
Mailer y Webhook con Mailtrap

Chapter 1: Instalar el Mailer

¡Hola amigos! ¡Bienvenidos a "Symfony Mailer con Mailtrap"! Soy Kevin, y seré tu postmaster para este curso, que trata sobre el envío de correos

electrónicos bonitos con el componente Mailer de Symfony, incluyendo la adición de HTML, CSS - y la configuración para producción. En ese

sentido, hay muchos servicios que puedes utilizar en producción para enviar tus correos electrónicos. Este curso se centrará en uno llamado

Mailtrap: (1) porque es genial y (2) porque ofrece una forma fantástica de previsualizar tus correos electrónicos. Pero no te preocupes, los

conceptos que trataremos son universales y pueden aplicarse a cualquier servicio de correo electrónico. ¡Y además! También veremos cómo

rastrear eventos de correo electrónico como rebotes, aperturas y clics en enlaces aprovechando algunos componentes relativamente nuevos de

Symfony: Webhook y RemoteEvent.

Correos electrónicos transaccionales vs masivos

Antes de empezar a enviar información importante por correo electrónico, tenemos que aclarar algo: Symfony Mailer es sólo para lo que se llama

correos electrónicos transaccionales. Son correos específicos de usuario que se producen cuando ocurre algo concreto en tu aplicación. Cosas

como: un correo electrónico de bienvenida después de que un usuario se registre, un correo electrónico de confirmación de pedido cuando

realizan un pedido, o incluso correos electrónicos como "tu post ha sido votado" son ejemplos de correos electrónicos transaccionales. Symfony

Mailer no es para emails masivos o de marketing. Por ello, no tenemos que preocuparnos de ningún tipo de funcionalidad para darse de baja.

Existen servicios específicos para enviar correos masivos o boletines informativos, Mailtrap incluso puede hacerlo a través de su sitio web.

Nuestro proyecto

Como siempre, para sacar el máximo partido a tu dinero en screencast, ¡deberías codificar conmigo! Descarga el código del curso en esta página.

Cuando descomprimas el archivo, encontrarás un directorio start/ con el código con el que empezaremos. Sigue el archivo README.md para

poner en marcha la aplicación. Yo ya lo he hecho y he ejecutadosymfony serve -d para iniciar el servidor web.

Bienvenido a "Viajes Universales": una agencia de viajes donde los usuarios pueden reservar viajes a diferentes lugares galácticos. Aquí tienes

los viajes disponibles actualmente. Los usuarios ya pueden reservarlos, pero no se envían correos electrónicos de confirmación cuando lo hacen.

¡Vamos a arreglar eso! Si voy a gastar miles de créditos en un viaje a Naboo, ¡quiero saber que mi reserva se ha realizado correctamente!

Instalar el componente Mailer

Paso 1: ¡instalemos el Mailer de Symfony! Abre tu terminal y ejecuta:

composer require mailer

La receta de Symfony Flex para el mailer nos pide que instalemos alguna configuración de Docker. Esto es para un servidor SMTP local que nos

ayude con la previsualización de los correos electrónicos. Vamos a utilizar Mailtrap para esto, así que di "no". ¡Instalado! Ejecuta::

git status

para ver lo que tenemos. Parece que la receta añadió algunas variables de entorno en .env y añadió la configuración del mailer en

config/packages/mailer.yaml .

MAILER_DSN

En tu IDE, abre .env . La receta del Mailer añadió esta variable de entorno MAILER_DSN . Se trata de una cadena especial con aspecto de URL

que configura el transporte de tu mailer: cómo se envían realmente tus correos electrónicos, por ejemplo a través de SMTP, Mailtrap, etc. La

receta utiliza por defecto null://null y es perfecta para el desarrollo local y las pruebas. Este transporte no hace nada cuando se envía un

correo electrónico Finge entregar el correo electrónico, pero en realidad lo envía por una esclusa de aire. Previsualizaremos nuestros correos

electrónicos de otra forma.

¡Vale! ¡Estamos listos para enviar nuestro primer correo electrónico! ¡Hagámoslo a continuación!

Chapter 2: Enviar nuestro primer correo electrónico

¡Vamos de viaje! "Visitar Krypton", ¡Esperemos que aún no haya sido destruido! Sin molestarme en comprobarlo, ¡reservémoslo! Utilizaré el

nombre: "Kevin", el correo electrónico "kevin@example.com" y una fecha cualquiera en el futuro. Pulsa "Reservar viaje".

Esta es la página de "detalles de la reserva". Fíjate en la URL: tiene un token único específico para esta reserva. Si un usuario necesita volver

aquí más tarde, actualmente, tiene que marcar esta página o enviarse a sí mismo la URL si es como yo ¡Lamentable! Enviémosles un correo

electrónico de confirmación que incluya un enlace a esta página.

Quiero que esto ocurra después de guardar la reserva por primera vez. Abre TripControllery busca el método show() . Esto hace la reserva:

si el formulario es válido, crea o recupera un cliente y crea una reserva para este cliente y viaje. Luego redirigimos a la página de detalles de la

reserva. Deliciosamente aburrido hasta ahora, tal y como me gusta mi código, y los fines de semana.

Inyecta MailerInterface

Quiero enviar un correo electrónico después de crear la reserva. Date un poco de espacio moviendo cada argumento del método a su propia

línea. Después, añade MailerInterface $mailer para obtener el servicio principal de envío de correos electrónicos:

src/Controller/TripController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 27

28

29

 // ... lines 30 - 33

34

35

 // ... lines 36 - 54

55

56

Crear el correo electrónico

Después de flush() , que inserta la reserva en la base de datos, crea un nuevo objeto de correo electrónico: $email = new Email() (el de

Symfony\Component\Mime). Envuélvelo entre paréntesis para que podamos encadenar métodos. ¿Qué necesita cada correo electrónico? Una

dirección de correo electrónico from : ->from() qué tal info@univeral-travel.com . Una dirección de correo electrónico to :

->to($customer->getEmail()) . Ahora, el subject : ->subject('Booking Confirmation') . Y por último, el correo electrónico necesita un

cuerpo: ->text('Your booking has been confirmed') - suficiente por ahora:

final class TripController extends AbstractController

{

 #[Route('/trip/{slug:trip}', name: 'trip_show')]

 public function show(

 MailerInterface $mailer,

): Response {

 }

}

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 35

36

 // ... lines 37 - 38

39

 // ... lines 40 - 48

49

50

51

52

53

54

 // ... lines 55 - 56

57

 // ... lines 58 - 62

63

64

Envía el correo electrónico

Termina con $mailer->send($email) :

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 35

36

 // ... lines 37 - 38

39

 // ... lines 40 - 55

56

 // ... lines 57 - 58

59

 // ... lines 60 - 64

65

66

¡Vamos a probarlo!

De nuevo en nuestra aplicación, vuelve a la página de inicio y elige un viaje. Para el nombre, utiliza "Steve", correo electrónico,

"steve@minecraft.com", cualquier fecha en el futuro, y reserva el viaje.

Vale... esta página tiene exactamente el mismo aspecto que antes. ¿Se ha enviado un correo electrónico? Nada en la barra de herramientas de

depuración web parece indicarlo...

En realidad, el correo electrónico se envió en la petición anterior: el envío del formulario. Ese controlador nos redirigió a esta página. Pero la barra

de herramientas de depuración web nos ofrece un atajo para acceder al perfilador de la petición anterior: pasa el ratón por encima de 200 y haz

clic en el enlace del perfilador para acceder a él.

Correo electrónico en el perfilador

Echa un vistazo a la barra lateral: ¡tenemos una nueva pestaña "Correos electrónicos"! Y muestra que se ha enviado 1 correo electrónico. ¡Lo

hicimos! ¡Haz clic en él y aquí está nuestro correo electrónico! Los campos "De", "Para", "Asunto" y "Cuerpo" son los esperados.

Recuerda que estamos utilizando el transporte de correo null , así que este correo no se ha enviado realmente, ¡pero es genial que podamos

previsualizarlo en el perfilador!

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->from('info@universal-travel.com')

 ->to($customer->getEmail())

 ->subject('Booking Confirmation')

 ->text('Your booking has been confirmed!')

 ;

 }

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $mailer->send($email);

 }

 }

}

Aunque... Creo que ambos sabemos que este correo... es... bastante cutre. ¡No da ninguna información útil! ¡Ni URL a la página de detalles de la

reserva, ni destino, ni fecha, ni nada! Es tan inútil que me alegro de que el transporte null lo tire por la ventana espacial.

¡Eso a continuación!

Chapter 3: Un correo electrónico mejor

Creo que tú, yo, cualquiera que haya recibido alguna vez un correo electrónico, podemos estar de acuerdo en que nuestro primer correo

electrónico apesta. No aporta ningún valor. ¡Mejorémoslo!

Address Objeto

En primer lugar, podemos añadir un nombre al correo electrónico. Esto aparecerá en la mayoría de los clientes de correo electrónico en lugar de

sólo la dirección de correo electrónico: tiene un aspecto más fluido. Envuelve el from connew Address() , el de Symfony\Component\Mime . El

primer argumento es el correo electrónico, y el segundo es el nombre: ¿qué tal Universal Travel :

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

51

 // ... lines 52 - 54

55

 // ... lines 56 - 59

60

 // ... lines 61 - 65

66

67

También podemos envolver el to con new Address() . y pasar $customer->getName() para el nombre:

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... line 51

52

 // ... lines 53 - 54

55

 // ... lines 56 - 59

60

 // ... lines 61 - 65

66

67

Para el subject , añade el nombre del viaje: 'Booking Confirmation for ' . $trip->getName() :

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->from(new Address('info@universal-travel.com', 'Universal Travel'))

 ;

 }

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->to(new Address($customer->getEmail()))

 ;

 }

 }

}

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 52

53

 // ... line 54

55

 // ... lines 56 - 59

60

 // ... lines 61 - 65

66

67

Para el cuerpo text . Podríamos alinear todo el texto aquí. Eso se pondría feo, así que ¡utilicemos Twig! Necesitamos una plantilla. En

templates/ , añade un nuevo directorio email/ y, dentro, crea un nuevo archivo:booking_confirmation.txt.twig . Twig puede utilizarse para

cualquier formato de texto, no sólo para html . Una buena práctica es incluir el formato - .html o .txt - en el nombre del archivo. Pero a Twig

no le importa eso: es sólo para satisfacer nuestro cerebro humano. Volveremos a este archivo en un segundo.

Plantilla de correo Twig

Vuelve a TripController::show() , en lugar de new Email() , utiliza new TemplatedEmail() (el de Symfony\Bridge\Twig):

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 64

65

 // ... lines 66 - 70

71

72

Sustituye ->text() por ->textTemplate('email/booking_confirmation.txt.twig') :

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->subject('Booking Confirmation for '.$trip->getName())

 ;

 }

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 }

 }

}

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 53

54

 // ... lines 55 - 59

60

 // ... lines 61 - 64

65

 // ... lines 66 - 70

71

72

Para pasar variables a la plantilla, utiliza ->context() con'customer' => $customer, 'trip' => $trip, 'booking' => $booking :

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 54

55

56

57

58

59

60

 // ... lines 61 - 64

65

 // ... lines 66 - 70

71

72

Ten en cuenta que aquí técnicamente no estamos renderizando la plantilla Twig: Mailer lo hará por nosotros antes de enviar el correo electrónico.

Esto es código Twig normal y aburrido. Vamos a mostrar el nombre del usuario utilizando un truco barato, el nombre del viaje, la fecha de salida y

un enlace para gestionar la reserva. Necesitamos utilizar URLs absolutas en los correos electrónicos -como https://univeral-travel.com/booking-,

así que aprovecharemos la función Twig url() en lugar de path() : {{ url('booking_show', {'uid': booking.uid}) }} . Terminaremos

educadamente con, Regards, the Universal Travel team :

templates/email/booking_confirmation.txt.twig

1

2

3

4

5

6

7

8

9

10

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->textTemplate('email/booking_confirmation.txt.twig')

 ;

 }

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->context([

 'customer' => $customer,

 'trip' => $trip,

 'booking' => $booking,

])

 ;

 }

 }

}

Hey {{ customer.name|split(' ')|first }},

Get ready for your trip to {{ trip.name }}!

Departure: {{ booking.date|date('Y-m-d') }}

Manage your booking: {{ url('booking_show', {uid: booking.uid}) }}

Regards,

The Universal Travel Team

https://univeral-travel.com/booking-

¡Cuerpo del correo electrónico listo! Pruébalo. De vuelta en tu navegador, elige un viaje, nombre: Steve , correo

electrónico:steve@minecraft.com , cualquier fecha en el futuro, y reserva el viaje. Abre el perfil de la última petición y haz clic en la pestaña

Emails para ver el correo electrónico.

¡Mucho mejor! Observa que las direcciones From y To ahora tienen nombre. ¡Y nuestro contenido de texto es definitivamente más valioso! Copia

la URL de la reserva y pégala en tu navegador para asegurarte de que va al lugar correcto. Parece que sí, ¡bien!

A continuación, utilizaremos la herramienta de pruebas de Mailtrap para obtener una vista previa más robusta del correo electrónico.

https://mailtrap.io/

Chapter 4: Previsualizar correos electrónicos con Mailtrap (Pruebas de correo

electrónico)

Previsualizar correos electrónicos en el perfilador está bien para correos básicos, pero pronto añadiremos estilos HTML e imágenes de gatos

espaciales. Para ver correctamente el aspecto de nuestros correos electrónicos, necesitamos una herramienta más robusta. Vamos a utilizar la

herramienta de prueba de correo electrónico de Mailtrap. Esto nos proporciona un servidor SMTP real al que podemos conectarnos, pero en lugar

de entregar los correos electrónicos a bandejas de entrada reales, ¡van a una bandeja de entrada falsa que podemos comprobar! Es como si

enviáramos un correo electrónico de verdad y luego pirateáramos la cuenta de esa persona para verlo... ¡pero sin las molestias ni todas esas

cosas ilegales!

Bandeja de entrada falsa

Ve a https://mailtrap.io y regístrate para obtener una cuenta gratuita. Su plan gratuito tiene algunos límites, pero es perfecto para empezar. Una

vez dentro, estarás en la página de inicio de su aplicación. Lo que nos interesa ahora es probar el correo electrónico, así que haz clic en él.

Deberías ver algo así. Si aún no tienes una bandeja de entrada, añade una aquí.

Abre esa nueva y brillante bandeja de entrada. A continuación, tenemos que configurar nuestra aplicación para que envíe correos electrónicos a

través del servidor SMTP Mailtrap. Esto es muy fácil Aquí abajo, en "Ejemplos de código", haz clic en "PHP" y luego en "Symfony". Copia el

archivo MAILER_DSN .

MAILER_DSN para Bandeja de entrada falsa

Como se trata de un valor sensible, y puede variar entre desarrolladores, no lo añadas a .env , ya que está compilado en git. En su lugar, crea un

nuevo archivo .env.localen la raíz de tu proyecto. Pega aquí MAILER_DSN para anular el valor de .env .

¡Ya estamos preparados para probar Mailtrap! ¡Ha sido fácil! ¡A probar!

De vuelta en la aplicación, reserva un nuevo viaje: Nombre: Steve , Email: steve@minecraft.com , cualquier fecha en el futuro, y... ¡reserva! Esta

petición tarda un poco más porque se está conectando al servidor SMTP externo Mailtrap.

Correo electrónico en Mailtrap

De vuelta en Mailtrap, ¡bam! ¡El correo electrónico ya está en nuestra bandeja de entrada! Haz clic para comprobarlo. Aquí tienes una vista previa

"Texto" y una vista "Sin procesar". También hay un "Análisis de Spam" - ¡genial! la "Información técnica" muestra todas las "cabeceras de correo

electrónico" en un formato fácil de leer.

Estas pestañas "HTML" están en gris porque no tenemos una versión HTML de nuestro correo electrónico... todavía... ¡Cambiemos eso a

continuación!

https://mailtrap.io/
https://mailtrap.io/

Chapter 5: Correos electrónicos en HTML

Los correos electrónicos siempre deben tener una versión en texto plano, pero también pueden tener una versión en HTML. ¡Y ahí es donde está

la diversión! ¡Es hora de hacer este correo electrónico más presentable añadiéndole HTML!

Plantilla de correo electrónico HTML

En templates/email/ , copia booking_confirmation.txt.twig y nómbrala booking_confirmation.html.twig . La versión HTML actúa un

poco como una página HTML completa. Envuélvelo todo en una etiqueta <html> , añade una <head> vacía y envuelve el contenido en una

<body> . También envolveré estas líneas en etiquetas <p> para conseguir algo de espaciado... y una etiqueta
 después de "Saludos", para

añadir un salto de línea.

Ahora esta URL puede vivir en una etiqueta <a> adecuada. Déjate algo de espacio y corta "Gestiona tu reserva". Añade una etiqueta<a> con la

URL como atributo href y pega el texto dentro.

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Por último, tenemos que decirle a Mailer que utilice esta plantilla HTML. En TripController::show() , encima de ->textTemplate() , añade

->htmlTemplate() con email/booking_confirmation.html.twig :

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 49

50

 // ... lines 51 - 53

54

55

 // ... lines 56 - 60

61

 // ... lines 62 - 65

66

 // ... lines 67 - 71

72

73

<html>

<head></head>

<body>

<p>Hey {{ customer.name|split(' ')|first }},</p>

<p>Get ready for your trip to {{ trip.name }}!</p>

<p>Departure: {{ booking.date|date('Y-m-d') }}</p>

<p>

 Manage your booking

</p>

<p>

 Regards,

 The Universal Travel Team

</p>

</body>

</html>

final class TripController extends AbstractController

{

 public function show(

): Response {

 $email = (new TemplatedEmail())

 ->htmlTemplate('email/booking_confirmation.html.twig')

 ->textTemplate('email/booking_confirmation.txt.twig')

 ;

 }

 }

}

Pruébalo reservando un viaje: Steve , steve@minecraft.com , cualquier fecha en el futuro, reserva... y luego comprueba Mailtrap. El correo

electrónico tiene el mismo aspecto, ¡pero ahora tenemos una pestaña HTML!

Ah, y la "Comprobación de HTML" está muy bien. Te da un indicador de qué porcentaje de clientes de correo electrónico admiten el HTML de este

correo. Por si no lo sabías, los clientes de correo electrónico son un coñazo: es como volver a los 90 con distintos navegadores. Esta herramienta

te ayuda con eso.

De nuevo en la pestaña HTML, haz clic en el enlace para asegurarte de que funciona. ¡Funciona!

Así que ahora nuestro correo electrónico tiene una versión en texto y otra en HTML, pero... es un poco pesado mantener ambas. De todas

formas, ¿quién utiliza un cliente de correo electrónico sólo de texto? Probablemente nadie o un porcentaje muy bajo de tus usuarios.

Generar automáticamente la versión de texto

Probemos algo: en TripController::show() , elimina la línea ->textTemplate() . Nuestro correo electrónico ahora sólo tiene versión HTML.

Haz otro viaje y comprueba el correo electrónico en Mailtrap. ¿Todavía tenemos una versión de texto? Se parece casi a nuestra plantilla de texto,

pero con algún espaciado extra. Si envías un correo electrónico sólo con una versión HTML, Symfony Mailer crea automáticamente una versión

de texto pero elimina las etiquetas. Es una buena alternativa, pero no es perfecta. ¿Ves lo que falta? El enlace Eso es... algo crítico... El enlace ha

desaparecido porque estaba en el atributo href de la etiqueta de anclaje. Lo perdimos al eliminar las etiquetas.

Entonces, ¿necesitamos mantener siempre manualmente una versión de texto? No necesariamente. Aquí tienes un pequeño truco.

De HTML a Markdown

En tu terminal, ejecuta:

composer require league/html-to-markdown

Este es un paquete que convierte HTML a markdown. Espera, ¿qué? ¿No solemos convertir markdown a HTML? Sí, pero para los correos

electrónicos HTML, ¡esto es perfecto! ¿Y adivina qué? ¡No tenemos que hacer nada más! ¡Symfony Mailer utiliza automáticamente este paquete

en lugar de limitarse a eliminar las etiquetas si están disponibles!

Reserva otro viaje y comprueba el correo electrónico en Mailtrap. El HTML parece el mismo, pero comprueba la versión de texto. ¡Nuestra

etiqueta de anclaje se ha convertido en un enlace markdown! Todavía no es perfecto, ¡pero al menos está ahí! Si necesitas un control total,

necesitarás esa plantilla de texto aparte, pero creo que esto es suficiente. De vuelta en tu IDE, borra booking_confirmation.txt.twig .

A continuación, ¡avivaremos este HTML con CSS!

Chapter 6: CSS en el correo electrónico

El CSS en el correo electrónico requiere... cierto cuidado especial. Pero, ¡pffff, somos desarrolladores de Symfony! ¡Avancemos temerariamente y

veamos qué pasa!

Añade una clase CSS

En email/booking_confirmation.html.twig , añade una etiqueta <style> en <head> y añade una clase .text-red que establezca color

en red :

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

 // ... lines 9 - 26

27

Ahora, añade esta clase a la primera etiqueta <p> :

templates/email/booking_confirmation.html.twig

 // ... lines 1 - 8

9

10

 // ... lines 11 - 25

26

 // ... lines 27 - 28

En nuestra aplicación, reserva otro viaje para nuestro buen amigo Steve. ¡Realmente está acumulando parsecs! ¿Crees que le interesaría la

tarjeta de crédito platino Universal Travel?

En Mailtrap, comprueba el correo electrónico. Vale, este texto está en rojo como esperábamos... entonces, ¿cuál es el problema? Comprueba el

código HTML para obtener una pista. Pasa el ratón por encima del primer error:

“La etiqueta style no es compatible con todos los clientes de correo electrónico.”

El problema más importante es el atributo class : tampoco es compatible con todos los clientes de correo electrónico. ¿Podemos viajar al espacio

pero no podemos utilizar clases CSS en los correos electrónicos? Sí, es un mundo extraño.

CSS en línea

¿La solución? Haz como si estuviéramos en 1999 e inlinea todos los estilos. Así es, por cada etiqueta que tenga un class , tenemos que

encontrar todos los estilos aplicados de la clase y añadirlos como atributo style . Manualmente, esto sería suuuuuck... Por suerte, ¡Symfony

Mailer te tiene cubierto!

inline_css Filtro Twig

En la parte superior de este archivo, añade una etiqueta Twig apply con el filtro inline_css . Si no estás familiarizado, la etiqueta apply te

permite aplicar cualquier filtro Twig a un bloque de contenido. Al final del archivo, escribe endapply :

<html>

<head>

 <style>

 .text-red {

 color: red;

 }

 </style>

</head>

</html>

<body>

<p class="text-red">Hey {{ customer.name|split(' ')|first }},</p>

</body>

templates/email/booking_confirmation.html.twig

1

2

 // ... lines 3 - 27

28

29

Reserva otro viaje para Steve. Uy, ¡un error! El filtro inline_css forma parte de un paquete que no tenemos instalado, ¡pero el mensaje de error

nos da el comando composer require para instalarlo! Cópialo, salta a tu terminal y pégalo:

composer require twig/cssinliner-extra

De vuelta en la aplicación, vuelve a reservar el viaje de Steve y comprueba el correo electrónico en Mailtrap.

El HTML parece el mismo, pero comprueba la Fuente HTML. ¡Este atributo style se añadió automáticamente a la etiqueta <p> ! Es increíble y

mucho mejor que hacerlo manualmente.

Si tu aplicación envía varios correos electrónicos, querrás que tengan un estilo coherente a partir de un archivo CSS real, en lugar de definirlo

todo en una etiqueta <style> en cada plantilla. Por desgracia, no es tan sencillo como enlazar a un archivo CSS en la etiqueta <head> . Eso es

algo que tampoco gusta a los clientes de correo electrónico.

¡No hay problema!

Archivo CSS externo

Crea un nuevo archivo email.css en assets/styles/ . Copia el CSS de la plantilla de correo electrónico y pégalo aquí:

assets/styles/email.css

1

2

3

De vuelta en la plantilla, celébralo eliminando la etiqueta <style> .

Entonces, ¿cómo podemos hacer que nuestro correo electrónico utilice el archivo CSS externo? ¡Con trucos, por supuesto!

Espacio de nombres "styles" de Twig

Abre config/packages/twig.yaml y crea una clave paths . Dentro, añade%kernel.project_dir%/assets/styles: styles :

config/packages/twig.yaml

1

 // ... line 2

3

4

 // ... lines 5 - 9

Lo sé, esto parece raro, pero crea un espacio de nombres Twig personalizado. Gracias a esto ahora podemos renderizar plantillas dentro de este

directorio con el prefijo @styles/ . Pero, ¡espera un momento! email.css ¡el archivo no es una plantilla Twig que queramos renderizar! No pasa

nada, sólo necesitamos acceder a ella, no parsearla como Twig.

inline_css() con source()

De vuelta en booking_confirmation.html.twig , para el argumento de inline_css , utilizasource('@styles/email.css') :

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

{% apply inline_css %}

<html>

</html>

{% endapply %}

.text-red {

 color: red;

}

twig:

 paths:

 '%kernel.project_dir%/assets/styles': styles

{% apply inline_css(source('@styles/email.css')) %}

La función source() toma el contenido en bruto de un archivo.

Salta a nuestra aplicación, reserva otro viaje y comprueba el correo electrónico en Mailtrap. ¡Parece el mismo! Aquí el texto es rojo. Si

comprobamos el código fuente HTML, las clases ya no están en <head> , pero los estilos siguen alineados: se están cargando desde nuestra hoja

de estilos externa, ¡es genial!

A continuación, vamos a mejorar el HTML y el CSS para que este correo electrónico sea digno de la bandeja de entrada de Steve y del costoso

viaje que acaba de reservar.

Chapter 7: Estilo de correo electrónico real con Inky y Foundation CSS

Para que este correo electrónico tenga un aspecto realmente elegante, tenemos que mejorar el HTML y el CSS.

Empecemos por el CSS. Con el CSS estándar de un sitio web, es probable que hayas utilizado un framework CSS como Tailwind (que utiliza

nuestra aplicación), Bootstrap o Foundation. ¿Existe algo así para los correos electrónicos? Sí Y es aún más importante utilizar uno para los

correos electrónicos porque hay muchos clientes de correo electrónico que los renderizan de forma diferente.

CSS de Foundation para correos electrónicos

Para los correos electrónicos, recomendamos utilizar Foundation, ya que tiene un marco específico para correos electrónicos. Busca en Google

"Foundation CSS" y encontrarás esta página.

Descarga el kit de inicio para la "Versión CSS". Este archivo zip incluye un archivo foundation-emails.css que es el "framework" real.

Ya lo he incluido en el directorio tutorials/ . Cópialo enassets/styles/ .

En nuestro booking_confirmation.html.twig , el filtro inline_css puede tomar varios argumentos. Haz que el primer argumento sea

source('@styles/foundation-emails.css')y utiliza email.css para el segundo argumento:

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

Esto contendrá estilos personalizados y anulaciones.

Abriré email.css y pegaré algo de CSS personalizado para nuestro correo electrónico:

assets/styles/email.css

1

2

3

4

5

6

7

8

9

10

11

¡Tablas!

Ahora tenemos que mejorar nuestro HTML. Pero ¡qué noticia más rara! La mayoría de las cosas que utilizamos para dar estilo a los sitios web no

funcionan en los correos electrónicos. Por ejemplo, no podemos utilizar Flexbox ni Grid. En su lugar, tenemos que utilizar tablas para la

maquetación. ¡Tablas! Tablas, dentro de tablas, dentro de tablas. ¡Qué asco!

Lenguaje de plantillas Inky

Por suerte, hay un lenguaje de plantillas que podemos utilizar para hacer esto más fácil. Busca "inky templating language" para encontrar esta

página. Inky está desarrollado por la Fundación Zurb. Zurb, Inky, Foundation... ¡estos nombres encajan perfectamente con nuestro tema espacial!

¡Y todos funcionan juntos!

Puedes hacerte una idea de cómo funciona en la vista general. Este es el HTML necesario para un simple correo electrónico. ¡Es un infierno de

tabla! Haz clic en la pestaña "Cambiar a Inky". ¡Guau! ¡Esto es mucho más limpio! Escribimos en un formato más legible e Inky lo convierte en la

tabla-horror necesaria para los correos electrónicos.

{% apply inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}

.trip-name {

 font-size: 32px;

}

.accent-title {

 color: #666666;

}

.trip-image {

 border-radius: 12px;

}

Incluso hay "componentes Inky": botones, llamadas, cuadrículas, etc.

En tu terminal, instala un filtro Twig de Inky que convertirá nuestro marcado Inky en HTML.

composer require twig/inky-extra

inky_to_html Filtro Twig

En booking_confirmation.html.twig , añade el filtro inky_to_htmla apply , canalizando inline_css a continuación:

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

En primer lugar, aplicamos el filtro Inky y, a continuación, alineamos el CSS.

Copiaré algunas marcas Inky para nuestro correo electrónico.

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Tenemos un <container> , con <rows> y<columns> . Este será un correo electrónico de una sola columna, pero puedes tener tantas columnas

como necesites. Este <spacer> añade espacio vertical para respirar.

¡Veamos este correo electrónico en acción! Reserva un nuevo viaje para Steve, ¡ups, debe ser una fecha en el futuro, y reserva!

Comprueba Mailtrap y encuentra el correo electrónico. ¡Vaya! ¡Esto tiene mucho mejor aspecto! Podemos utilizar este pequeño widget que

Mailtrap proporciona para ver cómo se verá en móviles y tabletas.

Mirando el "HTML Check", parece que tenemos algunos problemas, pero, creo que mientras estemos usando Foundation e Inky como es debido,

deberíamos estar bien.

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}

 <container>

 <row>

 <columns>

 <spacer size="40"></spacer>

 <p class="accent-title">Get Ready for your trip to</p>

 <h1 class="trip-name">{{ trip.name }}</h1>

 </columns>

 </row>

 <row>

 <columns>

 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}</p>

 </columns>

 </row>

 <row>

 <columns>

 <button class="expanded rounded center" href="{{ url('booking_show', {uid: booking.uid}) }}">

 Manage Booking

 </button>

 <button class="expanded rounded center secondary" href="{{ url('bookings', {uid: customer.uid}) }}">

 My Account

 </button>

 </columns>

 </row>

 <row>

 <columns>

 <p>We can't wait to see you there,</p>

 <p>Your friends at Universal Travel</p>

 </columns>

 </row>

 </container>

{% endapply %}

Comprueba los botones. "Gestionar reserva", sí, funciona. "Mi cuenta", sí, también funciona. ¡Eso ha sido un éxito rápido gracias a Foundation e

Inky!

A continuación, vamos a mejorar aún más nuestro correo electrónico incrustando la imagen del viaje y haciendo felices a los abogados añadiendo

un archivo adjunto en PDF con las "condiciones del servicio".

Chapter 8: Archivos adjuntos e imágenes

¿Podemos añadir un archivo adjunto a nuestro correo electrónico? Por supuesto que sí Hacerlo manualmente es un proceso complejo y delicado.

Por suerte, el Mailer de Symfony te lo pone muy fácil.

En el directorio tutorial/ , verás un archivo terms-of-service.pdf . Muévelo a assets/ , aunque podría estar en cualquier sitio.

En TripController::show() , necesitamos obtener la ruta a este archivo. Añade un nuevo argumentostring $termsPath y con el atributo

#[Autowire] y%kernel.project_dir%/assets/terms-of-service.pdf' :

src/Controller/TripController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 31

32

 // ... lines 33 - 38

39

40

41

 // ... lines 42 - 75

76

77

Genial, ¿verdad?

Adjunta

Abajo, donde creamos el correo electrónico, escribe ->attach y mira lo que te sugiere tu IDE. Hay dos métodos: attach() y

attachFromPath() .attach() es para añadir el contenido en bruto de un archivo (como cadena o flujo). Como nuestro adjunto es un archivo

real en nuestro sistema de archivos, utiliza attachFromPath() y pasa$termsPath y luego un nombre amigable como Terms of Service.pdf :

src/Controller/TripController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 31

32

 // ... lines 33 - 40

41

 // ... lines 42 - 53

54

 // ... lines 55 - 57

58

 // ... lines 59 - 64

65

 // ... lines 66 - 69

70

 // ... lines 71 - 75

76

77

Este será el nombre del archivo cuando se descargue. Si no se pasa el segundo argumento, por defecto será el nombre del archivo.

Adjunto hecho. ¡Ha sido fácil!

Incrustar imágenes

final class TripController extends AbstractController

{

 public function show(

 #[Autowire('%kernel.project_dir%/assets/terms-of-service.pdf')]

 string $termsPath,

): Response {

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 $email = (new TemplatedEmail())

 ->attachFromPath($termsPath, 'Terms of Service.pdf')

 ;

 }

 }

}

A continuación, vamos a añadir la imagen del viaje al correo electrónico de confirmación de la reserva. Pero no la queremos como archivo

adjunto. La queremos incrustada en el HTML. Hay dos formas de hacerlo: Primero, la forma estándar de la web: utilizar una etiqueta con

una URL absoluta a la imagen alojada en tu sitio. Pero vamos a ser inteligentes e incrustar la imagen directamente en el correo electrónico. Esto

es como un archivo adjunto, pero no está disponible para su descarga, sino que haces referencia a ella en el HTML de tu correo electrónico.

Primero, como hicimos con nuestros archivos CSS externos, tenemos que hacer que nuestras imágenes estén disponibles en Twig.

public/imgs/ contiene las imágenes de nuestro viaje y todas se llaman<trip-slug.png> .

En config/packages/twig.yaml , añade otra entrada paths :%kernel.project_dir%/public/imgs: images :

config/packages/twig.yaml

1

 // ... line 2

3

 // ... line 4

5

 // ... lines 6 - 10

Ahora podemos acceder a este directorio en Twig con @images/ . Cierra este archivo.

La variable email

Cuando utilizas Twig para procesar tus correos electrónicos, por supuesto tienes acceso a las variables pasadas a ->context() pero también

hay una variable secreta disponible llamada email . Ésta es una instancia de WrappedTemplatedEmail y te da acceso a cosas relacionadas con

el correo electrónico como el asunto, la ruta de retorno, de, a, etc. Lo que nos interesa es este método image() . ¡Es el que se encarga de

incrustar imágenes!

¡Vamos a utilizarlo!

En booking_confirmation.html.twig , debajo de este <h1> , añade una etiqueta con algunas clases: trip-image de nuestro archivo

CSS personalizado y float-center de Foundation.

Para el src , escribe {{ email.image() }} , este es el método de ese objetoWrappedTemplatedEmail . Dentro, escribe

'@images/%s.png'|format(trip.slug) . Añade un alt="{{ trip.name }}" y cierra la etiqueta:

templates/email/booking_confirmation.html.twig

1

2

3

4

 // ... lines 5 - 6

7

8

9

10

11

12

13

 // ... lines 14 - 34

35

36

¡Imagen incrustada! ¡Vamos a comprobarlo!

De vuelta en la aplicación, reserva un viaje... y comprueba Mailtrap. Aquí está nuestro correo electrónico y... ¡aquí está nuestra imagen! ¡Somos lo

máximo! Encaja perfectamente e incluso tiene unas bonitas esquinas redondeadas.

Aquí arriba, en la parte superior derecha, vemos "Adjunto (1)", tal y como esperábamos. Haz clic en él y elige "Condiciones de servicio.pdf" para

descargarlo. Ábrelo y... ¡ahí está nuestro PDF! Nuestros abogados espaciales han hecho divertido este documento, ¡y sólo nos ha costado 500

créditos/hora! ¡Créditos de inversor bien invertidos!

twig:

 paths:

 '%kernel.project_dir%/public/imgs': images

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}

 <container>

 <row>

 <columns>

 <h1 class="trip-name">{{ trip.name }}</h1>

 <img

 class="trip-image float-center"

 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

 alt="{{ trip.name }}">

 </columns>

 </row>

 </container>

{% endapply %}

A continuación, vamos a eliminar la necesidad de poner manualmente un from a cada correo electrónico, utilizando eventos para añadirlo

globalmente.

Chapter 9: Global Desde (y Diversión) con Eventos de Correo Electrónico

Apuesto a que la mayoría, si no todos, los correos electrónicos que envíe tu aplicación tendrán la misma dirección de correo electrónico, algo

ingenioso comohal9000@universal-travel.com o el probado pero más soporíferoinfo@universal-travel.com .

Como todos los correos tendrán la misma dirección de origen, no tiene sentido establecerla en todos los correos. Curiosamente, no hay ninguna

opción de configuración minúscula para esto. Pero eso es genial para nosotros: ¡nos da la oportunidad de aprender sobre eventos! Muy potente,

muy friki.

El MessageEvent

Antes de enviar un correo electrónico, Mailer envía un mensaje MessageEvent .

Para escucharlo, busca tu terminal y ejecuta:

symfony console make:listener

Llámalo GlobalFromEmailListener . El nos da una lista de eventos que podemos escuchar. Queremos el primero: MessageEvent . Empieza a

escribir Symfony y se autocompletará por nosotros. Pulsa intro.

¡Escucha creada!

Para ser más guays, pongamos nuestra dirección global de origen como parámetro. En config/services.yaml , debajo de parameters , añade

una nueva: global_from_email .

Cadena especial de dirección de correo electrónico

Esto será una cadena, pero fíjate en esto: ponlo en Universal Travel , luego entre paréntesis angulares, pon el correo electrónico:

<info@universal-travel.com> :

config/services.yaml

 // ... lines 1 - 5

6

7

 // ... lines 8 - 26

Cuando Symfony Mailer vea una cadena con este aspecto como dirección de correo electrónico, creará el objeto Address adecuado con un

nombre y un correo electrónico establecidos. ¡Genial!

MessageEvent Receptor

Abre la nueva clase src/EventListener/GlobalFromEmailListener.php . Añade un constructor con un argumento

private string $fromEmail y un atributo #[Autowire]con el nombre de nuestro parámetro: %global_from_email% :

parameters:

 global_from_email: 'Universal Travel <info@universal-travel.com>'

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 21

22

Aquí abajo, el atributo #[AsEventListener] es lo que marca este método como un oyente de eventos. En realidad, podemos eliminar este

argumento event - se deducirá de la sugerencia de tipo del argumento del método: MessageEvent :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 17

18

19

20

 // ... lines 21 - 31

32

33

Dentro, primero coge el mensaje del evento: $message = $event->getMessage() :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

 // ... lines 22 - 31

32

33

Salta al método getMessage() para ver lo que devuelve. RawMessage ... salta a esto y mira qué clases lo extienden. TemplatedEmail ¡!

¡Perfecto!

De vuelta a nuestro oyente, escribe if (!$message instanceof TemplatedEmail) , y dentro, return; :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 22

23

24

25

 // ... lines 26 - 31

32

33

Es probable que esto no ocurra nunca, pero es una buena práctica volver a comprobarlo. Además, ayuda a nuestro IDE a saber que $message es

ahora un TemplatedEmail .

Es posible que un correo electrónico aún establezca su propia dirección from . En este caso, no queremos anularla. Así que añade una cláusula

de protección if ($message->getFrom()) , return; :

final class GlobalFromEmailListener

{

 public function __construct(

 #[Autowire('%global_from_email%')]

 private string $fromEmail,

) {

 }

}

final class GlobalFromEmailListener

{

 #[AsEventListener]

 public function onMessageEvent(MessageEvent $event): void

 {

 }

}

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 $message = $event->getMessage();

 }

}

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 if (!$message instanceof TemplatedEmail) {

 return;

 }

 }

}

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 26

27

28

29

 // ... lines 30 - 31

32

33

Ahora, podemos establecer la global from : $message->from($this->fromEmail) :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 30

31

32

33

¡Perfecto!

De vuelta en TripController::show() , elimina el ->from() para el correo electrónico.

¡Es hora de probarlo! En nuestra aplicación, reserva un viaje y comprueba Mailtrap para el correo electrónico. Redoble de tambores... ¡el from

está configurado correctamente! ¡Nuestro oyente funciona! Nunca dudé de nosotros.

Reply-To

Un detalle más para que esto sea completamente hermético (como la mayoría de nuestros barcos).

Imagina un formulario de contacto en el que el usuario rellena su nombre, correo electrónico y un mensaje. Esto lanza un correo electrónico con

estos datos a tu equipo de soporte. En sus clientes de correo electrónico, estaría bien que, cuando pulsen responder, vaya al correo del

formulario, no a tu "global de".

Podrías pensar que deberías establecer la dirección from en el correo electrónico del usuario, pero eso no funcionará, ya que no estamos

autorizados a enviar correos electrónicos en nombre de ese usuario. Pronto hablaremos más sobre la seguridad del correo electrónico.

Afortunadamente, existe una cabecera de correo electrónico especial llamada Reply-To precisamente para este escenario. Cuando construyas

tu correo electrónico, configúrala con ->replyTo() y pasa la dirección de correo electrónico del usuario.

Abróchate el cinturón porque los tanques de refuerzo están llenos y listos para el lanzamiento! Es hora de enviar correos electrónicos reales en

producción! Eso a continuación.

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 if ($message->getFrom()) {

 return;

 }

 }

}

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 $message->from($this->fromEmail);

 }

}

Chapter 10: Envío en producción con Mailtrap

Muy bien, ¡por fin ha llegado el momento de enviar correos electrónicos reales en producción!

Transportes de Mailer

Mailer viene con varias formas de enviar correos electrónicos, llamadas "transportes". Este smtp es el que estamos utilizando para nuestras

pruebas con Mailtrap. Podríamos configurar nuestro propio servidor SMTP para enviar correos... pero... eso es complejo, y tienes que hacer un

montón de cosas para asegurarte de que tus correos no se marcan como spam. Boo.

transportes de terceros

Te recomiendo encarecidamente que utilices un servicio de correo electrónico de terceros. Éstos gestionan todas estas complejidades por ti y

Mailer proporciona puentes a muchos de ellos para que la configuración sea pan comido.

Puente Mailtrap

Utilizamos Mailtrap para las pruebas, pero Mailtrap también tiene funciones de envío a producción ¡Fantástico! Incluso tiene un puente oficial

En tu terminal, instálalo con:

composer require symfony/mailtrap-mailer

Una vez instalado, comprueba tu IDE. En .env , la receta añade algunos stubs de MAILER_DSN . Podemos obtener los valores DSN reales de

Mailtrap, pero antes tenemos que hacer algunos ajustes.

Dominio de envío

En Mailtrap, tenemos que configurar un "dominio de envío". Esto configura un dominio de tu propiedad para permitir que Mailtrap envíe correos

electrónicos correctamente en su nombre.

Nuestros abogados aún están negociando la compra de universal-travel.com , así que, por ahora, estoy utilizando un dominio personal que

poseo: zenstruck.com . Añade tu dominio aquí.

Una vez añadido, estarás en esta página de "Verificación del dominio". Esto es súper importante, pero Mailtrap lo hace fácil. Sólo tienes que

seguir las instrucciones hasta que aparezca esta marca de verificación verde. Básicamente, tendrás que añadir un montón de registros DNS

específicos a tu dominio. DKIM, que verifica los correos electrónicos enviados desde tu dominio, y SPF, que autoriza a Mailtrap a enviar correos

electrónicos en nombre de tu dominio, son los más importantes. Mailtrap proporciona una gran documentación sobre ellos si quieres profundizar

en cómo funcionan exactamente. Pero básicamente, le estamos diciendo al mundo que Mailtrap está autorizado a enviar correos electrónicos en

nuestro nombre.

Producción MAILER_DSN

Una vez que tengas la marca de verificación verde, haz clic en "Integraciones" y luego en "Integrar" en la sección "Flujo de transacciones".

Ahora podemos decidir entre utilizar SMTP o API. Yo utilizaré la API, pero cualquiera de las dos funciona. Y ¡hey! Esto me resulta familiar: como

con las pruebas de Mailtrap, elige PHP y luego Symfony. ¡Este es el MAILER_DSNque necesitamos! Cópialo y salta a tu editor.

Se trata de una variable de entorno sensible, así que añádela a .env.local para evitar confirmarla en git. Comenta el DSN de prueba de

Mailtrap y pégalo a continuación. Eliminaré este comentario porque nos gusta mantener la vida ordenada.

¡Casi listo! Recuerda que sólo podemos enviar correos en producción desde el dominio que hemos configurado. En mi caso, zenstruck.com .

Abre config/services.yaml y actualiza elglobal_from_email a tu dominio.

¡Veamos si funciona! En tu aplicación, reserva un viaje. Esta vez utiliza una dirección de correo electrónico real. Pondré el nombre Kevin y

utilizaré mi correo electrónico personal:kevin@symfonycasts.com . Por mucho que te quiera a ti y a los viajes espaciales, pon aquí tu propio

correo electrónico para evitar enviarme spam. ¡Elige una fecha y reserva!

Estamos en la página de confirmación de la reserva, ¡es una buena señal! Ahora, comprueba tu correo electrónico personal. Yo voy al mío y

espero... actualizo... ¡aquí está! Si hago clic, ¡esto es exactamente lo que esperamos! La imagen, el archivo adjunto, ¡todo está aquí!

A continuación, vamos a ver cómo podemos rastrear los correos electrónicos enviados con Mailtrap, ¡además de añadir etiquetas y metadatos

para mejorar ese rastreo!

Chapter 11: Seguimiento de correos electrónicos con etiquetas y metadatos

Ya estamos enviando correos electrónicos de verdad. Comprobemos que nuestros enlaces funcionan... ¡Todo bien!

Registros de correo electrónico Mailtrap

Mailtrap puede hacer algo más que enviar y depurar correos electrónicos: también podemos rastrear correos electrónicos y eventos de correo

electrónico. Entra en Mailtrap y haz clic en "Email API/SMTP". Este panel nos muestra un resumen de cada correo electrónico que hemos

enviado. Haz clic en "Registros de correo electrónico" para ver la lista completa. ¡Aquí está nuestro correo electrónico! Haz clic en él para ver los

detalles.

Esto te resulta familiar... es similar a la interfaz de pruebas de Mailtrap. Podemos ver detalles generales, un análisis de spam y mucho más. Pero

esto es realmente genial: haz clic en "Historial de Eventos". Esto muestra todos los eventos que ocurrieron durante el flujo de este correo

electrónico. Podemos ver cuándo se envió, cuándo se entregó, ¡incluso cuándo lo abrió el destinatario! Cada evento tiene detalles adicionales,

como la dirección IP que abrió el correo electrónico. Súper útil para diagnosticar problemas de correo electrónico. Mailtrap también tiene una

función de seguimiento de enlaces que, si está activada, mostraría qué enlaces se pulsaron en el correo electrónico.

De vuelta a la pestaña "Información del correo electrónico", desplázate un poco hacia abajo. Observa que falta la "Categoría". En realidad, esto no

es un problema, pero una "categoría" es una cadena que ayuda a organizar los distintos correos electrónicos que envía tu aplicación. Esto facilita

la búsqueda y puede darnos estadísticas interesantes como "¿cuántos correos electrónicos de registro de usuarios enviamos el mes pasado?".

Etiqueta de correo electrónico (categoría Mailtrap)

Symfony Mailer llama a esto una "etiqueta" que puedes añadir a los correos electrónicos. El puente Mailtrap toma esta etiqueta y la convierte en

su "categoría". ¡Vamos a añadir una!

En TripController::show() , después de la creación del correo electrónico, escribe:$email->getHeaders()->add(new TagHeader()); -

utiliza booking como nombre:

src/Controller/TripController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 32

33

 // ... lines 34 - 41

42

 // ... lines 43 - 44

45

 // ... lines 46 - 66

67

 // ... lines 68 - 71

72

 // ... lines 73 - 77

78

79

Metadatos del correo electrónico (Variables personalizadas de Mailtrap)

Mailer también tiene una cabecera especial de metadatos que puedes añadir a los correos electrónicos. Se trata de un almacén clave-valor de

forma libre para añadir datos adicionales. El puente Mailtrap los convierte en lo que ellos llaman "variables personalizadas".

Vamos a añadir un par:

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email->getHeaders()->add(new TagHeader('booking'));

 }

 }

}

src/Controller/TripController.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 33

34

 // ... lines 35 - 42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 68

69

 // ... lines 70 - 74

75

 // ... lines 76 - 80

81

82

Y:

src/Controller/TripController.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 33

34

 // ... lines 35 - 42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 69

70

 // ... lines 71 - 74

75

 // ... lines 76 - 80

81

82

A cada correo electrónico de reserva se adjunta ahora una referencia al cliente y a la reserva. ¡Fantástico!

Para ver cómo se verán en Mailtrap, salta a nuestra aplicación y reserva un viaje (recuerda que aún estamos utilizando el envío de producción,

así que utiliza tu correo electrónico personal). Comprueba nuestra bandeja de entrada... aquí está. De vuelta en Mailtrap, vuelve a los registros de

correo electrónico... y actualiza... ¡ahí está! Haz clic en él. Ahora, en esta pestaña "Información de correo electrónico", ¡vemos nuestra categoría

"reserva"! Un poco más abajo, están nuestros metadatos o "variables personalizadas".

Filtrar por categoría

Para filtrar por "categoría", ve a los registros de correo electrónico. En este cuadro de búsqueda, elige "Categorías". Este filtro enumera todas las

categorías que hemos utilizado. Selecciona "reserva" y "Buscar". Esto ya está más organizado que los tubos Jeffries de ingeniería

¡Esto es el envío de correos electrónicos de producción con Mailtrap! Para facilitar las cosas en los próximos capítulos, volvamos a utilizar

Mailtrap en pruebas. En .env.local , descomenta la prueba de Mailtrap MAILER_DSN y comenta el envío de producción MAILER_DSN .

A continuación, vamos a utilizar Symfony Messenger para enviar nuestros correos electrónicos de forma asíncrona. ¡Ooo!

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking->getUid()));

 }

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email->getHeaders()->add(new MetadataHeader('customer_uid', $customer->getUid()));

 }

 }

}

Chapter 12: Envío asíncrono y reintentable con Messenger

Cuando enviamos este correo electrónico, se envía inmediatamente, de forma sincrónica. Esto significa que nuestro usuario ve un retraso

mientras nos conectamos al transporte de correo para enviar el correo electrónico. Y si hay un problema de red por el que el correo falla, el

usuario verá un error 500: no inspira precisamente confianza en una empresa que va a atarte a un cohete.

En lugar de eso, enviemos nuestros correos electrónicos de forma asíncrona. Esto significa que, durante la petición, el correo electrónico se

enviará a una cola para ser procesado más tarde. ¡Symfony Messenger es perfecto para esto! Y obtenemos las siguientes ventajas: respuestas

más rápidas para el usuario, reintentos automáticos si el correo electrónico falla, y la posibilidad de marcar los correos electrónicos para su

revisión manual si fallan demasiadas veces.

Instalación de Messenger y Doctrine Transport

¡Vamos a instalar Messenger! En tu terminal, ejecuta:

composer require messenger

Al igual que Mailer, Messenger tiene el concepto de transporte: aquí es donde se envían los mensajes para ponerlos en cola. Utilizaremos el

transporte Doctrine, ya que es el más fácil de configurar.

composer require symfony/doctrine-messenger

En nuestro IDE, la receta añadía este MESSENGER_TRANSPORT_DSN a nuestro .envy por defecto era Doctrine: ¡perfecto! Este transporte añade

una tabla a nuestra base de datos, así que técnicamente deberíamos crear una migración para ello. Pero... vamos a hacer un poco de trampa y

hacer que cree automáticamente la tabla si no existe. Para permitirlo, configuraauto_setup en 1 :

.env

 // ... lines 1 - 40

41

 // ... lines 42 - 44

45

46

Configurar los transportes de Messenger

La receta también ha creado este archivo config/packages/messenger.yaml . Descomenta la línea failure_transport :

config/packages/messenger.yaml

1

2

 // ... line 3

4

 // ... lines 5 - 24

Esto activa el sistema de revisión manual de fallos que he mencionado antes. A continuación, descomenta la línea async debajo de transports :

###> symfony/messenger ###

MESSENGER_TRANSPORT_DSN=doctrine://default?auto_setup=1

###< symfony/messenger ###

framework:

 messenger:

 failure_transport: failed

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

 // ... line 7

8

 // ... lines 9 - 24

Esto habilita el transporte configurado con MESSENGER_TRANSPORT_DSN y lo nombra async . No es obvio aquí, pero los mensajes fallidos se

vuelven a intentar 3 veces, con un retraso creciente entre cada intento. Si un mensaje sigue fallando después de 3 intentos, se envía

afailure_transport , llamado failed , así que descomenta también este transporte:

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 24

Configurar el enrutamiento de Messenger

La sección routing es donde le decimos a Symfony qué mensajes deben enviarse a qué transporte. Mailer utiliza una clase de mensaje

específica para enviar correos electrónicos. Así que envíaSymfony\Component\Mailer\Messenger\SendEmailMessage al transporte async :

config/packages/messenger.yaml

1

2

 // ... lines 3 - 11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 24

¡Ya está! Symfony Messenger y Mailer se acoplan perfectamente, así que no tenemos que cambiar nada en nuestro código.

¡Vamos a probarlo! De vuelta en nuestra aplicación... reserva un viaje. Volvemos a utilizar el transporte de pruebas de Mailtrap, así que podemos

utilizar cualquier correo electrónico. Ahora observa cuánto más rápido se procesa.

¡Bum!

Estado: En cola

Abre el perfil de la última petición y comprueba la sección "Correos electrónicos". Parece normal, pero fíjate en que el Estado es "En cola". Se

envió a nuestro transporte Messenger, no a nuestro transporte Mailer. Tenemos esta nueva sección "Mensajes". Aquí podemos ver

elSendEmailMessage que contiene nuestro objeto TemplatedEmail .

Salta a Mailtrap y actualiza... todavía nada. ¡Por supuesto! Tenemos que procesar nuestra cola.

Procesar la cola

Vuelve a tu terminal y ejecuta:

symfony console messenger:consume async -vv

framework:

 messenger:

 transports:

 async: '%env(MESSENGER_TRANSPORT_DSN)%'

framework:

 messenger:

 transports:

 failed: 'doctrine://default?queue_name=failed'

framework:

 messenger:

 routing:

 'Symfony\Component\Mailer\Messenger\SendEmailMessage': async

Esto procesa nuestro transporte async (el -vv sólo añade más salida para que podamos ver lo que ocurre). ¡Muy bien! El mensaje se ha recibido

y gestionado correctamente. Es decir: esto debería haber enviado realmente el correo electrónico.

Comprueba Mailtrap... ¡ya está aquí! Parece correcto... pero... haz clic en uno de nuestros enlaces.

¿Pero qué? Comprueba la URL: ¡es el dominio equivocado! Averigüemos qué parte de nuestro cohete de correo electrónico ha causado esto y

arreglémoslo a continuación

Chapter 13: Generar URLs en el entorno CLI

Cuando cambiamos al envío asíncrono de correo electrónico, ¡rompimos nuestros enlaces de correo electrónico! Está utilizandolocalhost como

nuestro dominio, raro e incorrecto.

De vuelta en nuestra aplicación, podemos obtener una pista de lo que está pasando mirando el perfil de la petición que envió el correo

electrónico. Recuerda que ahora nuestro correo electrónico está marcado como "en cola". Ve a la pestaña "Mensajes" y busca el mensaje:

SendEmailMessage . Dentro está el objeto TemplatedEmail . Ábrelo. Interesante! htmlTemplate es nuestra plantilla Twig pero html es null !

¿No debería ser el HTML renderizado de esa plantilla? Este pequeño detalle es importante: la plantilla de correo electrónico no se renderiza

cuando nuestro controlador envía el mensaje a la cola. No! la plantilla no se renderiza hasta más tarde, cuando ejecutamos messenger:consume .

Generación de enlaces en la CLI

¿Qué importancia tiene esto? Bueno messenger:consume es un comando CLI, y cuando se generan URLs absolutas en la CLI, Symfony no sabe

cuál debe ser el dominio (o si debe ser http o https). Entonces, ¿por qué lo hace cuando está en un controlador? En un controlador, Symfony

utiliza la petición actual para averiguarlo. En un comando CLI, no hay petición, así que se rinde y utiliza http://localhost .

Configurar la URL por defecto

Vamos a decirle cuál debe ser el dominio.

De vuelta a nuestro IDE, abre config/packages/routing.yaml . En framework , routing , estos comentarios explican exactamente esta

cuestión. Descomenta default_uri y ajústalo ahttps://universal-travel.com - ¡nuestros abogados están a punto de llegar a un acuerdo!

config/packages/routing.yaml

1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 19

En desarrollo, sin embargo, tenemos que utilizar la URL de nuestro servidor local de desarrollo. Para mí, es127.0.0.1:8000 , pero puede ser

diferente para otros miembros del equipo. Sé que Bob utiliza bob.is.awesome:8000 y más o menos es así.

URL predeterminada del entorno de desarrollo

Para que esto sea configurable, hay un truco: el servidor Symfony CLI establece una variable de entorno especial con el dominio llamado

SYMFONY_PROJECT_DEFAULT_ROUTE_URL .

De vuelta en nuestra configuración de enrutamiento, añade una nueva sección: when@dev: , framework: , router: ,default_uri: y establécela

en %env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL)% :

config/packages/routing.yaml

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

13

 // ... lines 14 - 19

Esta variable de entorno sólo estará disponible si el servidor CLI de Symfony se está ejecutando y estás ejecutando comandos a través de

symfony console (no bin/console). Para evitar un error si falta la variable, establece una por defecto. Todavía en when@dev ,

añadeparameters: con env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL):establecido en http://localhost .

framework:

 router:

 default_uri: https://universal-travel.com

when@dev:

 framework:

 router:

 default_uri: '%env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL)%'

config/packages/routing.yaml

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 19

Esta es la forma estándar de Symfony de establecer un valor por defecto para una variable de entorno.

Reinicia messenger:consume

¡Hora de probar! Pero primero, vuelve a tu terminal. Como hemos hecho algunos cambios en nuestra configuración, tenemos que reiniciar el

comando messenger:consume para, más o menos, recargar nuestra aplicación:

symfony console messenger:consume async -vv

¡Genial! El comando se ejecuta de nuevo y utiliza nuestra nueva configuración de Symfony. Vuelve a nuestra aplicación... ¡y reserva un viaje!

Vuelve rápidamente al terminal... y veremos que el mensaje se ha procesado.

Ve a Mailtrap y... ¡aquí está! Momento de la verdad: haz clic en un enlace... Genial, ¡vuelve a funcionar! ¡Bob estará tan contento!

Ejecutando messenger:consume en segundo plano

Si eres como yo, probablemente te parezca un rollo tener que mantener este comando messenger:consume ejecutándose en un terminal durante

el desarrollo. Además, tener que reiniciarlo cada vez que haces un cambio en el código o en la configuración es molesto. ¡Estoy harto! ¡Es hora de

devolver la diversión a nuestras funciones con otro truco de la CLI de Symfony!

En tu IDE, abre este archivo .symfony.local.yaml . Es la configuración del servidor Symfony CLI para nuestra aplicación. ¿Ves esta clave

workers? Nos permite definir procesos que se ejecutarán en segundo plano cuando iniciemos el servidor. Ya tenemos el comando tailwind

configurado.

Añade otro trabajador. Llámalo messenger -aunque podría ser cualquier cosa- y establececmd en

['symfony', 'console', 'messenger:consume', 'async'] :

.symfony.local.yaml

1

 // ... lines 2 - 5

6

7

 // ... lines 8 - 9

Esto resuelve el problema de tener que mantenerlo en ejecución en una ventana de terminal independiente. Pero, ¿qué pasa con el reinicio del

comando cuando hacemos cambios? No hay problema! Añade una clave watch y ajústala a config , src , templates y vendor :

.symfony.local.yaml

1

 // ... lines 2 - 5

6

 // ... line 7

8

Si cambia algún archivo de estos directorios, el trabajador se reiniciará solo ¡Inteligente!

De vuelta a tu terminal, reinicia el servidor con symfony server:stop y symfony serve -d messenger:consume ¡debería estar ejecutándose

en segundo plano! Para comprobarlo, ejecuta

symfony server:status

when@dev:

 parameters:

 env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL): 'http://localhost'

workers:

 messenger:

 cmd: ['symfony', 'console', 'messenger:consume', 'async']

workers:

 messenger:

 watch: ['config', 'src', 'templates', 'vendor']

¡3 trabajadores funcionando! El servidor web PHP real, el trabajadortailwind:build existente y nuestro nuevo messenger:consume . ¡Genial!

A continuación, ¡exploremos cómo hacer afirmaciones sobre correos electrónicos en nuestras pruebas funcionales!

Chapter 14: Aserciones de correos electrónicos en pruebas funcionales

Bien, ¡hora de hacer pruebas! Si has explorado un poco la base de código, te habrás dado cuenta de que alguien (podría haber sido cualquiera...

pero probablemente un canadiense) coló algunas pruebas en nuestro directorio tests/Functional/ . ¿Pasarán? Ni idea Averigüémoslo

Ve a tu terminal y ejecuta:

bin/phpunit

Uh-oh, 1 fallo. Uh-oh, porque, la verdad, ¡soy el simpático canadiense que las añadió y sé que pasaban al principio del curso! El fallo está en

BookingTest , concretamente, testCreateBooking :

“Se esperaba un código de estado de redirección pero se obtuvo 500”

en la línea 38 de BookingTest . Ahí es donde enviamos el correo electrónico... así que si buscamos a alguien a quien culpar, creo que

deberíamos empezar por el canadiense, ejem, yo y mis salvajes maneras de enviar correos electrónicos.

Foundry y el navegador

Abre BookingTest.php . Si has escrito pruebas funcionales con Symfony antes, esto puede parecer un poco diferente porque estoy utilizando

algunas bibliotecas de ayuda. zenstruck/foundry nos da este rasgo ResetDatabase que limpia la base de datos antes de cada prueba.

También nos proporciona este rasgo Factories que nos permite crear fijaciones de base de datos en nuestras pruebas. Y HasBrowser es de

otro paquete - zenstruck/browser - y es esencialmente una envoltura fácil de usar alrededor del cliente de pruebas de Symfony.

testCreateBooking es la prueba real. En primer lugar, creamos un Trip en la base de datos con estos valores conocidos. A continuación,

algunas preaserciones para asegurarnos de que no hay reservas ni clientes en la base de datos. Ahora, utilizamos ->browser() para navegar a

la página de un viaje, rellenar el formulario de reserva y enviarlo. A continuación, afirmamos que se nos redirige a una URL de reserva específica y

comprobamos que la página contiene algún HTML esperado. Por último, utilizamos Foundry para hacer algunas afirmaciones sobre los datos de

nuestra base de datos.

->throwExceptions()

La línea 38 causó el fallo... estamos obteniendo un código de respuesta 500 al redirigir a esta página de reservas. los códigos de estado 500 en

las pruebas pueden ser frustrantes porque puede ser difícil localizar la excepción real. Por suerte, Browser nos permite lanzar la excepción real. Al

principio de esta cadena, añade ->throwExceptions() :

tests/Functional/BookingTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

 // ... lines 22 - 30

31

32

 // ... lines 33 - 42

43

 // ... lines 44 - 52

53

54

De vuelta al terminal, vuelve a ejecutar las pruebas:

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->browser()

 ->throwExceptions()

 ;

 }

}

bin/phpunit

Ahora vemos una excepción No se puede encontrar la plantilla "@images/mars.png". Si recuerdas, esto se parece a cómo estamos incrustando

las imágenes del viaje en nuestro correo electrónico. Está fallando porquemars.png no existe en public/imgs . Para simplificar, vamos a ajustar

nuestra prueba para utilizar una imagen existente. Para nuestra fijación aquí, cambia mars por iss , y abajo, para->visit() : /trip/iss :

tests/Functional/BookingTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... line 23

24

 // ... line 25

26

 // ... lines 27 - 30

31

 // ... line 32

33

 // ... lines 34 - 42

43

 // ... lines 44 - 52

53

54

¡Ejecuta de nuevo las pruebas!

bin/phpunit

¡Pasa!

Parece que nuestro correo se envía... ¡pero confirmémoslo! Al final de esta prueba, quiero hacer algunas afirmaciones sobre el correo electrónico.

Symfony lo permite, pero a mí me gusta utilizar una biblioteca que devuelva la diversión a las pruebas funcionales de correo electrónico.

zenstruck/mailer-test

En tu terminal, ejecuta:

composer require --dev zenstruck/mailer-test

Instalado y configurado... de nuevo en nuestra prueba, habilítalo añadiendo el rasgo InteractsWithMailer :

tests/Functional/BookingTest.php

 // ... lines 1 - 13

14

15

16

 // ... lines 17 - 54

55

Empieza de forma sencilla, al final de la prueba, escribe $this->mailer()->assertSentEmailCount(1); :

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $trip = TripFactory::createOne([

 'slug' => 'iss',

]);

 $this->browser()

 ->visit('/trip/iss')

 ;

 }

}

class BookingTest extends KernelTestCase

{

 use ResetDatabase, Factories, HasBrowser, InteractsWithMailer;

}

tests/Functional/BookingTest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 20

21

22

 // ... lines 23 - 54

55

56

57

58

59

Variables de entorno específicas de la prueba

Nota rápida: .env.local -donde ponemos nuestras credenciales Mailtrap reales- no se lee ni se utiliza en el entorno test : nuestras pruebas

sólo cargan .env y este archivo.env.test . Y en .env , MAILER_DSN está configurado como null://null . ¡Estupendo! Queremos que

nuestras pruebas sean rápidas, y que no envíen realmente correos electrónicos.

¡Vuelve a ejecutarlas!

bin/phpunit

assertEmailSentTo()

Pasa: ¡se envía 1 correo electrónico! Vuelve atrás y añade otra aserción: ->assertEmailSentTo() . ¿Qué dirección de correo esperamos? La

que rellenamos en el formulario: bruce@wayne-enterprises.com . Cópiala y pégala. El segundo argumento es el asunto:

Booking Confirmation for Visit Mars :

tests/Functional/BookingTest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 20

21

22

 // ... lines 23 - 54

55

 // ... line 56

57

58

59

60

¡Ejecuta las pruebas!

bin/phpunit

¡Sigue pasando! Y fíjate que ahora tenemos 20 afirmaciones en lugar de 19.

TestEmail

¡Pero podemos ir más allá! En lugar de una cadena para el asunto de esta afirmación, utiliza un cierre con TestEmail $email como argumento:

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertSentEmailCount(1)

 ;

 }

}

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', 'Booking Confirmation for Visit Mars')

 ;

 }

}

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

 // ... lines 59 - 64

65

66

67

68

Dentro, ahora podemos hacer muchas más afirmaciones sobre este correo electrónico. Como ya no estamos comprobando el asunto, añade

primero ésta:$email->assertSubject('Booking Confirmation for Visit Mars') :

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

60

 // ... lines 61 - 63

64

65

66

67

68

¡Y podemos encadenar más afirmaciones!

Escribe ->assert para ver qué sugiere nuestro editor. Míralas todas... Fíjate en assertTextContainsy assertHtmlContains . Puedes

aseverar sobre cada una de ellas por separado, pero, como es una buena práctica que ambas contengan los detalles importantes, utiliza

assertContains() para comprobar las dos a la vez. Comprueba Visit Mars :

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... line 60

61

 // ... lines 62 - 63

64

65

66

67

68

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {

 })

 ;

 }

}

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {

 $email

 ->assertSubject('Booking Confirmation for Visit Mars')

 ;

 })

 ;

 }

}

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {

 $email

 ->assertContains('Visit Mars')

 ;

 })

 ;

 }

}

Es importante comprobar los enlaces, así que asegúrate de que está la URL de reserva:->assertContains('/booking/'. . Ahora,

BookingFactory::first()->getUid() :

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... lines 60 - 61

62

 // ... line 63

64

65

66

67

68

esto busca la primera entidad Booking en la base de datos (que sabemos por lo anterior que sólo hay una), y obtiene su uid .

Incluso podemos comprobar el archivo adjunto: ->assertHasFile('Terms of Service.pdf') :

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... lines 60 - 62

63

64

65

66

67

68

Puedes comprobar el tipo de contenido y el contenido del archivo mediante argumentos adicionales, pero por ahora me basta con comprobar que

el archivo adjunto existe.

¡Vamos, pruebas, vamos!

bin/phpunit

Impresionante, ¡25 aserciones ahora!

->dd()

Una última cosa: si alguna vez tienes problemas para averiguar por qué no pasa una de estas aserciones de correo electrónico, encadena un

->dd() :

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {

 $email

 ->assertContains('/booking/'.BookingFactory::first()->getUid())

 ;

 })

 ;

 }

}

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {

 $email

 ->assertHasFile('Terms of Service.pdf')

 ;

 })

 ;

 }

}

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... lines 60 - 63

64

65

66

67

68

69

y ejecuta tus pruebas. Cuando llegue a ese dd() , vuelca el correo electrónico para ayudarte a depurar. ¡No olvides eliminarlo cuando hayas

terminado!

A continuación, quiero añadir un segundo correo electrónico a nuestra aplicación. Para evitar la duplicación y mantener la coherencia, crearemos

un diseño de correo electrónico Twig que ambos compartan.

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail $email) {

 $email

 ->dd()

 ;

 })

 ;

 }

}

Chapter 15: Diseño Twig de correo electrónico

¡Hora de una nueva función! Quiero enviar un correo electrónico recordatorio a los clientes 1 semana antes de su viaje reservado. ¡T menos 1

semana para despegar gente!

Problema con el Trabajador CLI de Symfony

En primer lugar, tenemos un pequeño problema con nuestro Symfony CLI worker. Abre.symfony.local.yaml . Nuestro trabajador messenger

está buscando cambios en el directorio vendor . Al menos en algunos sistemas, hay demasiados archivos aquí para monitorizar y ocurren cosas

raras. No pasa nada: elimina vendor/ :

.symfony.local.yaml

1

 // ... lines 2 - 5

6

 // ... line 7

8

Y como hemos cambiado la configuración, salta a tu terminal y reinicia el servidor web:

symfony server:stop

Y

symfony serve -d

Diseño del correo electrónico

Nuestro nuevo correo electrónico de recordatorio de reserva tendrá una plantilla muy similar a la de confirmación de reserva. Para reducir la

duplicación, y mantener la coherencia de nuestros elegantes correos electrónicos, en templates/email/ , crea una nueva plantilla

layout.html.twig a la que se extenderán todos nuestros correos electrónicos.

Copia el contenido de booking_confirmation.html.twig y pégalo aquí. Ahora, elimina el contenido específico de confirmación de reserva y

crea un bloque content vacío. Creo que está bien mantener nuestra firma aquí.

templates/email/layout.html.twig

1

2

3

4

5

6

7

8

9

10

11

En booking_confirmation.html.twig , aquí arriba, amplía este nuevo diseño y añade el bloquecontent . Abajo, copia el contenido específico

del correo electrónico y pégalo dentro de ese bloque. Elimina todo lo demás.

workers:

 messenger:

 watch: ['config', 'src', 'templates']

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'), source('@styles/email.css')) %}

 <container>

 {% block content %}{% endblock %}

 <row>

 <columns>

 <p>We can't wait to see you there,</p>

 <p>Your friends at Universal Travel</p>

 </columns>

 </row>

 </container>

{% endapply %}

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Asegurémonos de que el correo electrónico de confirmación de la reserva sigue funcionando, ¡y tenemos pruebas para ello! De vuelta en el

terminal, ejecútalas con:

bin/phpunit

¡Verde! Eso es buena señal. Asegurémonos doblemente comprobándolo en Mailtrap. En la aplicación, reserva un viaje... y comprueba Mailtrap.

¡Sigue estando fantástico!

¡Es hora de enviar el correo electrónico recordatorio!

Indicador de recordatorio de reserva

Después de enviar un correo electrónico recordatorio, tenemos que marcar la reserva para no molestar al cliente con múltiples recordatorios.

Vamos a añadir una nueva bandera para esto a la entidad Booking .

En tu terminal, ejecuta:

symfony make:entity Booking

¡Uy!

symfony console make:entity Booking

¿Añadir un nuevo campo llamado reminderSentAt , tipo datetime_immutable , anulable? Sí. Se trata de un patrón habitual que utilizo para este

tipo de campos bandera en lugar de un simple boolean .null significa false y una fecha significa true . Funciona igual, pero nos da un poco

más de información.

{% extends 'email/layout.html.twig' %}

{% block content %}

 <row>

 <columns>

 <spacer size="40"></spacer>

 <p class="accent-title">Get Ready for your trip to</p>

 <h1 class="trip-name">{{ trip.name }}</h1>

 <img

 class="trip-image float-center"

 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

 alt="{{ trip.name }}">

 </columns>

 </row>

 <row>

 <columns>

 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}</p>

 </columns>

 </row>

 <row>

 <columns>

 <button class="expanded rounded center" href="{{ url('booking_show', {uid: booking.uid}) }}">

 Manage Booking

 </button>

 <button class="expanded rounded center secondary" href="{{ url('bookings', {uid: customer.uid}) }}">

 My Account

 </button>

 </columns>

 </row>

{% endblock %}

Pulsa intro para salir del comando.

En la entidad Booking ... aquí está nuestra nueva propiedad, y aquí abajo, el getter y el setter.

Encontrar reservas para recordar

A continuación, necesitamos una forma de encontrar todas las reservas que necesitan que se les envíe un recordatorio. ¡El trabajo perfecto

paraBookingRepository ! Añade un nuevo método llamado findBookingsToRemind() , tipo de retorno: array . Añade un docblock para mostrar

que devuelve un array de objetos Reserva:

src/Repository/BookingRepository.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 51

52

53

54

55

56

 // ... lines 57 - 65

66

67

Dentro, return $this->createQueryBuilder() , alias b . Encadena->andWhere('b.reminderSentAt IS NULL') ,

->andWhere('b.date <= :future') ,->andWhere('b.date > :now') rellenando los marcadores de posición

con->setParameter('future', new \DateTimeImmutable('+7 days')) y->setParameter('now', new \DateTimeImmutable('now')) .

Termina con ->getQuery()->getResult() :

src/Repository/BookingRepository.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 54

55

56

57

58

59

60

61

62

63

64

65

66

67

Fijación de Reservas Pendientes de Recordatorio

En AppFixtures , aquí abajo, creamos algunas reservas falsas. Añade una que desencadene con seguridad el envío de un correo electrónico

recordatorio:BookingFactory::createOne() , dentro, 'trip' => $arrakis, 'customer' => $clark y, ésta es la parte importante,

'date' => new \DateTimeImmutable('+6 days') :

class BookingRepository extends ServiceEntityRepository

{

 /**

 * @return Booking[]

 */

 public function findBookingsToRemind(): array

 {

 }

}

class BookingRepository extends ServiceEntityRepository

{

 public function findBookingsToRemind(): array

 {

 return $this->createQueryBuilder('b')

 ->andWhere('b.reminderSentAt IS NULL')

 ->andWhere('b.date <= :future')

 ->andWhere('b.date > :now')

 ->setParameter('future', new \DateTimeImmutable('+7 days'))

 ->setParameter('now', new \DateTimeImmutable('now'))

 ->getQuery()

 ->getResult()

 ;

 }

}

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 87

88

89

90

91

92

93

94

Claramente entre ahora y dentro de 7 días.

"Migración

Hemos realizado cambios en la estructura de nuestra base de datos. Normalmente, deberíamos crear una migración... pero, no estamos

utilizando migraciones. Así que, simplemente forzaremos la actualización del esquema. En tu terminal, ejecuta:

symfony console doctrine:schema:update --force

Luego, vuelve a cargar los accesorios:

symfony console doctrine:fixture:load

Todo ha funcionado, ¡genial!

A continuación, ¡crearemos un nuevo correo electrónico recordatorio y un comando CLI para enviarlo!

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager): void

 {

 BookingFactory::createOne([

 'trip' => $arrakis,

 'customer' => $clark,

 'date' => new \DateTimeImmutable('+6 days'),

]);

 }

}

Chapter 16: Correo electrónico desde el comando CLI

Ya hemos hecho el trabajo previo para nuestra función de correo electrónico recordatorio. Ahora, ¡vamos a crear y enviar los correos!

Plantilla de correo electrónico recordatorio

En templates/email , la nueva plantilla de correo electrónico será muy similar abooking_confirmation.html.twig . Copia ese archivo y

nómbralo booking_reminder.html.twig . Dentro, no quiero perder demasiado tiempo en esto, así que simplemente cambia el título del acento

para que diga "¡Próximamente!":

templates/email/booking_reminder.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

¡Envíalo! ¡Juego de palabras espacial accidental!

Comando Enviar Recordatorio

La lógica para enviar los correos electrónicos tiene que ser algo que podamos programar para que se ejecute cada hora o cada día. ¡El trabajo

perfecto para un comando CLI! En tu terminal, ejecuta:

symfony make:command

¡Bah!

symfony console make:command

{% extends 'email/layout.html.twig' %}

{% block content %}

 <row>

 <columns>

 <spacer size="40"></spacer>

 <p class="accent-title">Coming soon!</p>

 <h1 class="trip-name">{{ trip.name }}</h1>

 <img

 class="trip-image float-center"

 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

 alt="{{ trip.name }}">

 </columns>

 </row>

 <row>

 <columns>

 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}</p>

 </columns>

 </row>

 <row>

 <columns>

 <button class="expanded rounded center" href="{{ url('booking_show', {uid: booking.uid}) }}">

 Manage Booking

 </button>

 <button class="expanded rounded center secondary" href="{{ url('bookings', {uid: customer.uid}) }}">

 My Account

 </button>

 </columns>

 </row>

{% endblock %}

Llámalo: app:send-booking-reminders .

¡Ve a comprobarlo! src/Command/SendBookingRemindersCommand.php . Cambia la descripción a "Enviar correos electrónicos de recordatorio de

reserva":

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 17

18

 // ... line 19

20

21

22

 // ... lines 23 - 70

En el constructor, autocablea y establece propiedades para BookingRepository , EntityManagerInterfacey MailerInterface :

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 68

69

Este comando no necesita argumentos ni opciones, así que elimina por completo el método configure() .

Limpia las tripas de execute() . Empieza añadiendo un bonito:$io->title('Sending booking reminders') . Luego, coge las reservas que

necesitan que se envíen recordatorios, con $bookings = $this->bookingRepo->findBookingsToRemind() .

Barra de progreso fácil

Para ser los mejores, mostremos una barra de progreso mientras recorremos las reservas. El objeto $io tiene un truco para esto. Escribe

foreach ($io->progressIterate($bookings) as $booking) . Esto se encarga de toda la aburrida lógica de la barra de progreso Dentro,

tenemos que crear un nuevo correo electrónico. En TripController , copia ese correo electrónico -incluyendo estas cabeceras- y pégalo aquí.

Pero tenemos que ajustarlo un poco: elimina el archivo adjunto. Y para el asunto: sustituye "Confirmación" por "Recordatorio". Arriba, añade

algunas variables por comodidad:$customer = $booking->getCustomer() y $trip = $booking->getTrip() . Aquí abajo, mantén los

mismos metadatos, pero cambia la etiqueta a booking_reminder . Esto nos ayudará a distinguir mejor estos correos en Mailtrap.

Ah, y por supuesto, cambia la plantilla a booking_reminder.html.twig .

Siguiendo con el bucle, envía el correo electrónico con $this->mailer->send($email) y marca la reserva como recordatorio enviado

con$booking->setReminderSentAt(new \DateTimeImmutable('now')) .

¡Perfecto! Fuera del bucle, llama a $this->em->flush() para guardar los cambios en la base de datos. Por último, celébralo

con$io->success(sprintf('Sent %d booking reminders', count($bookings))) .

#[AsCommand(

 description: 'Send booking reminder emails',

)]

class SendBookingRemindersCommand extends Command

class SendBookingRemindersCommand extends Command

{

 public function __construct(

 private BookingRepository $bookingRepo,

 private EntityManagerInterface $em,

 private MailerInterface $mailer,

) {

 parent::__construct();

 }

}

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

¡Hora de probar! Ve a tu terminal. Para asegurarte de que tenemos una reserva que necesita que se le envíe un recordatorio, recarga los

accesorios con:

symfony console doctrine:fixture:load

Ahora, ¡ejecuta nuestro nuevo comando!

symfony console app:send-booking-reminders

Bien, ¡se ha enviado 1 recordatorio! Y el resultado impresionará a nuestros colegas! Antes de comprobar Mailtrap, vuelve a ejecutar el comando:

symfony console app:send-booking-reminders

"Enviados 0 recordatorios de reserva". ¡Perfecto! Nuestra lógica para marcar las reservas como recordatorios enviados ¡funciona!

Ahora comprueba Mailtrap... ¡aquí está! Como era de esperar, se parece mucho a nuestro correo de confirmación, pero aquí dice

"Próximamente": está utilizando la nueva plantilla.

class SendBookingRemindersCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface $output): int

 {

 $io = new SymfonyStyle($input, $output);

 $io->title('Sending booking reminders');

 $bookings = $this->bookingRepo->findBookingsToRemind();

 foreach ($io->progressIterate($bookings) as $booking) {

 $trip = $booking->getTrip();

 $customer = $booking->getCustomer();

 $email = (new TemplatedEmail())

 ->to(new Address($customer->getEmail()))

 ->subject('Booking Reminder for '.$trip->getName())

 ->htmlTemplate('email/booking_reminder.html.twig')

 ->context([

 'customer' => $customer,

 'trip' => $trip,

 'booking' => $booking,

])

 ;

 $email->getHeaders()->add(new TagHeader('booking_reminder'));

 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking->getUid()));

 $email->getHeaders()->add(new MetadataHeader('customer_uid', $customer->getUid()));

 $this->mailer->send($email);

 $booking->setReminderSentAt(new \DateTimeImmutable('now'));

 }

 $this->em->flush();

 $io->success(sprintf('Sent %d booking reminders', count($bookings)));

 return Command::SUCCESS;

 }

}

X-Tag y X-Metadata

Cuando se utiliza "Prueba de Mailtrap", las etiquetas y metadatos de Mailer no se convierten en categorías y variables personalizadas de Mailtrap,

como ocurre cuando se envían en producción. ¡Pero aún puedes asegurarte de que se envían! Haz clic en esta pestaña "Información técnica" y

desplázate un poco hacia abajo. Cuando Mailer no sabe cómo convertir las etiquetas y los metadatos, los añade como estas cabeceras genéricas

personalizadas: X-Tag y X-Metadata .

Efectivamente, X-Tag es booking_reminder . Genial, ¡eso es lo que esperamos también!

Vale, ¿nueva función? ¡Comprobado! ¿Pruebas para la nueva función? ¡Eso a continuación!

Chapter 17: Prueba del comando CLI

¡El capitán está harto de que la gente corra detrás del cohete porque llegan tarde! ¡Por eso hemos creado un comando para enviar correos

electrónicos recordatorios! Problema resuelto! Ahora escribamos una prueba para asegurarnos de que sigue funcionando. "Nueva función, nueva

prueba", ¡ese es mi lema!

Salta a tu terminal y ejecuta:

symfony console make:test

Teclea? KernelTestCase . ¿Nombre? SendBookingRemindersCommandTest .

SendBookingRemindersCommandTest

En nuestro IDE, la nueva clase se ha añadido a tests/ . Ábrelo y mueve la clase a un nuevo espacio de nombres:

App\Tests\Functional\Command , para mantener las cosas organizadas.

Perfecto. Primero, limpia las tripas y añade algunos rasgos de comportamiento:use ResetDatabase, Factories, InteractsWithMailer :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 9

10

11

12

 // ... lines 13 - 22

23

Elimina dos pruebas:public function testNoRemindersSent() con$this->markTestIncomplete()

ypublic function testRemindersSent() . Márcalo también como incompleto:

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 13

14

15

16

17

18

19

20

21

22

23

De vuelta al terminal, ejecuta las pruebas con:

bin/phpunit

Lista de pruebas TODO

Fíjate, nuestras dos pruebas originales pasan, los dos puntos, y estas íes son las nuevas pruebas incompletas. Me encanta esta pauta: escribe

los stubs de prueba para una nueva función, y luego juega a eliminar los incompletos uno a uno hasta que desaparezcan todos. Entonces, ¡la

class SendBookingRemindersCommandTest extends KernelTestCase

{

 use ResetDatabase, Factories, InteractsWithMailer;

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testNoRemindersSent()

 {

 $this->markTestIncomplete();

 }

 public function testRemindersSent()

 {

 $this->markTestIncomplete();

 }

}

funcionalidad está terminada!

Symfony tiene algunas herramientas para probar comandos, pero me gusta usar un paquete que las envuelve en una experiencia más agradable.

Instálalo con:

zenstruck/console-test

composer require --dev zenstruck/console-test

Para activar los ayudantes de este paquete, añade un nuevo rasgo de comportamiento a nuestra prueba:InteractsWithConsole :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 26

27

¡Estamos listos para derribar esos yoes!

testNoRemindersSent()

La primera prueba es fácil: queremos asegurarnos de que, cuando no hay reservas que recordar, el comando no envía ningún correo electrónico.

Escribe$this->executeConsoleCommand() y sólo el nombre del comando: app:send-booking-reminders . Asegúrate de que el comando se

ejecuta correctamente con ->assertSuccessful() y->assertOutputContains('Sent 0 booking reminders') :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 26

27

testRemindersSent()

Organiza

Pasamos a la siguiente prueba Ésta es más complicada: tenemos que crear una reserva que pueda recibir un recordatorio. Crea el arreglo de la

reserva con$booking = BookingFactory::createOne() . Pasa un array con'trip' => TripFactory::new() , y dentro de éste, otro array

con'name' => 'Visit Mars' , 'slug' => 'iss' (para evitar el problema de la imagen). La reserva también necesita un cliente:

'customer' => CustomerFactory::new() . Lo único que nos importa es el correo electrónico del cliente:

'email' => 'steve@minecraft.com' por último, la fecha de la reserva: 'date' => new \DateTimeImmutable('+4 days') :

class SendBookingRemindersCommandTest extends KernelTestCase

{

 use ResetDatabase, Factories, InteractsWithMailer, InteractsWithConsole;

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testNoRemindersSent()

 {

 $this->executeConsoleCommand('app:send-booking-reminders')

 ->assertSuccessful()

 ->assertOutputContains('Sent 0 booking reminders')

 ;

 }

}

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 56

57

58

¡Uf! Tenemos una reserva en la base de datos que necesita que se le envíe un recordatorio. El paso de configuración, u ordenación, de esta

prueba está hecho.

Pre-Aserción

Añade una preafirmación para asegurarte de que no se ha enviado un recordatorio a esta

reserva:$this->assertNull($booking->getReminderSentAt()) :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 37

38

 // ... lines 39 - 56

57

58

Actuar

Ahora el paso

actuar:$this->executeConsoleCommand('app:send-booking-reminders') ->assertSuccessful()->assertOutputContains('Sent 1 bookin

:

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 39

40

41

42

43

 // ... lines 44 - 56

57

58

Afirma

Pasamos a la fase de aserción para asegurarnos de que el correo electrónico se ha enviado. En BookingTest , copia la aserción del correo

electrónico y pégala aquí. Haz algunos ajustes: el correo electrónico es steve@minecraft.com , el asunto es

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $booking = BookingFactory::createOne([

 'trip' => TripFactory::new([

 'name' => 'Visit Mars',

 'slug' => 'iss',

]),

 'customer' => CustomerFactory::new(['email' => 'steve@minecraft.com']),

 'date' => new \DateTimeImmutable('+4 days'),

]);

 }

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->assertNull($booking->getReminderSentAt());

 }

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->executeConsoleCommand('app:send-booking-reminders')

 ->assertSuccessful()

 ->assertOutputContains('Sent 1 booking reminders')

 ;

 }

}

Booking Reminder for Visit Marsy este correo no tiene ningún adjunto, así que elimina esa aserción por completo:

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 56

57

58

Por último, escribe una aserción de que el comando actualizó la reserva en la base de

datos.$this->assertNotNull($booking->getReminderSentAt()) :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 55

56

57

58

¡El momento de la verdad! Ejecuta las pruebas:

bin/phpunit

¡Todo en verde!

Pruebas externas

Este tipo de pruebas externas me parecen muy divertidas y fáciles de escribir, porque no tienes que preocuparte demasiado de probar la lógica

interna e imitan la forma en que un usuario interactúa con tu aplicación. No es casualidad que las afirmaciones se centren en lo que el usuario

debería ver y en algunas comprobaciones de alto nivel posteriores a la interacción, como comprobar algo en la base de datos.

Ahora que tenemos pruebas para nuestras dos rutas de envío de correo electrónico, demos una vuelta de la victoria y refactoricemos con

confianza para eliminar la duplicación.

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->mailer()

 ->assertSentEmailCount(1)

 ->assertEmailSentTo('steve@minecraft.com', function(TestEmail $email) {

 $email

 ->assertSubject('Booking Reminder for Visit Mars')

 ->assertContains('Visit Mars')

 ->assertContains('/booking/'.BookingFactory::first()->getUid())

 ;

 })

 ;

 }

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->assertNotNull($booking->getReminderSentAt());

 }

}

Chapter 18: Servicio de fábrica de correos electrónicos

Nuestra aplicación envía dos correos electrónicos: en SendBookingRemindersCommand , y enTripController::show() . Aquí hay... mucha

duplicación. ¡Me duele la vista! ¡Pero no te preocupes! Podemos reorganizar esto en un servicio de fábrica de correos electrónicos. Y como

tenemos pruebas que cubren ambos correos, podemos refactorizar y estar seguros de que no hemos roto nada. No me canso de decirlo: ¡me

encantan las pruebas!

BookingEmailFactory

Empieza creando una nueva clase: BookingEmailFactory en el espacio de nombres App\Email . Añade un constructor, copia el argumento

$termsPath de TripController::show() , pégalo aquí y conviértelo en una propiedad privada:

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

 // ... lines 19 - 54

55

Ahora, crea dos métodos de fábrica: public function createBookingConfirmation() , que aceptarán Booking $booking , y devolverán

TemplatedEmail . Luego,public function createBookingReminder(Booking $booking) también devolverá un TemplatedEmail :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

 // ... lines 22 - 25

26

 // ... line 27

28

29

 // ... lines 30 - 33

34

 // ... lines 35 - 54

55

Crea un método para albergar esa maldita duplicación: private function createEmail() , con argumentos Booking $booking y

string $tag que devuelve un TemplatedEmail :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 35

36

37

 // ... lines 38 - 53

54

55

Salta a TripController::show() , copia todo el código de creación del correo electrónico y pégalo aquí. Arriba, necesitamos dos variables:

$customer = $booking->getCustomer() y$trip = $booking->getTrip() . Elimina attachFromPath() , subject() , yhtmlTemplate() .

class BookingEmailFactory

{

 public function __construct(

 #[Autowire('%kernel.project_dir%/assets/terms-of-service.pdf')]

 private string $termsPath,

) {

 }

}

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 }

 public function createBookingReminder(Booking $booking): TemplatedEmail

 {

 }

}

class BookingEmailFactory

{

 private function createEmail(Booking $booking, string $tag): TemplatedEmail

 {

 }

}

En este TagHeader , utiliza la variable $tag pasada. Podemos dejar los metadatos igual. Por último, devuelve el $email :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Con nuestra lógica compartida en su sitio, úsala en createBookingConfirmation() . Escribereturn $this->createEmail() , pasando la

variable $booking y booking para la etiqueta. Ahora, ->subject() , copia esto de TripController::show() , cambiando la variable $trippor

$booking->getTrip() . Por último, ->htmlTemplate('email/booking_confirmation.html.twig') :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

22

23

24

25

26

 // ... lines 27 - 54

55

Para createBookingReminder() , copia el interior de createBookingConfirmation() y pégalo aquí. Cambia la etiqueta a booking_reminder ,

el asunto a Booking Reminder , y la plantilla a email/booking_reminder.html.twig :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

22

23

24

25

26

 // ... lines 27 - 54

55

El refactorizador

class BookingEmailFactory

{

 private function createEmail(Booking $booking, string $tag): TemplatedEmail

 {

 $customer = $booking->getCustomer();

 $trip = $booking->getTrip();

 $email = (new TemplatedEmail())

 ->to(new Address($customer->getEmail()))

 ->context([

 'customer' => $customer,

 'trip' => $trip,

 'booking' => $booking,

])

 ;

 $email->getHeaders()->add(new TagHeader($tag));

 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking->getUid()));

 $email->getHeaders()->add(new MetadataHeader('customer_uid', $customer->getUid()));

 return $email;

 }

}

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 return $this->createEmail($booking, 'booking')

 ->subject('Booking Confirmation for '.$booking->getTrip()->getName())

 ->htmlTemplate('email/booking_confirmation.html.twig')

 ;

 }

}

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 return $this->createEmail($booking, 'booking')

 ->subject('Booking Confirmation for '.$booking->getTrip()->getName())

 ->htmlTemplate('email/booking_confirmation.html.twig')

 ;

 }

}

¡Ahora viene lo divertido! ¡Usar nuestra fábrica y eliminar un montón de código!

En TripController::show() , en lugar de inyectar $termsPath , inyectaBookingEmailFactory $emailFactory :

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 35

36

37

 // ... lines 38 - 58

59

60

Elimina todo el código de creación de correo electrónico y dentro de $mailer->send() , escribe

$emailFactory->createBookingConfirmation($booking) :

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 52

53

 // ... lines 54 - 58

59

60

En SendBookingRemindersCommand , de nuevo, elimina todo el código de creación de correo electrónico. Arriba en el constructor, autoconecta

private BookingEmailFactory $emailFactory :

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 18

19

20

21

 // ... lines 22 - 24

25

26

 // ... line 27

28

 // ... lines 29 - 48

49

Aquí abajo, dentro de $this->mailer->send() , escribe $this->emailFactory->createBookingReminder($booking) :

final class TripController extends AbstractController

{

 public function show(

 BookingEmailFactory $emailFactory,

): Response {

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $mailer->send($emailFactory->createBookingConfirmation($booking));

 }

 }

}

class SendBookingRemindersCommand extends Command

{

 public function __construct(

 private BookingEmailFactory $emailFactory,

) {

 }

}

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

31

 // ... lines 32 - 37

38

39

 // ... line 40

41

 // ... lines 42 - 47

48

49

Pruébalo

Oh, sí, ¡qué bien me ha sentado! ¿Pero hemos roto algo? Los canadienses tenemos fama de ser un poco salvajes. Compruébalo ejecutando las

pruebas:

bin/phpunit

¡Uh oh, un fallo! Menos mal que tenemos estas pruebas, ¿eh?

El fallo viene de BookingTest :

“El mensaje no incluye un archivo con nombre de archivo [Condiciones del servicio.pdf].”

Arréglalo

¡Fácil de arreglar! Durante nuestra refactorización, olvidé adjuntar el emocionante PDF de las condiciones del servicio al correo electrónico de

confirmación de la reserva. Y nuestros clientes dependen de ello. BuscaBookingEmailFactory::createBookingConfirmation() , y

añade->attachFromPath($this->termsPath, 'Terms of Service.pdf') :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

22

 // ... lines 23 - 24

25

26

27

 // ... lines 28 - 55

56

Vuelve a ejecutar las pruebas:

bin/phpunit

¡Pasadas! ¿Reforzamiento satisfactorio? ¡Comprobado!

A continuación, vamos a cambiar un poco de marcha y sumergirnos en dos nuevos componentes Symfony para consumir los eventos webhook de

correo electrónico de Mailtrap.

class SendBookingRemindersCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface $output): int

 {

 foreach ($io->progressIterate($bookings) as $booking) {

 $this->mailer->send($this->emailFactory->createBookingReminder($booking));

 }

 }

}

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 return $this->createEmail($booking, 'booking')

 ->attachFromPath($this->termsPath, 'Terms of Service.pdf')

 ;

 }

}

Chapter 19: El Componente Webhook para Eventos de Email

En Mailtrap, cuando enviamos correos electrónicos en producción, recordemos que podemos comprobar cada correo: si fue enviado, entregado,

abierto, rebotado (¡lo cual es importante!) y más. Mailtrap nos permite establecer una URL de webhook para que nos envíe información sobre

estos eventos.

Componentes Webhook y RemoteEvent

Como bonus, ¡descubrimos dos nuevos componentes de Symfony! Busca tu terminal e instálalos:

composer require webhook remote-event

El componente webhook nos proporciona una única ruta a la que enviar todos los webhooks. Analiza los datos que se nos envían -llamados carga

útil-, los convierte en un objeto de evento remoto y los envía a un consumidor. Puedes pensar en los eventos remotos como algo similar a los

eventos Symfony. En lugar de que tu aplicación envíe un evento, lo hace un servicio de terceros, de ahí lo de evento remoto. Y en lugar de

oyentes de eventos, decimos que los eventos remotos tienen consumidores.

Ejecuta

git status

para ver qué ha añadido la receta: config/routes/webhook.yaml . Eso añade el controlador webhook. Comprueba la ruta con:

symfony console debug:route webhook

Comprueba la primera. La ruta es /webhook/{type} . Así que ahora tenemos que configurar algún tipo.

los webhooks de terceros -como los de Mailtrap o los de un procesador de pagos o un sistema de alertas de Supernova- pueden enviarnos cargas

útiles muy diferentes, por lo que normalmente necesitamos crear nuestros propios analizadores y eventos remotos. Dado que los eventos de

correo electrónico son bastante estándar, Symfony proporciona algunos eventos remotos out-of-the-box para ellos: MailerDeliveryEvent y

MailerEngagementEvent . Algunos puentes de correo, incluido el puente Mailtrap que estamos utilizando, proporcionan analizadores para cada

carga útil de webhook del servicio para crear estos objetos. Sólo tenemos que configurarlo.

Configuración del analizador sintáctico Mailtrap

En config/packages/ , crea un archivo webhook.yaml . Añade framework ,webhook , routing , mailtrap (este es el tipo utilizado en la URL),

y luego service . Para averiguar el id de servicio del analizador Mailtrap, ve a la documentación de Symfony Webhook. Busca el id de servicio del

analizador Mailtrap, cópialo... y pégalo aquí:

config/packages/webhook.yaml

1

2

3

4

5

EmailEventConsumer

framework:

 webhook:

 routing:

 mailtrap:

 service: mailer.webhook.request_parser.mailtrap

https://symfony.com/doc/current/webhook.html

Ahora necesitamos un consumidor. Crea una nueva clase llamada EmailEventConsumeren el espacio de nombres App\Webhook . Esto necesita

implementarConsumerInterface desde RemoteEvent Añade el método consume() necesario. Para decirle a Symfony qué tipo de webhook

queremos que consuma, añade el atributo #[AsRemoteEventConsumer] con mailtrap :

src/Webhook/EmailEventConsumer.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 16

17

18

 // ... line 19

20

21

Sobre consume() , añade un docblock para ayudar a nuestro IDE:@param MailerDeliveryEvent|MailerEngagementEvent $event :

src/Webhook/EmailEventConsumer.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

 // ... line 19

20

21

Estos son los eventos remotos de correo genéricos que proporciona Symfony. Dentro, escribe $event-> para ver los métodos disponibles.

En una aplicación real, aquí sería donde harías algo con estos eventos como guardarlos en la base de datos o notificar a un administrador si un

correo electrónico rebota. En realidad, si un correo electrónico rebota varias veces, puede que quieras actualizar algo para evitar que se vuelva a

intentar, ya que esto puede perjudicar la fiabilidad de tu correo electrónico. Pero para nuestros propósitos, basta con dump($event) :

src/Webhook/EmailEventConsumer.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 16

17

18

19

20

21

Consumidores asíncronos

Una última cosa: el controlador webhook envía el evento remoto al consumidor a través de Symfony Messenger, dentro de una clase de mensaje

llamada ConsumeRemoteEventMessage .

Para manejar esto de forma asíncrona y mantener rápidas las respuestas de tu webhook, enconfig/packages/messenger.yaml , bajo routing ,

añadeSymfony\Component\RemoteEvent\Messenger\ConsumeRemoteEventMessage y envíalo a nuestro transporte async :

config/packages/messenger.yaml

1

2

 // ... lines 3 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 25

#[AsRemoteEventConsumer('mailtrap')]

class EmailEventConsumer implements ConsumerInterface

{

 public function consume(RemoteEvent $event): void

 {

 }

}

class EmailEventConsumer implements ConsumerInterface

{

 /**

 * @param MailerDeliveryEvent|MailerEngagementEvent $event

 */

 public function consume(RemoteEvent $event): void

 {

 }

}

class EmailEventConsumer implements ConsumerInterface

{

 public function consume(RemoteEvent $event): void

 {

 dump($event);

 }

}

framework:

 messenger:

 routing:

 'Symfony\Component\RemoteEvent\Messenger\ConsumeRemoteEventMessage': async

¡Vale! Estamos listos para hacer una demostración de este webhook. ¡Eso a continuación!

Chapter 20: Demostración de nuestro webhook a través de un agujero de

gusano

¡Es hora de probar el webhook Mailtrap!

En primer lugar, tenemos que volver a cambiar nuestro entorno de desarrollo para enviar en producción. En .env.local , cambia a tu Mailtrap de

producción MAILER_DSN y enconfig/services.yaml , asegúrate de que el dominio global_from_email 's es el que configuraste con Mailtrap.

Crea un Webhook en Mailtrap

En Mailtrap, ve a "Configuración" > "Webhooks" y haz clic en "Crear nuevo Webhook". Lo primero que necesitamos es una URL de Webhook.

Hmm, esto tiene que ser /webhook/mailtrappero tiene que ser una URL absoluta. En producción, esto no sería un problema: sería tu dominio

de producción. En desarrollo, es un poco más complicado. No podemos utilizar simplemente la URL que nos da el servidor CLI de Symfony...

ngrok

De alguna manera tenemos que exponer nuestro servidor Symfony local al público. Y existe una herramienta muy útil que hace exactamente esto:

ngrok. Crea una cuenta gratuita, inicia sesión y sigue las instrucciones para configurar el cliente CLI ngrok.

En el terminal, reinicia el servidor web Symfony:

symfony server:stop

No se está ejecutando. Inícialo con:

symfony serve -d

Exponer el servidor local

Esta es la URL que necesitamos exponer, cópiala y ejecútala:

ngrok http <paste-url>

Pega la URL y pulsa intro. ¡Agujero de gusano abierto!

Esta URL de "Reenvío" de aspecto loco es la URL pública. Cópiala y pégala en tu navegador. Esta advertencia sólo te permite saber que estás

atravesando un túnel. Haz clic en "Visitar sitio" para ver tu aplicación. ¡Genial!

URL del Webhook de Mailtrap

De vuelta en Mailtrap, pega esta URL y añade /webhook/mailtrap al final. En "Seleccionar flujo", elige "Transaccional". En "Seleccionar

dominio", elige tu dominio Mailtrap configurado. Selecciona todos los eventos y luego "Guardar".

Vuelve al nuevo webhook y haz clic en "Ejecuta la prueba".

“La prueba de la URL del webhook se ha completado correctamente”

https://ngrok.com/

¡Buena señal!

Volcar el servidor

¿Recuerdas que en nuestro EmailEventConsumer , sólo volcamos el evento? Como el acceso al webhook se produce entre bastidores, no

podemos ver el volcado... ¿o sí? Ejecuta en un nuevo terminal:

symfony console server:dump

Esto se conecta a nuestra aplicación y cualquier volcado se mostrará aquí en directo. ¡Inteligente!

En tu navegador, reserva un viaje, recuerda utilizar una dirección de correo electrónico real (¡pero no la mía!)

MailerDeliveryEvent

¡Momento de la verdad! De nuevo en el terminal ejecutando el servidor de volcado, espera un poco... ¡Muy bien! ¡Tenemos un volcado!

Desplázate un poco hacia arriba... Se trata de un MailerDeliveryEvent paradelivered . Vemos el ID interno que Mailtrap le asignó, la carga

útil sin procesar, la fecha, el correo electrónico del destinatario, incluso nuestros metadatos y etiqueta personalizados.

MailerEngagementEvent

¡Probemos con un evento de compromiso! En tu cliente de correo electrónico, abre el correo.

De vuelta en el terminal del servidor de volcado, espera un poco... ¡y boom! ¡Otro evento! Esta vez, es un MailerEngagementEvent para open .

¡Qué guay!

Muy bien, cadetes espaciales, ¡esto es todo por este curso! Hemos conseguido cubrir casi todas las funcionalidades de Symfony Mailer sin

SPAMear a nuestros usuarios. ¡Ganamos!

hasta la próxima, ¡feliz programación!

Chapter 21: Bonificación: Programar nuestro comando de correo electrónico

¿Todavía estás aquí? ¡Estupendo! Tengo un capítulo extra para ti.

Uno de nuestros becarios, Hugo, se queja de que tiene que conectarse a nuestro servidor y ejecutar el comando de recordatorio de reservas,

todas las noches a medianoche. No sé cuál es el problema, ¿para eso no están los becarios?

Instalando el Programador de Symfony

Pero... Supongo que para ser más robustos, deberíamos automatizar esto por si está enfermo o se le olvida. Podríamos configurar una tarea

CRON... pero eso no sería ni de lejos tan genial o flexible como usar el componente Programador de Symfony. Es perfecto para esto. En tu

terminal, ejecuta:

composer require scheduler

Piensa en Symfony Scheduler como un complemento para Messenger. Proporciona su propio transporte especial que, en lugar de una cola,

determina si es el momento de ejecutar un trabajo. Cada trabajo, o tarea, es un mensaje de Messenger, por lo que requiere un gestor de

mensajes. Consumes la programación, como cualquier transporte de Messenger, con el comandomessenger:consume .

make:schedule

Crea un horario con:

symfony console make:schedule

 Note

symfony/scheduler ahora tiene una receta oficial que crea src/Schedule.phppor ti, por lo que este paso ya no es necesario.

¿Nombre del transporte? Utiliza default . ¿Nombre del programa? Utiliza el predeterminado: MainSchedule . ¡Emocionante!

Es posible tener varios horarios, pero para la mayoría de las aplicaciones, un solo horario es suficiente.

Configurar el horario

Compruébalo: src/Scheduler/MainSchedule.php . Es un servicio que implementaScheduleProviderInterface y está marcado con el

atributo #[AsSchedule] con el nombre default . El creador inyectó automáticamente la caché, y veremos por qué en un segundo. El método

getSchedule() es donde configuramos la programación y añadimos tareas.

Este ->stateful() al que pasamos $this->cache es importante. Si el proceso que está ejecutando este programa se cae -como si nuestros

trabajadores de Messenger se detuvieran temporalmente durante un reinicio del servidor-, cuando vuelva a estar en línea, sabrá todas las tareas

que se ha saltado y las ejecutará. Si se suponía que una tarea debía ejecutarse 10 veces mientras estaba inactiva, las ejecutará todas. Esto

puede no ser lo deseado, así que añade->processOnlyLastMissedRun(true) para que sólo se ejecute la última:

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... lines 23 - 29

30

31

32

33

¡A prueba de balas!

Para aplicaciones más complejas, puedes estar consumiendo el mismo programa en varios trabajadores. Utiliza ->lock() para configurar un

bloqueo de modo que sólo un trabajador ejecute la tarea cuando le corresponda.

Añadir una tarea

¡Es hora de añadir nuestra primera tarea! En ->add() , escribe RecurringMessage:: . Hay varias formas de activar una tarea. A mí me gusta

utilizar cron() . Quiero que esta tarea se ejecute a medianoche, todos los días, así que utiliza 0 0 * * * . El segundo argumento es el mensaje

de Messenger a enviar. Queremos ejecutar SendBookingRemindersCommand , pero no podemos añadirlo aquí directamente. En su lugar, utiliza

new RunCommandMessage() y pasa el nombre del comando: app:send-booking-reminders (aquí también puedes pasar argumentos y

opciones):

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 30

31

32

33

Depurar el programa

En tu terminal, lista las tareas de nuestro programa ejecutando:

symfony console debug:schedule

Tenemos un error.

“No puedes utilizar "CronExpressionTrigger" porque el paquete "cron expression" no está instalado”

Solución fácil: copia el comando de instalación y ejecútalo:

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->processOnlyLastMissedRun(true)

 ;

 }

}

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->add(

 RecurringMessage::cron(

 '0 0 * * *',

 new RunCommandMessage('app:send-booking-reminders')

)

)

 ;

 }

}

composer require dragonmantank/cron-expression

¡Buen nombre! Ahora vuelve a ejecutar el comando de depuración:

symfony console debug:schedule

Aquí vamos, la salida está un poco torcida en esta pequeña pantalla, pero puedes ver la expresión cron, el mensaje (y el comando), y el próximo

tiempo de ejecución: esta noche a medianoche.

#[AsCronTask]

Hay una alternativa para programar comandos. En MainSchedule::getSchedule() , borra el atributo ->add() . Luego salta a nuestro

SendBookingRemindersCommand y añade otro atributo: #[AsCronTask()] pasando a: 0 0 * * * :

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 52

En tu terminal, depura de nuevo el horario para asegurarte de que sigue apareciendo:

symfony console debug:schedule

Y lo está, bastante bien.

Si tienes muchas tareas programadas a la misma hora, como a medianoche, puede que veas un pico de CPU a esta hora en tu servidor. A menos

que sea superimportante que las tareas se ejecuten a una hora muy concreta, deberías repartirlas. Una forma de hacerlo, por supuesto, es

asegurarte manualmente de que todas tienen expresiones cron diferentes, pero... eso es un rollo.

Expresiones de cron con hash

Para nuestro comando app:send-booking-reminders , no me importa cuándo se ejecuta, sólo que se ejecute una vez al día. Podemos utilizar

una expresión cron con hash. En nuestra expresión, sustituye los 0 por #. El # significa "elige un valor aleatorio válido para esta parte":

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 52

Vuelve a depurar la programación:

symfony console debug:schedule

Está programado para ejecutarse a las 5:11 h. Ejecuta de nuevo el comando:

symfony console debug:schedule

#[AsCronTask('0 0 * * *')]

class SendBookingRemindersCommand extends Command

#[AsCronTask('# # * * *')]

class SendBookingRemindersCommand extends Command

Siguen siendo las 5:11 h. Vale, no es realmente aleatorio, los valores se calculan de forma determinista basándose en los detalles del mensaje.

En nuestro caso, la cadenaapp:send-booking-reminders . Un comando diferente con la misma expresión hash tendrá valores diferentes.

La documentación del Programador tiene todos los detalles al respecto. Incluso hay alias para hashes comunes. Por ejemplo, #mignight elegirá

una hora entre medianoche y las 3 de la madrugada. Utilízalo para nuestra expresión:

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 52

y vuelve a depurar la programación:

symfony console debug:schedule

Uy, una errata, lo arreglo y lo vuelvo a ejecutar:

symfony console debug:schedule

Ahora está programado para ejecutarse todos los días a las 2:11 h. ¡Genial!

Ejecutar la programación

Ya hemos configurado nuestro programa, pero ¿cómo lo ejecutamos? Recuerda que las programaciones no son más que transportes de

Messenger. El nombre del transporte es scheduler_<schedule_name> , en nuestro caso, scheduler_default . Ejecútalo con:

symfony console messenger:consume scheduler_default

En tu servidor de producción, configúralo para que se ejecute en segundo plano como un trabajador normal de Messenger.

Muy bien, éste es un breve resumen del componente Programador. Consulta la documentación para obtener más información

¡Feliz programación!

#[AsCronTask('#midnight')]

class SendBookingRemindersCommand extends Command

Chapter 22: Bonificación: Messenger Monitor Bundle

Hola, ¿sigues aquí? ¡Estupendo! ¡Hagamos un último capítulo extra!

Cuando tienes un montón de mensajes y programaciones ejecutándose en segundo plano, puede ser difícil saber qué está pasando. ¿Se están

ejecutando mis trabajadores? ¿Se está ejecutando mi programación? ¿Y hacia dónde se está ejecutando? ¿Y los fallos? Tenemos registros,

pero... registros. En lugar de eso, vamos a explorar un bundle genial que nos proporciona una interfaz de usuario para saber qué está pasando

con nuestro ejército de robots trabajadores

Instalación

En tu terminal, ejecuta:

composer require zenstruck/messenger-monitor-bundle

Te pide que instales una receta, di que sí. Vuelve a nuestro IDE y mira lo que se ha añadido.

En primer lugar, se ha añadido un src/Schedule.php . Esto no está relacionado con este bundle. Desde el último capítulo, en el que añadimos el

Symfony Scheduler , ahora tiene una receta oficial que añade una programación por defecto. Como ya tenemos uno, elimina este archivo.

MessengerMonitorController

Se ha añadido un nuevo controlador: src/Controller/Admin/MessengerMonitorController.php . Se trata de un stub para habilitar la interfaz

de usuario del bundle. Extiende este BaseMessengerMonitorControllerdel bundle y añade un prefijo de ruta de /admin/messenger . También

añade este atributo #[IsGranted('ROLE_ADMIN')] . Esto es muy importante para tus aplicaciones reales. Sólo quieres que los administradores

del sitio accedan a la IU, ya que muestra información sensible. No tenemos seguridad configurada en esta app, así que eliminaré esta línea:

src/Controller/Admin/MessengerMonitorController.php

 // ... lines 1 - 7

8

9

10

11

ProcessedMessage

src/Entity/ProcessedMessage.php es una nueva entidad añadida por la receta. También es un stub que extiende esta clase

BaseProcessedMessage y añade una columna ID. Se utiliza para hacer un seguimiento del historial de tus mensajes de Messenger. Por cada

mensaje procesado, se persiste una nueva de estas entidades. Pero no te preocupes, esto se hace en tu proceso worker, por lo que no ralentizará

el frontend de tu aplicación.

Como tenemos una nueva entidad, deberíamos añadir una migración, pero no tengo migraciones configuradas para este proyecto. Así que en tu

terminal, ejecuta:

symfony console doctrine:schema:update --force

Instalar dependencias opcionales

#[Route('/admin/messenger')]

class MessengerMonitorController extends BaseMessengerMonitorController

{

}

Antes de comprobar la interfaz de usuario, el bundle tiene dos dependencias opcionales que quiero instalar. La primera:

composer require knplabs/knp-time-bundle

Esto hace que las marcas de tiempo de la interfaz de usuario sean legibles, como "hace 4 minutos". Siguiente:

composer require lorisleiva/cron-translator

Como estamos utilizando expresiones cron para nuestras tareas programadas, este paquete las hace legibles. Así, en lugar de "11 2 * * * *", lo

mostrará como "todos los días a las 2:11 AM". ¡Estupendo!

¡Ya estamos listos! Inicia el servidor con:

symfony serve -d

Panel de control

Salta al navegador y visita /admin/messenger . Éste es el panel de control de Messenger Monitor

Este primer widget muestra los trabajadores en ejecución y su estado. Podemos ver que tenemos 1 trabajador en ejecución para nuestro

transporte async . Éste es el que hemos configurado para que se ejecute con nuestro servidor Symfony CLI.

A continuación, vemos nuestros transportes disponibles, cuántos mensajes están en cola y cuántos trabajadores los están ejecutando. Observa

que nuestro transporte scheduler_defaultno se está ejecutando. Esto es de esperar, ya que no lo hemos configurado para que se ejecute

localmente.

Debajo, tenemos una instantánea de las estadísticas de las últimas 24 horas.

A la derecha, veremos los últimos 15 mensajes procesados. Por supuesto, ahora está vacío.

Todos estos widgets se actualizan automáticamente cada 5 segundos.

Programar

¡Vamos a crear un historial! En la barra superior, haz clic en Schedule (observa que el icono está en rojo para indicar que la programación no se

está ejecutando). Es una especie de "comando debug:schedule más avanzado". Vemos nuestra única tarea programada: RunCommandMessage

para app:send-booking-reminders . Utiliza unCronExpressionTrigger para ejecutarse "todos los días a las 2:11 AM". hasta ahora se ha

ejecutado 0, pero podemos ejecutarla manualmente haciendo clic en "Activar"... y seleccionando nuestro transporte async .

"Detalles"

Vuelve al panel de control. Se ejecutó correctamente, tardó 58 ms y consumió 31 MB de memoria. Haz clic en "Detalles" para ver aún más

información "Tiempo en cola", "Tiempo para gestionar", marcas de tiempo... un montón de cosas buenas.

Estas etiquetas son muy útiles para filtrar mensajes. Puedes añadir tus propias etiquetas, pero algunas las añade el bundle: manual

schedule:default:<hash> , porque ejecutamos "manualmente" una tarea programada, schedule , porque era una tarea programada,

schedule:default , porque forma parte de nuestra programación por defecto. es el identificador único de esta tarea programada.

A la derecha está el "resultado" del "manejador" del mensaje - en este caso,RunCommandMessageHandler . Diferentes gestores tienen diferentes

resultados (algunos no tienen ninguno). Para éste, el resultado es el código de salida del comando y la salida.

“Enviados 0 recordatorios de reserva”

Vamos a ejecutar de nuevo esta tarea, pero esta vez, con una reserva que necesita que se le envíe un recordatorio. De vuelta a tu terminal,

vuelve a cargar nuestras instalaciones:

symfony console doctrine:fixtures:load

Vuelve al navegador. El panel de control está vacío ahora, pero eso era de esperar: al recargar nuestros dispositivos también se ha borrado

nuestro historial de mensajes. Haz clic en "Programar" y luego en "Activar" en nuestro transporte "asíncrono".

De vuelta en el panel de control, ahora tenemos 2 mensajes. RunCommandMessage de nuevo pero haz clic en sus "Detalles":

“Enviado 1 recordatorio de reserva”

Ahora nuestro segundo mensaje: SendEmailMessage . Este fue enviado por el comando. Haz clic en sus "Detalles" para ver la información

relacionada con el correo electrónico de sus resultados. Observa la etiqueta, booking_reminder . El bundle detectó automáticamente que

estábamos enviando un correo electrónico con una etiqueta "Mailer", por lo que la añadió aquí.

Transporta

En el menú superior, puedes hacer clic en "Transportes" para ver más detalles sobre los mensajes pendientes de cada uno (si procede). El

transporte failed muestra los mensajes fallidos y te da la opción de reintentarlos o eliminarlos, ¡directamente desde la interfaz de usuario!

Historial

"Historial" es donde podemos filtrar los mensajes: Periodo, limitar a un intervalo de fechas concreto. Transporte, limitar a un transporte específico.

Estado, mostrar sólo éxitos o fracasos. Programación, incluir o excluir los mensajes activados por una programación. Tipo de mensaje, filtrar por

clase de mensaje.

Estadísticas

"Estadísticas" muestra un resumen de estadísticas por clase de mensaje y puede limitarse a un intervalo de fechas específico.

Purgar el historial de mensajes

Como probablemente puedas imaginar, si tu aplicación ejecuta muchos mensajes, nuestra tabla de historial puede llegar a ser realmente grande.

El bundle proporciona algunos comandos para purgar mensajes antiguos.

En la documentación del bundle, desplázate hasta "messenger:monitor:purge" y copia el comando. Necesitamos programar esto... ¿pero cómo?

Con el Programador de Symfony, ¡por supuesto! Abre src/Scheduler/MainSchedule.php y añade una nueva tarea con

->add(RecurringMessage::cron()) . Utiliza #midnightpara que se ejecute diariamente entre medianoche y las 3 de la madrugada. Añade

new RunCommandMessage()y pega el comando. Añade la opción --exclude-schedules :

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... lines 23 - 24

25

26

27

28

29

 // ... lines 30 - 34

35

36

37

Esto purgará los mensajes con más de 30 días de antigüedad, excepto los mensajes activados por una programación. Esto es importante porque

tus tareas programadas pueden ejecutarse una vez al mes o incluso una vez al año. Esto te permite mantener un historial de ellas

independientemente de su frecuencia.

Purgar el Historial de Programaciones

Sin embargo, debemos limpiarlos. Así que, volviendo a los documentos, copia un segundo comando: messenger:monitor:schedule:purge . Y

en la programación, añádelo con ->add(RecurringMessage::cron('#midnight', new RunCommandMessage()))y pégalo:

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... lines 23 - 29

30

31

32

33

34

35

36

37

Esto purgará el historial de mensajes programados omitidos por el comando anterior, pero conservará las 10 últimas ejecuciones de cada uno.

Asegurémonos de que estas tareas se han añadido a nuestra programación. De vuelta en el navegador, haz clic en "Programar" y aquí están:

nuestras dos nuevas tareas.

Para la tarea que ejecutamos manualmente antes, podemos ver el resumen de la última ejecución, los detalles e incluso su historial.

Muy bien, amigos Esto es un rápido repaso a zenstruck/messenger-monitor-bundle . Echa un vistazo a los docs para obtener más

información sobre todas sus funciones.

hasta la próxima, ¡feliz monitorización!

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->add(RecurringMessage::cron(

 '#midnight',

 new RunCommandMessage('messenger:monitor:purge --exclude-schedules'),

)

)

 ;

 }

}

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->add(RecurringMessage::cron(

 '#midnight',

 new RunCommandMessage('messenger:monitor:schedule:purge'),

)

)

 ;

 }

}

https://github.com/zenstruck/messenger-monitor-bundle

With <3 from SymfonyCasts

