiade una nueva seccion: when@dev:, framework:, router:,default_uri: y establécela

en %env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL)%:

config/packages/routing.yaml

$ // ... lines 1 - 6

7 when@dev:

$ // ... Lines 8 - 10

11 framework:

12 router:

13 default_uri: '%env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL)%'
$ // ... lines 14 - 19

Esta variable de entorno solo estara disponible si el servidor CLI de Symfony se esta ejecutando y estas ejecutando comandos a través de
symfony console (no bin/console). Para evitar un error si falta la variable, establece una por defecto. Todavia en when@dev,

afiade parameters: con env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL) : establecido en http://localhost.

config/packages/routing.yaml
$ // ... lines 1 - 6

7 when@dev:

8 parameters:

9 env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL): 'http://localhost'
$ // ... Lines 10 - 19

Esta es la forma estandar de Symfony de establecer un valor por defecto para una variable de entorno.

Reinicia messenger: consume

jHora de probar! Pero primero, vuelve a tu terminal. Como hemos hecho algunos cambios en nuestra configuracion, tenemos que reiniciar el

comando messenger:consume para, mas 0 menos, recargar nuestra aplicacion:

symfony console messenger:consume async -vv

iGenial! EI comando se ejecuta de nuevo y utiliza nuestra nueva configuracion de Symfony. Vuelve a nuestra aplicacion... jy reserva un viaje!

Vuelve rapidamente al terminal... y veremos que el mensaje se ha procesado.

Ve a Mailtrap y... jaqui estd! Momento de la verdad: haz clic en un enlace... Genial, jvuelve a funcionar! jBob estara tan contento!

Ejecutando messenger:consume_en segundo plano

Si eres como yo, probablemente te parezca un rollo tener que mantener este comando messenger:consume ejecutandose en un terminal durante
el desarrollo. Ademas, tener que reiniciarlo cada vez que haces un cambio en el coédigo o en la configuraciéon es molesto. jEstoy harto! jEs hora de

devolver la diversién a nuestras funciones con otro truco de la CLI de Symfony!

En tu IDE, abre este archivo .symfony.local.yaml. Es la configuracién del servidor Symfony CLI para nuestra aplicacion. ¢ Ves esta clave
workers ? Nos permite definir procesos que se ejecutaran en segundo plano cuando iniciemos el servidor. Ya tenemos el comando tailwind

configurado.

Anade otro trabajador. LIamalo messenger -aunque podria ser cualquier cosa- y establece cmd en

['symfony', 'console', 'messenger:consume', ‘async']:

.symfony.local.yaml

1 workers:

$ // ... lines 2 - 5

6 messenger:

7 cmd: ['symfony', 'console', 'messenger:consume', ‘async']
$ // ... lines 8 - 9

Esto resuelve el problema de tener que mantenerlo en ejecucion en una ventana de terminal independiente. Pero, ;qué pasa con el reinicio del

comando cuando hacemos cambios? No hay problema! Afiade una clave watch y ajustala a config, src, templates y vendor:

.symfony.local.yaml

1 workers:

T // ... lines 2 - 5

6 messenger:

T /... Line 7

8 watch: ['config', 'src', 'templates', 'vendor']

Si cambia algun archivo de estos directorios, el trabajador se reiniciara solo jInteligente!

De vuelta a tu terminal, reinicia el servidor con symfony server:stop y symfony serve -dmessenger:consume jdeberia estar ejecutandose

en segundo plano! Para comprobarlo, ejecuta

symfony server:status

i3 trabajadores funcionando! El servidor web PHP real, el trabajadortailwind:build existente y nuestro nuevo messenger:consume. jGenial!

A continuacion, jexploremos cémo hacer afirmaciones sobre correos electrénicos en nuestras pruebas funcionales!

Chapter 14: Aserciones de correos electronicos en pruebas funcionales

Bien, jhora de hacer pruebas! Si has explorado un poco la base de cédigo, te habras dado cuenta de que alguien (podria haber sido cualquiera...

pero probablemente un canadiense) colé algunas pruebas en nuestro directorio tests/Functional/. ;Pasaran? Niidea Averigliémoslo

Ve a tu terminal y ejecuta:

bin/phpunit

Uh-oh, 1 fallo. Uh-oh, porque, la verdad, jsoy el simpatico canadiense que las afiadié y sé que pasaban al principio del curso! El fallo esta en

BookingTest, concretamente, testCreateBooking:

“Se esperaba un cédigo de estado de redireccion pero se obtuvo 500”

en la linea 38 de BookingTest. Ahi es donde enviamos el correo electronico... asi que si buscamos a alguien a quien culpar, creo que

deberiamos empezar por el canadiense, ejem, yo y mis salvajes maneras de enviar correos electrénicos.

Foundry y el navegador

Abre BookingTest.php. Si has escrito pruebas funcionales con Symfony antes, esto puede parecer un poco diferente porque estoy utilizando
algunas bibliotecas de ayuda. zenstruck/foundry nos da este rasgo ResetDatabase que limpia la base de datos antes de cada prueba.
También nos proporciona este rasgo Factories que nos permite crear fijaciones de base de datos en nuestras pruebas. Y HasBrowser es de

otro paquete - zenstruck/browser -y es esencialmente una envoltura facil de usar alrededor del cliente de pruebas de Symfony.

testCreateBooking es la prueba real. En primer lugar, creamos un Trip en la base de datos con estos valores conocidos. A continuacion,
algunas preaserciones para asegurarnos de que no hay reservas ni clientes en la base de datos. Ahora, utilizamos ->browser() para navegar a
la pagina de un viaje, rellenar el formulario de reserva y enviarlo. A continuacion, afirmamos que se nos redirige a una URL de reserva especifica 'y
comprobamos que la pagina contiene algun HTML esperado. Por ultimo, utilizamos Foundry para hacer algunas afirmaciones sobre los datos de

nuestra base de datos.

->throwExceptions().

La linea 38 causo el fallo... estamos obteniendo un cédigo de respuesta 500 al redirigir a esta pagina de reservas. los cédigos de estado 500 en
las pruebas pueden ser frustrantes porque puede ser dificil localizar la excepcion real. Por suerte, Browser nos permite lanzar la excepcion real. Al

principio de esta cadena, afiade ->throwExceptions():

tests/Functional/BookingTest.php

T // ... lines 1 - 12

13 class BookingTest extends KernelTestCase
14 {

T // ... lines 15 - 19

20 public function testCreateBooking(): void
21 {

T // ... lines 22 - 30

31 $this->browser()

32 ->throwExceptions()

T // ... lines 33 - 42

43 H

$ // ... Lines 44 - 52

53 }

54}

De vuelta al terminal, vuelve a ejecutar las pruebas:

bin/phpunit

Ahora vemos una excepcion No se puede encontrar la plantilla "@images/mars.png". Si recuerdas, esto se parece a cémo estamos incrustando
las imagenes del viaje en nuestro correo electrénico. Esta fallando porquemars.png no existe en public/imgs. Para simplificar, vamos a ajustar

nuestra prueba para utilizar una imagen existente. Para nuestra fijacién aqui, cambia mars por iss, y abajo, para->visit(): /trip/iss:

tests/Functional/BookingTest.php

T // ... lines 1 - 12

13 class BookingTest extends KernelTestCase
14 {

$ // ... lines 15 - 19

20 public function testCreateBooking(): void
21 {

22 $trip = TripFactory::createOne([
T // ... line 23

24 'slug' => 'iss’',

$ // ... Line 25

26 s

T // ... lines 27 - 30

31 $this->browser()

T // ... line 32

33 ->visit('/trip/iss"')

$ // ... lines 34 - 42

43 H

$ // ... lines 44 - 52

53 }

54}

jEjecuta de nuevo las pruebas!

bin/phpunit

jPasa!

Parece que nuestro correo se envia... jpero confirmémoslo! Al final de esta prueba, quiero hacer algunas afirmaciones sobre el correo electronico.

Symfony lo permite, pero a mi me gusta utilizar una biblioteca que devuelva la diversion a las pruebas funcionales de correo electrénico.

zenstruck/mailer-test

En tu terminal, ejecuta:

composer require --dev zenstruck/mailer-test

Instalado y configurado... de nuevo en nuestra prueba, habilitalo afiadiendo el rasgo InteractsWithMailer:

tests/Functional/BookingTest.php

$ // ... lines 1 - 13

14 class BookingTest extends KernelTestCase

15 {

16 use ResetDatabase, Factories, HasBrowser, InteractsWithMailer;
$ // ... lines 17 - 54

55 }

Empieza de forma sencilla, al final de la prueba, escribe $this->mailer()->assertSentEmailCount(1);:

tests/Functional/BookingTest.php

$ // ... lines 1 - 13

14 class BookingTest extends KernelTestCase
15 {

T // ... lines 16 - 20

21 public function testCreateBooking(): void
22 {

$ // ... lines 23 - 54

55 $this->mailer()

56 ->assertSentEmailCount(1)

57 H

58 }

59 }

Variables de entorno especificas de la prueba

Nota rapida: .env.local -donde ponemos nuestras credenciales Mailtrap reales- no se lee ni se utiliza en el entorno test: nuestras pruebas
s6lo cargan .env y este archivo.env.test.Y en .env, MAILER_DSN esta configurado como null://null. jEstupendo! Queremos que

nuestras pruebas sean rapidas, y que no envien realmente correos electronicos.

iVuelve a ejecutarlas!

bin/phpunit

assertEmailSentTo(),

Pasa: jse envia 1 correo electronico! Vuelve atras y afiade otra asercion: ->assertEmailSentTo(). ¢ Qué direccion de correo esperamos? La
é
que rellenamos en el formulario: bruce@wayne-enterprises.com. Copiala y pégala. El segundo argumento es el asunto:

Booking Confirmation for Visit Mars:

tests/Functional/BookingTest.php

$ // ... lines 1 - 13

14 class BookingTest extends KernelTestCase

15 {

$ // ... lines 16 - 20

21 public function testCreateBooking(): void
22 {

$ // ... Lines 23 - 54

55 $this->mailer()

$ // ... line 56

57 ->assertEmailSentTo('bruce@wayne-enterprises.com', 'Booking Confirmation for Visit Mars')
58 H

59 }

60 }

iEjecuta las pruebas!

bin/phpunit

iSigue pasando! Y fijate que ahora tenemos 20 afirmaciones en lugar de 19.

TestEmail

jPero podemos ir mas alla! En lugar de una cadena para el asunto de esta afirmacién, utiliza un cierre con TestEmail $email como argumento:

tests/Functional/BookingTest.php

3
15
16

I
22
23

3
56

3
58

I
65
66
67
68

// ... lines 1 - 14
class BookingTest extends KernelTestCase
{
// ... lines 17 - 21
public function testCreateBooking(): void
{
// ... lines 24 - 55
$this->mailer()
// ... line 57
->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {
// ... lines 59 - 64
b))
5
}
}

Dentro, ahora podemos hacer muchas mas afirmaciones sobre este correo electrénico. Como ya no estamos comprobando el asunto, afiade

primero ésta: $email->assertSubject('Booking Confirmation for Visit Mars'):

tests/Functional/BookingTest.php

3
15
16

I
22
23

3
56

3
58
59
60

3
64
65
66
67
68

// ... lines 1 - 14
class BookingTest extends KernelTestCase
{
// ... lines 17 - 21
public function testCreateBooking(): void
{
// ... lines 24 - 55
$this->mailer()
// ... line 57

->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {
$email
->assertSubject('Booking Confirmation for Visit Mars')
// ... lines 61 - 63
5

b))

iY podemos encadenar mas afirmaciones!

Escribe ->assert para ver qué sugiere nuestro editor. Miralas todas... Fijate en assertTextContainsy assertHtmlContains. Puedes

aseverar sobre cada una de ellas por separado, pero, como es una buena practica que ambas contengan los detalles importantes, utiliza

assertContains() para comprobar las dos a la vez. Comprueba Visit Mars:

tests/Functional/BookingTest.php

3
15
16

i
22
23

3
56

I
58
59

3
61

3
64
65
66
67
68

// ... lines 1 - 14
class BookingTest extends KernelTestCase
{
// ... lines 17 - 21
public function testCreateBooking(): void
{
// ... lines 24 - 55
$this->mailer()
// ... line 57
->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {
$email
// ... line 66
->assertContains('visit Mars')
// ... lines 62 - 63
5
1)
5
}

Es importante comprobar los enlaces, asi que asegurate de que esta la URL de reserva: - >assertContains(' /booking/" . . Ahora,

BookingFactory: :first()->getUid():

tests/Functional/BookingTest.php

T // ... lines 1 - 14

15 class BookingTest extends KernelTestCase

16 {

$ // ... lines 17 - 21

22 public function testCreateBooking(): void

23 {

T // ... lines 24 - 55

56 $this->mailer()

$ // ... line 57

58 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {
59 $email

$ // ... lines 60 - 61

62 ->assertContains('/booking/"'.BookingFactory::first()->getuid())
T // ... line 63

64 H

65 D)

66 H

67 }

68 }

esto busca la primera entidad Booking en la base de datos (que sabemos por lo anterior que sélo hay una), y obtiene su uid.

Incluso podemos comprobar el archivo adjunto: ->assertHasFile('Terms of Service.pdf'):

tests/Functional/BookingTest.php

T // ... lines 1 - 14

15 class BookingTest extends KernelTestCase

16 {

$ // ... lines 17 - 21

22 public function testCreateBooking(): void

23 {

$ // ... Llines 24 - 55

56 $this->mailer()

$ // ... line 57

58 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {
59 $email

$ // ... lines 60 - 62

63 ->assertHasFile('Terms of Service.pdf')
64 K

65 1

66 H

67 }

68 }

Puedes comprobar el tipo de contenido y el contenido del archivo mediante argumentos adicionales, pero por ahora me basta con comprobar que

el archivo adjunto existe.

iVamos, pruebas, vamos!

bin/phpunit

Impresionante, j25 aserciones ahora!

=>dd().

Una ultima cosa: si alguna vez tienes problemas para averiguar por qué no pasa una de estas aserciones de correo electrénico, encadena un
->dd():

tests/Functional/BookingTest.php

$ // ... lines 1 - 14

15 class BookingTest extends KernelTestCase

16 {

$ // ... Lines 17 - 21

22 public function testCreateBooking(): void
23 {

$ // ... Lines 24 - 55

56 $this->mailer()

T // ... line 57

58 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {
59 $email

T // ... lines 60 - 63

64 ->dd()

65 K

66 1

67 H

68 }

69 }

y ejecuta tus pruebas. Cuando llegue a ese dd(), vuelca el correo electronico para ayudarte a depurar. jNo olvides eliminarlo cuando hayas

terminado!

A continuacion, quiero afiadir un segundo correo electrénico a nuestra aplicacion. Para evitar la duplicacion y mantener la coherencia, crearemos

un disefio de correo electronico Twig que ambos compartan.

Chapter 15: Disefio Twig de correo electronico

jHora de una nueva funcion! Quiero enviar un correo electronico recordatorio a los clientes 1 semana antes de su viaje reservado. T menos 1

semana para despegar gente!

Problema con el Trabajador CLI de Symfony

En primer lugar, tenemos un pequefio problema con nuestro Symfony CLI worker. Abre . symfony.local.yaml. Nuestro trabajador messenger
esta buscando cambios en el directorio vendor. Al menos en algunos sistemas, hay demasiados archivos aqui para monitorizar y ocurren cosas

raras. No pasa nada: elimina vendor/:

.symfony.local.yaml

1 workers:

$ // ... lines 2 - 5

6 messenger:

$ // ... Line 7

8 watch: ['config', 'src', 'templates']

Y como hemos cambiado la configuracion, salta a tu terminal y reinicia el servidor web:

symfony server:stop

.<

symfony serve -d

Disero del correo electronico

Nuestro nuevo correo electrénico de recordatorio de reserva tendra una plantilla muy similar a la de confirmacion de reserva. Para reducir la
duplicacién, y mantener la coherencia de nuestros elegantes correos electronicos, en templates/email/, crea una nueva plantilla

layout.html.twig a la que se extenderan todos nuestros correos electronicos.

Copia el contenido de booking_confirmation.html.twig y pégalo aqui. Ahora, elimina el contenido especifico de confirmacién de reserva 'y

crea un bloque content vacio. Creo que esta bien mantener nuestra firma aqui.

templates/email/layout.html.twig

1 {% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}
2 <container>
{% block content %}{% endblock %}
<row>
<columns>
<p>We can't wait to see you there,</p>
<p>Your friends at Universal Travel</p>
</columns>

O 00 N O U bW

</row>
10 </container>
11 {% endapply %}

En booking_confirmation.html.twig, aqui arriba, amplia este nuevo disefio y afiade el bloque content . Abajo, copia el contenido especifico

del correo electronico y pégalo dentro de ese bloque. Elimina todo lo demas.

templates/email/booking_confirmation.html.twig

1 {% extends 'email/layout.html.twig' %}

2

3 {% block content %}

4 <row>

5 <columns>

6 <spacer size="40"></spacer>

7 <p class="accent-title">Get Ready for your trip to</p>

8 <hl class="trip-name">{{ trip.name }}</h1>

9 <img

10 class="trip-image float-center"

11 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

12 alt="{{ trip.name }}">

13 </columns>

14 </row>

15 <row>

16 <columns>

17 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}</p>
18 </columns>

19 </row>

20 <row>

21 <columns>

22 <button class="expanded rounded center" href="{{ url('booking_show', {uid: booking.uid}) }}">
23 Manage Booking

24 </button>

25 <button class="expanded rounded center secondary" href="{{ url('bookings', {uid: customer.uid}) }}">
26 My Account

27 </button>

28 </columns>

29 </row>

30 {% endblock %}

Asegurémonos de que el correo electronico de confirmacion de la reserva sigue funcionando, jy tenemos pruebas para ello! De vuelta en el

terminal, ejecutalas con:

bin/phpunit

iVerde! Eso es buena sefal. Asegurémonos doblemente comprobandolo en Mailtrap. En la aplicacién, reserva un viaje... y comprueba Mailtrap.

iSigue estando fantastico!

iEs hora de enviar el correo electronico recordatorio!

Indicador de recordatorio de reserva

Después de enviar un correo electrénico recordatorio, tenemos que marcar la reserva para no molestar al cliente con multiples recordatorios.

Vamos a afiadir una nueva bandera para esto a la entidad Booking.

En tu terminal, ejecuta:

symfony make:entity Booking

iuy!

symfony console make:entity Booking

¢ Anadir un nuevo campo llamado reminderSentAt, tipo datetime_immutable, anulable? Si. Se trata de un patrén habitual que utilizo para este
tipo de campos bandera en lugar de un simple boolean.null significa false y una fecha significa true. Funciona igual, pero nos da un poco

mas de informacion.

Pulsa intro para salir del comando.

En la entidad Booking... aqui esta nuestra nueva propiedad, y aqui abajo, el getter y el setter.

Encontrar reservas para recordar

A continuacion, necesitamos una forma de encontrar todas las reservas que necesitan que se les envie un recordatorio. jEl trabajo perfecto
paraBookingRepository! Afiade un nuevo método llamado findBookingsToRemind(), tipo de retorno: array. Afiade un docblock para mostrar

que devuelve un array de objetos Reserva:

src/Repository/BookingRepository.php

T // ... lines 1 - 12

13 class BookingRepository extends ServiceEntityRepository
14 {

$ // ... lines 15 - 51

52 /*x

53 * @return Booking[]

54 */

55 public function findBookingsToRemind(): array
56 {

$ // ... lines 57 - 65

66 }

67 }

Dentro, return $this->createQueryBuilder(), alias b. Encadena ->andWhere('b.reminderSentAt IS NULL'),
->andWhere('b.date <= :future'),->andWhere('b.date > :now') rellenando los marcadores de posicion
con ->setParameter('future', new \DateTimeImmutable('+7 days')) y->setParameter('now', new \DateTimeImmutable('now')).

Termina con ->getQuery()->getResult():

src/Repository/BookingRepository.php

T // ... lines 1 - 12

13 class BookingRepository extends ServiceEntityRepository

14 {

T // ... lines 15 - 54

55 public function findBookingsToRemind(): array

56 {

57 return $this->createQueryBuilder('b")

58 ->andWhere('b.reminderSentAt IS NULL')

59 ->andWhere('b.date <= :future')

60 ->andWhere('b.date > :now")

61 ->setParameter('future', new \DateTimeImmutable('+7 days'))
62 ->setParameter('now', new \DateTimeImmutable('now'))
63 ->getQuery()

64 ->getResult()

65 H

66 }

67 }

Fijacion de Reservas Pendientes de Recordatorio

En AppFixtures, aqui abajo, creamos algunas reservas falsas. Afiade una que desencadene con seguridad el envio de un correo electronico
recordatorio: BookingFactory: :createOne(), dentro, "trip' => $arrakis, 'customer' => $clark vy, ésta es la parte importante,

'date' => new \DateTimeImmutable('+6 days'):

src/DataFixtures/AppFixtures.php

$ // ... lines 1 - 10

11 class AppFixtures extends Fixture

12 {

13 public function load(ObjectManager $manager): void
14 {

$ // ... lines 15 - 87

88 BookingFactory: :createOne([

89 "trip' => $arrakis,

920 'customer' => $clark,

91 'date' => new \DateTimeImmutable('+6 days'),
92 s

93 }

9 }

Claramente entre ahora y dentro de 7 dias.

"Migracion
Hemos realizado cambios en la estructura de nuestra base de datos. Normalmente, deberiamos crear una migracion... pero, no estamos

utilizando migraciones. Asi que, simplemente forzaremos la actualizacion del esquema. En tu terminal, ejecuta:

symfony console doctrine:schema:update --force

Luego, vuelve a cargar los accesorios:

symfony console doctrine:fixture:load

Todo ha funcionado, jgenial!

A continuacion, jcrearemos un nuevo correo electrénico recordatorio y un comando CLI para enviarlo!

Chapter 16: Correo electronico desde el comando CLI

Ya hemos hecho el trabajo previo para nuestra funcién de correo electrénico recordatorio. Ahora, jvamos a crear y enviar los correos!

Plantilla de correo electrénico recordatorio

En templates/email, la nueva plantilla de correo electrénico sera muy similar abooking_confirmation.html.twig. Copia ese archivoy
nombralo booking_reminder.html.twig. Dentro, no quiero perder demasiado tiempo en esto, asi que simplemente cambia el titulo del acento

para que diga "jProximamente!":

templates/email/booking_reminder.html.twig

1 {% extends 'email/layout.html.twig' %}

2

3 {% block content %}

4 <row>

5 <columns>

6 <spacer size="40"></spacer>

7 <p class="accent-title">Coming soon!</p>

8 <hl class="trip-name">{{ trip.name }}</h1>

9 <img

10 class="trip-image float-center"

11 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

12 alt="{{ trip.name }}">

13 </columns>

14 </row>

15 <row>

16 <columns>

17 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}</p>
18 </columns>

19 </row>

20 <row>

21 <columns>

22 <button class="expanded rounded center" href="{{ url('booking_show', {uid: booking.uid}) }}">
23 Manage Booking

24 </button>

25 <button class="expanded rounded center secondary" href="{{ url('bookings', {uid: customer.uid}) }}">
26 My Account

27 </button>

28 </columns>

29 </row>

30 {% endblock %}

iEnvialo! jJuego de palabras espacial accidental!

Comando Enviar Recordatorio

La légica para enviar los correos electronicos tiene que ser algo que podamos programar para que se ejecute cada hora o cada dia. jEl trabajo

perfecto para un comando CLI! En tu terminal, ejecuta:

symfony make:command

iBah!

symfony console make:command

Llamalo: app:send-booking-reminders.

iVe a comprobarlo! src/Command/SendBookingRemindersCommand.php. Cambia la descripcién a "Enviar correos electronicos de recordatorio de

reserva":

src/Command/SendBookingRemindersCommand.php

$ // ... lines 1 - 17
18 #[AsCommand (
T // ... line 19

20 description: 'Send booking reminder emails',
21)]

22 class SendBookingRemindersCommand extends Command
T // ... lines 23 - 70

En el constructor, autocablea y establece propiedades para BookingRepository, EntityManagerInterfacey MailerInterface:

src/Command/SendBookingRemindersCommand.php

T // ... lines 1 - 21

22 class SendBookingRemindersCommand extends Command
23 |

24 public function __construct(

25 private BookingRepository $bookingRepo,
26 private EntityManagerInterface $em,

27 private MailerInterface $mailer,

28) {

29 parent::__construct();

30 }

$ // ... lines 31 - 68

69 }

Este comando no necesita argumentos ni opciones, asi que elimina por completo el método configure().

Limpia las tripas de execute() . Empieza afiadiendo un bonito: $io->title('Sending booking reminders'). Luego, coge las reservas que

necesitan que se envien recordatorios, con $bookings = $this->bookingRepo->findBookingsToRemind() .

Barra de progreso facil

Para ser los mejores, mostremos una barra de progreso mientras recorremos las reservas. El objeto $io tiene un truco para esto. Escribe
foreach ($io->progressIterate($bookings) as $booking) . Esto se encarga de toda la aburrida I6gica de la barra de progreso Dentro,

tenemos que crear un nuevo correo electronico. En TripController, copia ese correo electrénico -incluyendo estas cabeceras- y pégalo aqui.

Pero tenemos que ajustarlo un poco: elimina el archivo adjunto. Y para el asunto: sustituye "Confirmacién" por "Recordatorio”. Arriba, afiade
algunas variables por comodidad: $customer = $booking->getCustomer() y $trip = $booking->getTrip().Aqui abajo, mantén los

mismos metadatos, pero cambia la etiqueta a booking_reminder. Esto nos ayudara a distinguir mejor estos correos en Mailtrap.
Ah, y por supuesto, cambia la plantilla a booking_reminder.html.twig.

Siguiendo con el bucle, envia el correo electrénico con $this->mailer->send($email) y marca la reserva como recordatorio enviado

con$booking->setReminderSentAt(new \DateTimeImmutable('now')).

iPerfecto! Fuera del bucle, llama a $this->em->flush() para guardar los cambios en la base de datos. Por ultimo, celébralo

con$io->success(sprintf('Sent %d booking reminders', count($bookings))).

src/Command/SendBookingRemindersCommand. php

$ // ... lines 1 - 21

22 class SendBookingRemindersCommand extends Command

23 {

T // ... lines 24 - 31

32 protected function execute(InputInterface $input, OutputInterface $output): int
33 {

34 $io = new SymfonyStyle($input, $output);

35

36 $io->title('Sending booking reminders');

37

38 $bookings = $this->bookingRepo->findBookingsToRemind();

39

40 foreach ($io->progressIterate($bookings) as $booking) {

41 $trip = $booking->getTrip();

42 $customer = $booking->getCustomer();

43

44 $email = (new TemplatedEmail())

45 ->to(new Address($customer->getEmail()))

46 ->subject('Booking Reminder for '.$trip->getName())

a7 ->htmlTemplate('email/booking_reminder.html.twig")

48 ->context ([

49 ‘customer' => $customer,

50 ‘trip' => $trip,

51 'booking' => $booking,

52 D

53 ;

54

55 $email->getHeaders()->add(new TagHeader('booking_reminder'));
56 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking->getuid()));
57 $email->getHeaders()->add(new MetadataHeader('customer_uid', $customer->getUid()));
58

59 $this->mailer->send($email);

60 $booking->setReminderSentAt(new \DateTimeImmutable('now'));
61 }

62

63 $this->em->flush();

64

65 $io->success(sprintf('Sent %d booking reminders', count($bookings)));
66

67 return Command: :SUCCESS;

68 }

69 }

jHora de probar! Ve a tu terminal. Para asegurarte de que tenemos una reserva que necesita que se le envie un recordatorio, recarga los

accesorios con:

symfony console doctrine:fixture:load

Ahora, jejecuta nuestro nuevo comando!

symfony console app:send-booking-reminders

Bien, jse ha enviado 1 recordatorio! Y el resultado impresionara a nuestros colegas! Antes de comprobar Mailtrap, vuelve a ejecutar el comando:

symfony console app:send-booking-reminders

"Enviados 0 recordatorios de reserva". jPerfecto! Nuestra légica para marcar las reservas como recordatorios enviados jfunciona!

Ahora comprueba Mailtrap... jaqui esta! Como era de esperar, se parece mucho a nuestro correo de confirmacién, pero aqui dice

"Proximamente": esta utilizando la nueva plantilla.

X-Tag_ Yy _X-Metadata

Cuando se utiliza "Prueba de Mailtrap", las etiquetas y metadatos de Mailer no se convierten en categorias y variables personalizadas de Mailtrap,
como ocurre cuando se envian en produccion. jPero aun puedes asegurarte de que se envian! Haz clic en esta pestafa "Informacion técnica" y

desplazate un poco hacia abajo. Cuando Mailer no sabe como convertir las etiquetas y los metadatos, los afiade como estas cabeceras genéricas

personalizadas: X-Tag y X-Metadata.
Efectivamente, X-Tag es booking_reminder. Genial, jeso es lo que esperamos también!

Vale, ¢ nueva funcion? jComprobado! ;Pruebas para la nueva funciéon? jEso a continuacion!

Chapter 17: Prueba del comando CLI

iEl capitan esta harto de que la gente corra detras del cohete porque llegan tarde! jPor eso hemos creado un comando para enviar correos
electronicos recordatorios! Problema resuelto! Ahora escribamos una prueba para asegurarnos de que sigue funcionando. "Nueva funcién, nueva

prueba", jese es mi lemal!

Salta a tu terminal y ejecuta:

symfony console make:test

Teclea? KernelTestCase. ;Nombre? SendBookingRemindersCommandTest.

SendBookingRemindersCommandTest

En nuestro IDE, la nueva clase se ha afiadido a tests/. Abrelo y mueve la clase a un nuevo espacio de nombres:

App\Tests\Functional\Command, para mantener las cosas organizadas.

Perfecto. Primero, limpia las tripas y afiade algunos rasgos de comportamiento:use ResetDatabase, Factories, InteractsWithMailer:

tests/Functional/Command/SendBookingRemindersCommandTest.php

$ // ... lines 1 - 9
10 class SendBookingRemindersCommandTest extends KernelTestCase

11 {

12 use ResetDatabase, Factories, InteractsWithMailer;
T // ... lines 13 - 22

23}

Elimina dos pruebas:public function testNoRemindersSent() con$this->markTestIncomplete()

ypublic function testRemindersSent(). Marcalo también como incompleto:

tests/Functional/Command/SendBookingRemindersCommandTest.php

$ // ... lines 1 - 9

10 class SendBookingRemindersCommandTest extends KernelTestCase
11 {

T // ... lines 12 - 13

14 public function testNoRemindersSent()
15 {

16 $this->markTestIncomplete();

17 }

18

19 public function testRemindersSent()
20 {

21 $this->markTestIncomplete();

22 }

23}

De vuelta al terminal, ejecuta las pruebas con:

bin/phpunit

Lista de pruebas TODO

Fijate, nuestras dos pruebas originales pasan, los dos puntos, y estas ies son las nuevas pruebas incompletas. Me encanta esta pauta: escribe

los stubs de prueba para una nueva funcién, y luego juega a eliminar los incompletos uno a uno hasta que desaparezcan todos. Entonces, jla

funcionalidad esta terminada!

Symfony tiene algunas herramientas para probar comandos, pero me gusta usar un paquete que las envuelve en una experiencia mas agradable.

Instalalo con:

zenstruck/console-test

composer require --dev zenstruck/console-test

Para activar los ayudantes de este paquete, afiade un nuevo rasgo de comportamiento a nuestra prueba: InteractsWithConsole:

tests/Functional/Command/SendBookingRemindersCommandTest.php

$ // ... lines 1 - 10

11 class SendBookingRemindersCommandTest extends KernelTestCase

12 {

13 use ResetDatabase, Factories, InteractsWithMailer, InteractsWithConsole;
T // ... lines 14 - 26

27 '}

jEstamos listos para derribar esos yoes!

testNoRemindersSent ().

La primera prueba es facil: queremos asegurarnos de que, cuando no hay reservas que recordar, el comando no envia ningun correo electrénico.
Escribe $this->executeConsoleCommand() y so6lo el nombre del comando: app:send-booking-reminders. Asegurate de que el comando se

ejecuta correctamente con ->assertSuccessful() y->assertOutputContains('Sent @ booking reminders'):

tests/Functional/Command/SendBookingRemindersCommandTest.php

$ // ... lines 1 - 10
11 class SendBookingRemindersCommandTest extends KernelTestCase
12 {
T // ... lines 13 - 14
15 public function testNoRemindersSent()
16 {
17 $this->executeConsoleCommand('app:send-booking-reminders")
18 ->assertSuccessful()
19 ->assertOutputContains('Sent © booking reminders')
20 H
21 }
T // ... lines 22 - 26
27}
testRemindersSent ()
Organiza

Pasamos a la siguiente prueba Esta es mas complicada: tenemos que crear una reserva que pueda recibir un recordatorio. Crea el arreglo de la
reserva con$booking = BookingFactory: :createOne().Pasaunarray con 'trip' => TripFactory::new(),y dentro de éste, otro array
con'name' => 'Visit Mars', 'slug' => 'iss' (para evitar el problema de la imagen). La reserva también necesita un cliente:

'customer' => CustomerFactory: :new() . Lo Unico que nos importa es el correo electronico del cliente:

‘email' => ‘'steve@minecraft.com' por ultimo, la fecha de la reserva: 'date' => new \DateTimeImmutable('+4 days'):

tests/Functional/Command/SendBookingRemindersCommandTest.php

T // ... lines 1 - 14

15 class SendBookingRemindersCommandTest extends KernelTestCase
16 {

T // ... lines 17 - 26

27 public function testRemindersSent()

28 {

29 $booking = BookingFactory::createOne([

30 "trip' => TripFactory: :new([

31 ‘name' => 'Visit Mars',

32 'slug' => 'iss’',

33 1,

34 'customer' => CustomerFactory::new(['email' => 'steve@minecraft.com']),
35 'date’ => new \DateTimeImmutable('+4 days'),

36 s

$ // ... lines 37 - 56

57 }

58 }

jUfl Tenemos una reserva en la base de datos que necesita que se le envie un recordatorio. El paso de configuracién, u ordenacion, de esta

prueba esta hecho.

Pre-Asercion

Afade una preafirmacioén para asegurarte de que no se ha enviado un recordatorio a esta

reserva: $this->assertNull($booking->getReminderSentAt()):

tests/Functional/Command/SendBookingRemindersCommandTest.php

T // ... lines 1 - 14
15 class SendBookingRemindersCommandTest extends KernelTestCase
16 {
T // ... lines 17 - 26
27 public function testRemindersSent()
28 {
T // ... lines 29 - 37
38 $this->assertNull($booking->getReminderSentAt());
T // ... lines 39 - 56
57 }
58 }
Actuar

Ahora el paso

actuar: $this->executeConsoleCommand('app:send-booking-reminders') ->assertSuccessful()->assertOutputContains('Sent 1 bookil

tests/Functional/Command/SendBookingRemindersCommandTest.php

$ // ... lines 1 - 14
15 class SendBookingRemindersCommandTest extends KernelTestCase
16 {
T // ... lines 17 - 26
27 public function testRemindersSent()
28 {
T // ... lines 29 - 39
40 $this->executeConsoleCommand('app:send-booking-reminders")
41 ->assertSuccessful()
42 ->assertOutputContains('Sent 1 booking reminders')
43 H
$ // ... Lines 44 - 56
57 }
58 }
Afirma

Pasamos a la fase de asercién para asegurarnos de que el correo electrénico se ha enviado. En BookingTest, copia la asercion del correo

electronico y pégala aqui. Haz algunos ajustes: el correo electronico es steve@minecraft.com, el asunto es

Booking Reminder for Visit Marsy este correo no tiene ningun adjunto, asi que elimina esa asercion por completo:

tests/Functional/Command/SendBookingRemindersCommandTest.php

$ // ... lines 1 - 14

15 class SendBookingRemindersCommandTest extends KernelTestCase

16 {

T // ... lines 17 - 26

27 public function testRemindersSent()

28 {

$ // ... lines 29 - 44

45 $this->mailer()

46 ->assertSentEmailCount(1)

47 ->assertEmailSentTo('steve@minecraft.com', function(TestEmail $email) {
48 $email

49 ->assertSubject('Booking Reminder for Visit Mars')

50 ->assertContains('Vvisit Mars')

51 ->assertContains('/booking/"'.BookingFactory::first()->getuid())
52 K

53 1

54 H

$ // ... Lines 55 - 56

57 }

58 }

Por ultimo, escribe una asercion de que el comando actualizo la reserva en la base de
datos. $this->assertNotNull($booking->getReminderSentAt()):

tests/Functional/Command/SendBookingRemindersCommandTest.php

$ // ... lines 1 - 14

15 class SendBookingRemindersCommandTest extends KernelTestCase
16 {

T // ... lines 17 - 26

27 public function testRemindersSent()

28 {

T // ... lines 29 - 55

56 $this->assertNotNull($booking->getReminderSentAt());
57 }

58 }

iEl momento de la verdad! Ejecuta las pruebas:

bin/phpunit

iTodo en verde!

Pruebas externas

Este tipo de pruebas externas me parecen muy divertidas y faciles de escribir, porque no tienes que preocuparte demasiado de probar la légica
interna e imitan la forma en que un usuario interacttia con tu aplicacion. No es casualidad que las afirmaciones se centren en lo que el usuario

deberia ver y en algunas comprobaciones de alto nivel posteriores a la interacciéon, como comprobar algo en la base de datos.

Ahora que tenemos pruebas para nuestras dos rutas de envio de correo electrénico, demos una vuelta de la victoria y refactoricemos con

confianza para eliminar la duplicacion.

Chapter 18: Servicio de fabrica de correos electréonicos

Nuestra aplicacion envia dos correos electronicos: en SendBookingRemindersCommand, y enTripController: :show().Aqui hay... mucha
duplicacién. jMe duele la vista! jPero no te preocupes! Podemos reorganizar esto en un servicio de fabrica de correos electrénicos. Y como
tenemos pruebas que cubren ambos correos, podemos refactorizar y estar seguros de que no hemos roto nada. No me canso de decirlo: jme

encantan las pruebas!

BookingEmailFactory

Empieza creando una nueva clase: BookingEmailFactory en el espacio de nombres App\Email. Afiade un constructor, copia el argumento

$termsPath de TripController::show(), pégalo aquiy conviértelo en una propiedad privada:

src/Email/BookingEmailFactory.php

$ // ... lines 1 - 11

12 class BookingEmailFactory

13 {

14 public function __construct(

15 #[Autowire('%kernel.project_dir%/assets/terms-of-service.pdf')]
16 private string $termsPath,

17) {

18

$ // ... lines 19 - 54

55 }

Ahora, crea dos métodos de fabrica: public function createBookingConfirmation(), que aceptaran Booking $booking, y devolveran

TemplatedEmail. Luego,public function createBookingReminder(Booking $booking) también devolvera un TemplatedEmail:

src/Email/BookingEmailFactory.php

$ // ... lines 1 - 11

12 class BookingEmailFactory

13 {

T // ... lines 14 - 19

20 public function createBookingConfirmation(Booking $booking): TemplatedEmail
21 {

T // ... lines 22 - 25

26 }

$ // ... line 27

28 public function createBookingReminder(Booking $booking): TemplatedEmail
29 {

$ // ... lines 30 - 33

34 }

$ // ... Lines 35 - 54

55 }

Crea un método para albergar esa maldita duplicacion: private function createEmail(), con argumentos Booking $booking y

string $tag que devuelve un TemplatedEmail:

src/Email/BookingEmailFactory.php

$ // ... lines 1 - 11

12 class BookingEmailFactory

13 {

T // ... lines 14 - 35

36 private function createEmail(Booking $booking, string $tag): TemplatedEmail
37 {

$ // ... lines 38 - 53

54 }

55 }

Salta a TripController: :show(), copia todo el cédigo de creacion del correo electronico y pégalo aqui. Arriba, necesitamos dos variables:

$customer = $booking->getCustomer() y$trip = $booking->getTrip(). Elimina attachFromPath(), subject(), yhtmlTemplate().

En este TagHeader, utiliza la variable $tag pasada. Podemos dejar los metadatos igual. Por Ultimo, devuelve el $email:

src/Email/BookingEmailFactory.php

$ // ... lines 1 - 11

12 class BookingEmailFactory

13 {

T // ... lines 14 - 35

36 private function createEmail(Booking $booking, string $tag): TemplatedEmail
37 {

38 $customer = $booking->getCustomer();

39 $trip = $booking->getTrip();

40 $email = (new TemplatedEmail())

41 ->to(new Address($customer->getEmail()))

42 ->context ([

43 ‘customer' => $customer,

a4 "trip' => $trip,

45 'booking' => $booking,

46 1

47 H

48

49 $email->getHeaders()->add(new TagHeader($tag));

50 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking->getUid()));
51 $email->getHeaders()->add(new MetadataHeader('customer_uid', $customer->getUid()));
52

53 return $email;

54 }

55 }

Con nuestra l6gica compartida en su sitio, Usala en createBookingConfirmation(). Escribereturn $this->createEmail(), pasando la
variable $booking y booking para la etiqueta. Ahora, ->subject(), copia esto de TripController::show(), cambiando la variable $trip por

$booking->getTrip(). Por dltimo, ->htmlTemplate('email/booking_confirmation.html.twig"'):

src/Email/BookingEmailFactory.php

$ // ... lines 1 - 11

12 class BookingEmailFactory

13 {

$ // ... Lines 14 - 19

20 public function createBookingConfirmation(Booking $booking): TemplatedEmail
21 {

22 return $this->createEmail($booking, 'booking")

23 ->subject('Booking Confirmation for '.$booking->getTrip()->getName())
24 ->htmlTemplate('email/booking_confirmation.html.twig")

25 ;

26 }

T // ... lines 27 - 54

55 }

Para createBookingReminder(), copia el interior de createBookingConfirmation() y pégalo aqui. Cambia la etiqueta a booking_reminder,

el asunto a Booking Reminder, y la plantilla a email/booking_reminder.html.twig:

src/Email/BookingEmailFactory.php

$ // ... lines 1 - 11

12 class BookingEmailFactory

13 {

$ // ... lines 14 - 19

20 public function createBookingConfirmation(Booking $booking): TemplatedEmail
21 {

22 return $this->createEmail($booking, 'booking')

23 ->subject('Booking Confirmation for '.$booking->getTrip()->getName())
24 ->htmlTemplate('email/booking_confirmation.html.twig")

25 ;

26 }

T // ... lines 27 - 54

55 }

El refactorizador

jAhora viene lo divertido! jUsar nuestra fabrica y eliminar un monton de codigo!

En TripController::show(), en lugar de inyectar $termsPath, inyectaBookingEmailFactory $emailFactory:

src/Controller/TripController.php

$ // ... lines 1 - 18

19 final class TripController extends AbstractController
20 {

T // ... lines 21 - 29

30 public function show(

T // ... lines 31 - 35

36 BookingEmailFactory $emailFactory,
37): Response {

$ // ... lines 38 - 58

59 }

60 }

Elimina todo el codigo de creacion de correo electronico y dentro de $mailer->send(), escribe

$emailFactory->createBookingConfirmation($booking):

src/Controller/TripController.php

$ // ... lines 1 - 18

19 final class TripController extends AbstractController
20 {

T // ... lines 21 - 29

30 public function show(

$ // ... lines 31 - 36

37): Response {

T // ... lines 38 - 39

40 if ($form->isSubmitted() & $form->isvalid()) {
T // ... lines 41 - 49

50 $mailer->send($emailFactory->createBookingConfirmation($booking));
$ // ... lines 51 - 52

53 }

$ // ... lines 54 - 58

59 }

60 }

En SendBookingRemindersCommand, de nuevo, elimina todo el cédigo de creacion de correo electrénico. Arriba en el constructor, autoconecta

private BookingEmailFactory $emailFactory:

src/Command/SendBookingRemindersCommand.php

$ // ... lines 1 - 18

19 class SendBookingRemindersCommand extends Command
20 |

21 public function __construct(

$ // ... lines 22 - 24

25 private BookingEmailFactory $emailFactory,
26) A

$ // ... Lline 27

28 }

T // ... lines 29 - 48

49 }

Aqui abajo, dentro de $this->mailer->send(), escribe $this->emailFactory->createBookingReminder($booking):

src/Command/SendBookingRemindersCommand. php

$ // ... lines 1 - 18
19 class SendBookingRemindersCommand extends Command
20 {
T // ... lines 21 - 29
30 protected function execute(InputInterface $input, OutputInterface $output): int
31 {
$ // ... Lines 32 - 37
38 foreach ($io->progressIterate($bookings) as $booking) {
39 $this->mailer->send($this->emailFactory->createBookingReminder($booking));
T // ... line 40
41 }
T // ... lines 42 - 47
48 }
49 '}
Pruébalo

Oh, si, jqué bien me ha sentado! Pero hemos roto algo? Los canadienses tenemos fama de ser un poco salvajes. Compruébalo ejecutando las

pruebas:

bin/phpunit
jUh oh, un fallo! Menos mal que tenemos estas pruebas, ¢eh?
El fallo viene de BookingTest:

“El mensaje no incluye un archivo con nombre de archivo [Condiciones del servicio.pdf].”

Arréglalo

jFacil de arreglar! Durante nuestra refactorizacion, olvidé adjuntar el emocionante PDF de las condiciones del servicio al correo electronico de
confirmacion de la reserva. Y nuestros clientes dependen de ello. BuscaBookingEmailFactory: : createBookingConfirmation(),y

afade ->attachFromPath($this->termsPath, 'Terms of Service.pdf'):

src/Email/BookingEmailFactory.php

$ // ... lines 1 - 11

12 class BookingEmailFactory

13 {

T // ... lines 14 - 19

20 public function createBookingConfirmation(Booking $booking): TemplatedEmail
21 {

22 return $this->createEmail($booking, 'booking"')

$ // ... lines 23 - 24

25 ->attachFromPath($this->termsPath, 'Terms of Service.pdf')
26 H

27 }

$ // ... Lines 28 - 55

56 }

Vuelve a ejecutar las pruebas:

bin/phpunit

jPasadas! ¢ Reforzamiento satisfactorio? jComprobado!

A continuacién, vamos a cambiar un poco de marcha y sumergirnos en dos nuevos componentes Symfony para consumir los eventos webhook de

correo electronico de Mailtrap.

Chapter 19: EI Componente Webhook para Eventos de Email

En Mailtrap, cuando enviamos correos electronicos en produccion, recordemos que podemos comprobar cada correo: si fue enviado, entregado,
abierto, rebotado (jlo cual es importante!) y mas. Mailtrap nos permite establecer una URL de webhook para que nos envie informacién sobre

estos eventos.

Componentes Webhook y RemoteEvent

Como bonus, jdescubrimos dos nuevos componentes de Symfony! Busca tu terminal e instalalos:

composer require webhook remote-event

El componente webhook nos proporciona una Unica ruta a la que enviar todos los webhooks. Analiza los datos que se nos envian -llamados carga
util-, los convierte en un objeto de evento remoto y los envia a un consumidor. Puedes pensar en los eventos remotos como algo similar a los
eventos Symfony. En lugar de que tu aplicacion envie un evento, lo hace un servicio de terceros, de ahi lo de evento remoto. Y en lugar de

oyentes de eventos, decimos que los eventos remotos tienen consumidores.

Ejecuta

git status

para ver qué ha afiadido la receta: config/routes/webhook.yaml. Eso afiade el controlador webhook. Comprueba la ruta con:

symfony console debug:route webhook

Comprueba la primera. La ruta es /webhook/{type}. Asi que ahora tenemos que configurar algun tipo.

los webhooks de terceros -como los de Mailtrap o los de un procesador de pagos o un sistema de alertas de Supernova- pueden enviarnos cargas
utiles muy diferentes, por lo que normalmente necesitamos crear nuestros propios analizadores y eventos remotos. Dado que los eventos de
correo electronico son bastante estandar, Symfony proporciona algunos eventos remotos out-of-the-box para ellos: MailerDeliveryEvent y
MailerEngagementEvent. Algunos puentes de correo, incluido el puente Mailtrap que estamos utilizando, proporcionan analizadores para cada

carga util de webhook del servicio para crear estos objetos. Soélo tenemos que configurarlo.

Configuracion del analizador sintactico Mailtrap

En config/packages/, crea un archivo webhook.yaml. Ahade framework,webhook, routing, mailtrap (este es el tipo utilizado en la URL),

y luego service. Para averiguar el id de servicio del analizador Mailtrap, ve a la documentacién de Symfony Webhook. Busca el id de servicio del

analizador Mailtrap, cépialo... y pégalo aqui:

config/packages/webhook.yaml
1 framework:
2 webhook:
3 routing:
4 mailtrap:
5 service: mailer.webhook.request_parser.mailtrap

EmailEventConsumer

https://symfony.com/doc/current/webhook.html

Ahora necesitamos un consumidor. Crea una nueva clase llamada EmailEventConsumeren el espacio de nombres App\Webhook. Esto necesita
implementar ConsumerInterface desde RemoteEvent Afade el método consume() necesario. Para decirle a Symfony qué tipo de webhook

queremos que consuma, afiade el atributo #[AsRemoteEventConsumer] con mailtrap:

src/Webhook/EmailEventConsumer.php

$ // ... lines 1 - 10

11 #[AsRemoteEventConsumer('mailtrap')]

12 class EmailEventConsumer implements ConsumerInterface
13 {

T // ... lines 14 - 16

17 public function consume(RemoteEvent $event): void
18 {

$ // ... line 19

20 }

21}

Sobre consume(), aflade un docblock para ayudar a nuestro IDE:@param MailerDeliveryEvent|MailerEngagementEvent $event:

src/Webhook/EmailEventConsumer.php

$ // ... lines 1 - 11

12 class EmailEventConsumer implements ConsumerInterface
13 {

14 /**

15 * @param MailerDeliveryEvent|MailerEngagementEvent $event
16 */

17 public function consume(RemoteEvent $event): void
18 {

$ // ... Line 19

20 }

21}

Estos son los eventos remotos de correo genéricos que proporciona Symfony. Dentro, escribe $event-> para ver los métodos disponibles.

En una aplicacion real, aqui seria donde harias algo con estos eventos como guardarlos en la base de datos o notificar a un administrador si un
correo electronico rebota. En realidad, si un correo electrénico rebota varias veces, puede que quieras actualizar algo para evitar que se vuelva a

intentar, ya que esto puede perjudicar la fiabilidad de tu correo electrénico. Pero para nuestros propositos, basta con dump($event):

src/Webhook/EmailEventConsumer.php

$ // ... lines 1 - 11

12 class EmailEventConsumer implements ConsumerInterface
13 {

T // ... lines 14 - 16

17 public function consume(RemoteEvent $event): void
18 {

19 dump($event);

20 }

21}

Consumidores asincronos

Una ultima cosa: el controlador webhook envia el evento remoto al consumidor a través de Symfony Messenger, dentro de una clase de mensaje

llamada ConsumeRemoteEventMessage.

Para manejar esto de forma asincrona y mantener rapidas las respuestas de tu webhook, enconfig/packages/messenger.yaml, bajo routing,

afade Symfony\Component\RemoteEvent\Messenger\ConsumeRemoteEventMessage y envialo a nuestro transporte async:

config/packages/messenger.yaml

1 framework:

2 messenger:

T // ... lines 3 - 11

12 routing:

T // ... lines 13 - 15

16 'Symfony\Component\RemoteEvent\Messenger\ConsumeRemoteEventMessage': async

$ // ... lines 17 - 25

iVale! Estamos listos para hacer una demostraciéon de este webhook. jEso a continuacién!

Chapter 20: Demostracion de nuestro webhook a través de un agujero de
gusano

iEs hora de probar el webhook Mailtrap!

En primer lugar, tenemos que volver a cambiar nuestro entorno de desarrollo para enviar en produccion. En .env.local, cambia a tu Mailtrap de

produccion MAILER_DSN y enconfig/services.yaml, asegurate de que el dominio global_from_email's es el que configuraste con Mailtrap.

Crea un Webhook en Mailtrap

En Mailtrap, ve a "Configuracion" > "Webhooks" y haz clic en "Crear nuevo Webhook". Lo primero que necesitamos es una URL de Webhook.
Hmm, esto tiene que ser /webhook/mailtrappero tiene que ser una URL absoluta. En produccion, esto no seria un problema: seria tu dominio

de produccién. En desarrollo, es un poco mas complicado. No podemos utilizar simplemente la URL que nos da el servidor CLI de Symfony...

ngrok

De alguna manera tenemos que exponer nuestro servidor Symfony local al publico. Y existe una herramienta muy Util que hace exactamente esto:

ngrok. Crea una cuenta gratuita, inicia sesion y sigue las instrucciones para configurar el cliente CLI ngrok.

En el terminal, reinicia el servidor web Symfony:

symfony server:stop

No se esta ejecutando. Inicialo con:

symfony serve -d

Exponer el servidor local

Esta es la URL que necesitamos exponer, copiala y ejecutala:

ngrok http <paste-url>

Pega la URL y pulsa intro. jAgujero de gusano abierto!

Esta URL de "Reenvio" de aspecto loco es la URL publica. Cépiala y pégala en tu navegador. Esta advertencia sélo te permite saber que estas

atravesando un tunel. Haz clic en "Visitar sitio" para ver tu aplicacion. jGenial!

URL del Webhook de Mailtrap

De vuelta en Mailtrap, pega esta URL y afiade /webhook/mailtrap alfinal. En "Seleccionar flujo", elige "Transaccional". En "Seleccionar

dominio", elige tu dominio Mailtrap configurado. Selecciona todos los eventos y luego "Guardar".

Vuelve al nuevo webhook y haz clic en "Ejecuta la prueba".

“La prueba de la URL del webhook se ha completado correctamente”

https://ngrok.com/

iBuena sefal!

Volcar el servidor

¢ Recuerdas que en nuestro EmailEventConsumer, sélo volcamos el evento? Como el acceso al webhook se produce entre bastidores, no

podemos ver el volcado... 40 si? Ejecuta en un nuevo terminal:

symfony console server:dump

Esto se conecta a nuestra aplicacion y cualquier volcado se mostrara aqui en directo. jInteligente!

En tu navegador, reserva un viaje, recuerda utilizar una direccion de correo electrénico real (jpero no la mia!)

MailerDeliveryEvent

iMomento de la verdad! De nuevo en el terminal ejecutando el servidor de volcado, espera un poco... jMuy bien! jTenemos un volcado!
Desplazate un poco hacia arriba... Se trata de un MailerDeliveryEvent paradelivered. Vemos el ID interno que Mailtrap le asigno, la carga

util sin procesar, la fecha, el correo electrénico del destinatario, incluso nuestros metadatos y etiqueta personalizados.

MailerEngagementEvent

jProbemos con un evento de compromiso! En tu cliente de correo electrénico, abre el correo.

De vuelta en el terminal del servidor de volcado, espera un poco... jy boom! jOtro evento! Esta vez, es un MailerEngagementEvent para open.

jQué guay!

Muy bien, cadetes espaciales, jesto es todo por este curso! Hemos conseguido cubrir casi todas las funcionalidades de Symfony Mailer sin

SPAMear a nuestros usuarios. jGanamos!

hasta la proxima, jfeliz programacion!

Chapter 21: Bonificacidn: Programar nuestro comando de correo electrénico

¢ Todavia estas aqui? jEstupendo! Tengo un capitulo extra para ti.

Uno de nuestros becarios, Hugo, se queja de que tiene que conectarse a nuestro servidor y ejecutar el comando de recordatorio de reservas,

todas las noches a medianoche. No sé cual es el problema, ¢ para eso no estan los becarios?

Instalando el Programador de Symfony

Pero... Supongo que para ser mas robustos, deberiamos automatizar esto por si esta enfermo o se le olvida. Podriamos configurar una tarea
CRON... pero eso no seria ni de lejos tan genial o flexible como usar el componente Programador de Symfony. Es perfecto para esto. En tu

terminal, ejecuta:

composer require scheduler

Piensa en Symfony Scheduler como un complemento para Messenger. Proporciona su propio transporte especial que, en lugar de una cola,
determina si es el momento de ejecutar un trabajo. Cada trabajo, o tarea, es un mensaje de Messenger, por lo que requiere un gestor de

mensajes. Consumes la programacién, como cualquier transporte de Messenger, con el comandomessenger: consume.

make:schedule

Crea un horario con:

symfony console make:schedule

© Note

symfony/scheduler ahora tiene una receta oficial que crea src/Schedule.phppor ti, por lo que este paso ya no es necesario.

¢ Nombre del transporte? Utiliza default. ; Nombre del programa? Utiliza el predeterminado: MainSchedule. jEmocionante!

Es posible tener varios horarios, pero para la mayoria de las aplicaciones, un solo horario es suficiente.

Configurar el horario

Compruébalo: src/Scheduler/MainSchedule.php. Es un servicio que implementaScheduleProviderInterface y estad marcado con el
atributo #[AsSchedule] con el nombre default. El creador inyecté automaticamente la caché, y veremos por qué en un segundo. El método

getSchedule() es donde configuramos la programacion y afiadimos tareas.

Este ->stateful() al que pasamos $this->cache es importante. Si el proceso que esta ejecutando este programa se cae -como si nuestros
trabajadores de Messenger se detuvieran temporalmente durante un reinicio del servidor-, cuando vuelva a estar en linea, sabra todas las tareas
que se ha saltado y las ejecutara. Si se suponia que una tarea debia ejecutarse 10 veces mientras estaba inactiva, las ejecutara todas. Esto

puede no ser lo deseado, asi que afiade - >processOnlyLastMissedRun(true) para que solo se ejecute la ultima:

src/Scheduler/MainSchedule.php

$ // ... lines 1 - 12

13 final class MainSchedule implements ScheduleProviderInterface
14 {

T // ... lines 15 - 19

20 public function getSchedule(): Schedule
21 {

22 return (new Schedule())

$ // ... Lines 23 - 29

30 ->processOnlyLastMissedRun(true)
31 H

32 }

33 }

iA prueba de balas!

Para aplicaciones mas complejas, puedes estar consumiendo el mismo programa en varios trabajadores. Utiliza ->lock() para configurar un

bloqueo de modo que sélo un trabajador ejecute la tarea cuando le corresponda.

Anadir una tarea

iEs hora de afiadir nuestra primera tarea! En ->add(), escribe RecurringMessage: : . Hay varias formas de activar una tarea. A mi me gusta
utilizar cron() . Quiero que esta tarea se ejecute a medianoche, todos los dias, asi que utiliza 8 @ * * *_ E| segundo argumento es el mensaje
de Messenger a enviar. Queremos ejecutar SendBookingRemindersCommand, pero no podemos afiadirlo aqui directamente. En su lugar, utiliza

new RunCommandMessage() y pasa el nombre del comando: app:send-booking-reminders (aqui también puedes pasar argumentos y

opciones):
$ // ... lines 1 - 12
13 final class MainSchedule implements ScheduleProviderInterface
14 {
T // ... lines 15 - 19
20 public function getSchedule(): Schedule
21 {
22 return (new Schedule())
23 ->add(
24 RecurringMessage: :cron(
25 90 * * ox'
26 new RunCommandMessage('app:send-booking-reminders")
27)
28)
$ // ... lines 29 - 30
31 H
32 }
33 }

Depurar el programa

En tu terminal, lista las tareas de nuestro programa ejecutando:

symfony console debug:schedule

Tenemos un error.
“No puedes utilizar "CronExpressionTrigger" porque el paquete "cron expression" no esta instalado”

Solucioén facil: copia el comando de instalacion y ejecutalo:

composer require dragonmantank/cron-expression

iBuen nombre! Ahora vuelve a ejecutar el comando de depuracion:

symfony console debug:schedule

Aqui vamos, la salida esta un poco torcida en esta pequefia pantalla, pero puedes ver la expresion cron, el mensaje (y el comando), y el proximo

tiempo de ejecucion: esta noche a medianoche.

#[AsCronTask]

Hay una alternativa para programar comandos. En MainSchedule: :getSchedule(), borra el atributo ->add() . Luego salta a nuestro

SendBookingRemindersCommand y afiade otro atributo: #[AsCronTask()] pasandoa: @ @ * * *:

src/Command/SendBookingRemindersCommand. php

T // ... lines 1 - 19

20 #[AsCronTask('@ @ * * *')]

21 class SendBookingRemindersCommand extends Command
$ // ... lines 22 - 52

En tu terminal, depura de nuevo el horario para asegurarte de que sigue apareciendo:

symfony console debug:schedule

Y lo esta, bastante bien.

Si tienes muchas tareas programadas a la misma hora, como a medianoche, puede que veas un pico de CPU a esta hora en tu servidor. A menos
que sea superimportante que las tareas se ejecuten a una hora muy concreta, deberias repartirlas. Una forma de hacerlo, por supuesto, es

asegurarte manualmente de que todas tienen expresiones cron diferentes, pero... eso es un rollo.

Expresiones de cron con hash

Para nuestro comando app:send-booking-reminders, no me importa cuando se ejecuta, solo que se ejecute una vez al dia. Podemos utilizar

una expresion cron con hash. En nuestra expresion, sustituye los 0 por #. El # significa "elige un valor aleatorio valido para esta parte™:

src/Command/SendBookingRemindersCommand.php

T // ... lines 1 - 19

20 #[AsCronTask('# # * * *')]

21 class SendBookingRemindersCommand extends Command
$ // ... lines 22 - 52

Vuelve a depurar la programacion:

symfony console debug:schedule

Esta programado para ejecutarse a las 5:11 h. Ejecuta de nuevo el comando:

symfony console debug:schedule

Siguen siendo las 5:11 h. Vale, no es realmente aleatorio, los valores se calculan de forma determinista basandose en los detalles del mensaje.

En nuestro caso, la cadenaapp:send-booking-reminders. Un comando diferente con la misma expresion hash tendra valores diferentes.

La documentacién del Programador tiene todos los detalles al respecto. Incluso hay alias para hashes comunes. Por ejemplo, #mignight elegira

una hora entre medianoche y las 3 de la madrugada. Utilizalo para nuestra expresion:

src/Command/SendBookingRemindersCommand. php

$ // ... lines 1 - 19

20 #[AsCronTask('#midnight')]

21 class SendBookingRemindersCommand extends Command
T // ... lines 22 - 52

y vuelve a depurar la programacion:

symfony console debug:schedule

Uy, una errata, lo arreglo y lo vuelvo a ejecutar:

symfony console debug:schedule

Ahora esta programado para ejecutarse todos los dias a las 2:11 h. jGenial!

Ejecutar la programacién

Ya hemos configurado nuestro programa, pero ¢ coémo lo ejecutamos? Recuerda que las programaciones no son mas que transportes de

Messenger. El nombre del transporte es scheduler_<schedule_name>, en nuestro caso, scheduler_default. Ejecutalo con:

symfony console messenger:consume scheduler_default

En tu servidor de produccion, configuralo para que se ejecute en segundo plano como un trabajador normal de Messenger.

Muy bien, éste es un breve resumen del componente Programador. Consulta la documentacién para obtener mas informacion

iFeliz programacion!

Chapter 22: Bonificacidn: Messenger Monitor Bundle

Hola, ¢ sigues aqui? jEstupendo! jHagamos un ultimo capitulo extra!

Cuando tienes un montén de mensajes y programaciones ejecutandose en segundo plano, puede ser dificil saber qué esta pasando. ¢ Se estan
ejecutando mis trabajadores? ¢ Se esta ejecutando mi programacion? ;Y hacia dénde se esta ejecutando? ;Y los fallos? Tenemos registros,
pero... registros. En lugar de eso, vamos a explorar un bundle genial que nos proporciona una interfaz de usuario para saber qué esta pasando

con nuestro ejército de robots trabajadores

Instalacion

En tu terminal, ejecuta:

composer require zenstruck/messenger-monitor-bundle

Te pide que instales una receta, di que si. Vuelve a nuestro IDE y mira lo que se ha afiadido.

En primer lugar, se ha afiadido un src/Schedule.php. Esto no esta relacionado con este bundle. Desde el ultimo capitulo, en el que afadimos el

Symfony Scheduler, ahora tiene una receta oficial que afiade una programacion por defecto. Como ya tenemos uno, elimina este archivo.

MessengerMonitorController

Se ha afadido un nuevo controlador: src/Controller/Admin/MessengerMonitorController.php. Se trata de un stub para habilitar la interfaz
de usuario del bundle. Extiende este BaseMessengerMonitorControllerdel bundle y afiade un prefijo de ruta de /admin/messenger. También
afade este atributo #[IsGranted('ROLE_ADMIN')]. Esto es muy importante para tus aplicaciones reales. Sélo quieres que los administradores

del sitio accedan a la IU, ya que muestra informacién sensible. No tenemos seguridad configurada en esta app, asi que eliminaré esta linea:

src/Controller/Admin/MessengerMonitorController.php

$ /7 ... lines 1 -7

8 #[Route('/admin/messenger"')]

9 class MessengerMonitorController extends BaseMessengerMonitorController
10 {

1 }

ProcessedMessage

src/Entity/ProcessedMessage.php es una nueva entidad afiadida por la receta. También es un stub que extiende esta clase
BaseProcessedMessage y afiade una columna ID. Se utiliza para hacer un seguimiento del historial de tus mensajes de Messenger. Por cada
mensaje procesado, se persiste una nueva de estas entidades. Pero no te preocupes, esto se hace en tu proceso worker, por lo que no ralentizara

el frontend de tu aplicacion.

Como tenemos una nueva entidad, deberiamos afiadir una migracion, pero no tengo migraciones configuradas para este proyecto. Asi que en tu

terminal, ejecuta:

symfony console doctrine:schema:update --force

Instalar dependencias opcionales

Antes de comprobar la interfaz de usuario, el bundle tiene dos dependencias opcionales que quiero instalar. La primera:

composer require knplabs/knp-time-bundle

Esto hace que las marcas de tiempo de la interfaz de usuario sean legibles, como "hace 4 minutos". Siguiente:

composer require lorisleiva/cron-translator

Como estamos utilizando expresiones cron para nuestras tareas programadas, este paquete las hace legibles. Asi, en lugar de "11 2 * * * *"|o

mostrara como "todos los dias a las 2:11 AM". jEstupendo!

iYa estamos listos! Inicia el servidor con:

symfony serve -d

Panel de control

Salta al navegador y visita /admin/messenger. Este es el panel de control de Messenger Monitor

Este primer widget muestra los trabajadores en ejecucion y su estado. Podemos ver que tenemos 1 trabajador en ejecucion para nuestro

transporte async. Este es el que hemos configurado para que se ejecute con nuestro servidor Symfony CLI.

A continuacién, vemos nuestros transportes disponibles, cuantos mensajes estan en cola y cuantos trabajadores los estan ejecutando. Observa
que nuestro transporte scheduler_defaultno se esta ejecutando. Esto es de esperar, ya que no lo hemos configurado para que se ejecute

localmente.
Debajo, tenemos una instantéanea de las estadisticas de las ultimas 24 horas.
Ala derecha, veremos los ultimos 15 mensajes procesados. Por supuesto, ahora esta vacio.

Todos estos widgets se actualizan automaticamente cada 5 segundos.

Programar

iVamos a crear un historial! En la barra superior, haz clic en Schedule (observa que el icono esté en rojo para indicar que la programacién no se
esta ejecutando). Es una especie de "comando debug:schedule mas avanzado". Vemos nuestra Unica tarea programada: RunCommandMessage
para app:send-booking-reminders. Utiliza unCronExpressionTrigger para ejecutarse "todos los dias a las 2:11 AM". hasta ahora se ha

ejecutado 0, pero podemos ejecutarla manualmente haciendo clic en "Activar"... y seleccionando nuestro transporte async.

"Detalles"

Vuelve al panel de control. Se ejecuté correctamente, tardé 58 ms y consumié 31 MB de memoria. Haz clic en "Detalles" para ver aun mas

informacion "Tiempo en cola", "Tiempo para gestionar", marcas de tiempo... un montén de cosas buenas.

Estas etiquetas son muy utiles para filtrar mensajes. Puedes afadir tus propias etiquetas, pero algunas las afiade el bundle: manual
schedule:default:<hash> , porque ejecutamos "manualmente” una tarea programada, schedule, porque era una tarea programada,

schedule:default, porque forma parte de nuestra programacion por defecto. es el identificador Unico de esta tarea programada.

A la derecha esta el "resultado" del "manejador" del mensaje - en este caso, RunCommandMessageHandler. Diferentes gestores tienen diferentes

resultados (algunos no tienen ninguno). Para éste, el resultado es el cédigo de salida del comando y la salida.

“Enviados 0 recordatorios de reserva”

Vamos a ejecutar de nuevo esta tarea, pero esta vez, con una reserva que necesita que se le envie un recordatorio. De vuelta a tu terminal,

vuelve a cargar nuestras instalaciones:

symfony console doctrine:fixtures:load

Vuelve al navegador. El panel de control esta vacio ahora, pero eso era de esperar: al recargar nuestros dispositivos también se ha borrado

nuestro historial de mensajes. Haz clic en "Programar” y luego en "Activar" en nuestro transporte "asincrono".

De vuelta en el panel de control, ahora tenemos 2 mensajes. RunCommandMessage de nuevo pero haz clic en sus "Detalles":
“Enviado 1 recordatorio de reserva”

Ahora nuestro segundo mensaje: SendEmailMessage. Este fue enviado por el comando. Haz clic en sus "Detalles" para ver la informacion
relacionada con el correo electronico de sus resultados. Observa la etiqueta, booking_reminder. El bundle detecté automaticamente que

estabamos enviando un correo electrénico con una etiqueta "Mailer", por lo que la afiadié aqui.

Transporta

En el menu superior, puedes hacer clic en "Transportes” para ver mas detalles sobre los mensajes pendientes de cada uno (si procede). El

transporte failed muestra los mensajes fallidos y te da la opcién de reintentarlos o eliminarlos, jdirectamente desde la interfaz de usuario!

Historial

"Historial" es donde podemos filtrar los mensajes: Periodo, limitar a un intervalo de fechas concreto. Transporte, limitar a un transporte especifico.
Estado, mostrar sélo éxitos o fracasos. Programacion, incluir o excluir los mensajes activados por una programacion. Tipo de mensaje, filtrar por

clase de mensaje.

Estadisticas

"Estadisticas" muestra un resumen de estadisticas por clase de mensaje y puede limitarse a un intervalo de fechas especifico.

Purgar el historial de mensajes

Como probablemente puedas imaginar, si tu aplicacion ejecuta muchos mensajes, nuestra tabla de historial puede llegar a ser realmente grande.

El bundle proporciona algunos comandos para purgar mensajes antiguos.

En la documentacion del bundle, desplazate hasta "messenger:monitor:purge” y copia el comando. Necesitamos programar esto... pero como?
Con el Programador de Symfony, jpor supuesto! Abre src/Scheduler/MainSchedule.php y afiade una nueva tarea con
->add(RecurringMessage: :cron()). Utiliza #midnight para que se ejecute diariamente entre medianoche y las 3 de la madrugada. Afade

new RunCommandMessage()y pega el comando. Afiade la opcion --exclude-schedules:

src/Scheduler/MainSchedule.php

$ // ... lines 1 - 12

13 final class MainSchedule implements ScheduleProviderInterface
14 {

T // ... lines 15 - 19

20 public function getSchedule(): Schedule

21 {

22 return (new Schedule())

$ // ... lines 23 - 24

25 ->add(RecurringMessage: :cron(

26 ‘#midnight"',

27 new RunCommandMessage('messenger:monitor:purge --exclude-schedules'),
28)

29)

$ // ... lines 30 - 34

35 H

36 }

37 }

Esto purgara los mensajes con mas de 30 dias de antigliedad, excepto los mensajes activados por una programacion. Esto es importante porque
tus tareas programadas pueden ejecutarse una vez al mes o incluso una vez al afio. Esto te permite mantener un historial de ellas

independientemente de su frecuencia.

Purgar el Historial de Programaciones

Sin embargo, debemos limpiarlos. Asi que, volviendo a los documentos, copia un segundo comando: messenger:monitor:schedule:purge.Y

en la programacion, ahadelo con ->add(RecurringMessage: :cron('#midnight', new RunCommandMessage()))y pégalo:

src/Scheduler/MainSchedule.php

$ // ... lines 1 - 12

13 final class MainSchedule implements ScheduleProviderInterface
14 {

$ // ... lines 15 - 19

20 public function getSchedule(): Schedule

21 {

22 return (new Schedule())

T // ... lines 23 - 29

30 ->add(RecurringMessage: :cron(

31 '#midnight',

32 new RunCommandMessage('messenger:monitor:schedule:purge'),
33)

34)

35 ;

36 }

37 }

Esto purgara el historial de mensajes programados omitidos por el comando anterior, pero conservara las 10 ultimas ejecuciones de cada uno.

Asegurémonos de que estas tareas se han afiadido a nuestra programacioén. De vuelta en el navegador, haz clic en "Programar" y aqui estan:

nuestras dos nuevas tareas.
Para la tarea que ejecutamos manualmente antes, podemos ver el resumen de la Ultima ejecucion, los detalles e incluso su historial.

Muy bien, amigos Esto es un rapido repaso a zenstruck/messenger-monitor-bundle. Echa un vistazo a los docs para obtener mas

informacion sobre todas sus funciones.

hasta la préxima, jfeliz monitorizacion!

https://github.com/zenstruck/messenger-monitor-bundle

With <3 from SymfonyCasts

