Netgen Layouts: Construyendo
paginas con Symfony

Chapter 1: jHola Configuracion de Layouts+!

jHola amigos! Me alegro mucho de que estéis aqui conmigo, porque este tutorial trata de algo
divertido, genial y bastante poderoso. No, no se trata de un felino enmascarado que lucha
contra el crimen y que tiene superpoderes, aunque eso seria genial. Este tutorial trata sobre el

paquete Netgen Layouts.

¢, Qué es Layouts?

Esta biblioteca existe desde hace afnos, pero hace poco que la he probado. Layouts es,
sencillamente, una forma de tomar cualquier aplicacion Symfony existente y afadir la
capacidad de reorganizar dinamicamente la organizacién de tus paginas sobre la marcha a
través de una seccion de administracion... incluyendo la adicion de nuevo contenido dinamico.
Es una mezcla muy interesante de una aplicacion Symfony normal con controladores y
plantillas Twig... ademas de funciones de gestion de contenidos que puedes activar pagina por

pagina. A mi me gusta especialmente el enfoque de la opcion

¢ Quién necesita disefios?

¢ Por qué te tomarias la molestia de usar Layouts en tu aplicacion Symfony? Bueno, no todos
los proyectos lo necesitan. Pero si un usuario administrador necesita poder hacer cambios en la
organizacion de tu sitio y su contenido, entonces esto es para ti. Esto incluye poder afadir y
cambiar colecciones de elementos -como productos destacados- justo en el centro de una
pagina existente, reorganizar el contenido de una plantilla Twig mas arriba o0 mas abajo en la
pagina, anadir un contenido personalizable completamente nuevo a una pagina o crear paginas
de destino temporales y permitir que todo esto lo hagan los usuarios normales. Puedes
aprovechar Layouts para una sola pagina de tu sitio, dejando que todo lo demas sea una
aplicacién normal de Symfony, o todas las paginas de tu sitio pueden utilizarlo. Como he dicho,

puedes optar por los Layouts como mejor te parezca.

Configuracion del proyecto

Podria seguir y seguir, pero probablemente sea mejor ver la magia de Layouts en accion. Es
super divertido jugar con él, asi que definitivamente deberias descargar el codigo del curso
desde esta pagina y codificar junto a mi. Cuando descomprimas el archivo, encontraras un
directoriostart/ con el mismo cédigo que ves aqui. Abre este archivo README .md para ver
todos los detalles de la configuracion. Yo ya he ido a mi terminal, he instalado mis activos Node

mediante

yarn install

y he ejecutado:

yarn watch

para construir mis archivos CSS y JS. Pero todo eso es solo para que nuestra aplicacion y este
tutorial sean mas realistas. Layouts no requiere que usemos Encore y no se mete con nuestro
CSS y JS en absoluto.

De todos modos, el ultimo paso en el README es abrir otra pestana del terminal y ejecutar

symfony serve -d

para iniciar un servidor web en https://127.0.0.1:8000 - Voy a hacer trampas y hacer clic en eso.
Y... hola nuevo proyecto paralelo: jes Bark & Bake! Escucha, los perros estan bastante
cansados de nuestros perezosos intentos de cocina canina. ¢, Problemas crujientes? No,
gracias. Asi que hemos construido este sitio para inspirar a la gente a ser los mejores chefs que

puedan ser... para sus perros.

Se trata de una aplicacion Symfony bastante tradicional con algunos controladores y algunas
plantillas Twig. También tiene dos entidades: Una entidad User para la seguridad, y una
entidad Recipe. En el sitio, tenemos una pagina de inicio que muestra las ultimas y mejores
recetas, una seccion de recetas y la posibilidad de abrir una receta especifica, para que
podamos seguirla en la cocina. Eso es todo. Esto de las habilidades no esta implementado en

absoluto todavia.

https://127.0.0.1:8000/

Asi que, aparte de poder editar los detalles de cada receta a través de un area de
administracion, jeste es un sitio estatico! jEs hora de cambiar eso! Pronto podremos tomar esta
pagina de inicio -que esta escrita mediante un controlador y una plantilla Symfony normales...
como puedes ver aqui- y utilizar disefos para insertar contenido y reorganizar cosas de forma

dinamica

Instalar los layouts

Asi que vamos a instalar Layouts. Busca tu terminal y ejecuta:

composer require netgen/layouts-standard

Esto descargara varios paquetes, incluyendo un par de bundles nuevos. Cuando termine,

ejecuta

git status

para ver que también nos ha proporcionado dos nuevos archivos de rutas, que anaden algunas

rutas de administracién que vamos a ver en unos minutos.

Ejecuta las migraciones

Layouts también requiere algunas tablas adicionales de la base de datos donde se almacena la
informacion sobre los disefios que crearemos, asi como cualquier contenido personalizado que
vayamos a poner en ellos. Veremos todo eso en la seccion de administracion de Disefios en un
minuto. Para anadir las tablas necesarias, desplazate hacia arriba y copia esta ingeniosa linea

doctrine:migrations:migrate.

Esto es genial. Los paquetes de layouts vienen con migraciones... y esto las ejecuta. Pega este
comando, pero si utilizas la configuracién de la base de datos de Docker que describimos en el
LEEME - yo lo hago - entonces modifica esto para que empiece consymfony console para

que pueda inyectar las variables de entorno de Docker que apuntan a nuestra base de datos:

symfony console doctrine:migrations:migrate --configuration=vendor/netgen/layouts-core,

Y... jperfecto! Una advertencia es que estas migraciones estan escritas especificamente para
MySQL. Por ahora, Layouts s6lo admite MySQL.

Ignorar las tablas personalizadas

En su mayor parte, Layouts va a gestionar por completo todas las tablas que acabamos de
afadir: no necesitamos hacer nada con ellas. Pero ahora que existen en nuestra base de
datos, si anadiéramos una nueva entidad y generaramos una migracion para ella... la migracion

intentaria eliminar todas las tablas de Netgen Layouts. jObserva! Ejecuta:

symfony console doctrine:schema:update --dump-sql --complete

Esto imita la generacion de una migracion, y... jsi! Quiere soltar todas las tablas de Disefios.
Para solucionarlo, entra en config/packages/doctrine.yaml y, endbal, afiade
schema_filter, y pasa una expresion regular... que puedes copiar de la documentacion de

Layouts:

config/packages/doctrine.yaml

1 doctrine:

2 dbal:

T // ... lines 3 - 7

8 schema_filter: ~"(?!nglayouts_)~
T // ... lines 9 - 44

iPerfecto! Con esto, si volvemos a ejecutar el comando doctrine:schema:update de nuevo...

symfony console doctrine:schema:update --dump-sql --complete

Esta limpio, excepto por doctrine_migration_versions. Pero, no te preocupes: el
comandomake:migration es lo suficientemente inteligente como para no dejar caer su propia
tabla.

Bien, Netgen Layouts esta instalado y tiene las tablas de la base de datos que necesita. Si
volvemos a actualizar nuestro sitio ahora... jfelicidades! No ha cambiado absolutamente nada,
aunque tenemos un bonito icono de la barra de herramientas de depuracidén web aqui abajo del

que hablaremos mas adelante.

Esto, de nuevo, es una de las grandes cosas de Layouts. Al instalarlo no se apodera de tu

aplicacién. Layouts no se utiliza en absoluto para representar esta pagina.

A continuacién, vamos a sumergirnos en el area de administracion de Layouts para crear

nuestro primer disefio. Luego, veremos como interactiua con las paginas reales de nuestro sitio.

Chapter 2: Crear y mapear disenos

Bien, veamos de qué se trata Layouts. En este capitulo, crearemos y utilizaremos, paso a paso,

un "diseno", aprendiendo como funciona exactamente la magia de los Disefios.

Para comprobar la seccidn de administracion de los Disefios, dirigete a /nglayouts/admin y
encontraras... jun formulario de acceso! El formulario de inicio de sesion no tiene nada que ver
con los Layouts... es que el area de administracion de los Layouts requiere que estés
conectado... y ya he anadido un formulario de inicio de sesion a nuestro sitio. jIncluso hay un

usuario en la base de datos! Inicia sesién condoggo@barkbite.com, contrasefia woof.

El rol de seguridad necesario para el area de administracion

Y cuando lo enviamos... jacceso denegado! No te preocupes: haz clic abajo en el icono de
seguridad de la barra de herramientas de la web... y ve a "Decision de acceso". Si: nos han
denegado el acceso porque buscaba un rol lamado ROLE_NGLAYOUTS_ADMIN. Para acceder al

area de administracion de los disenos, necesitamos tener este rol.

La forma mas sencilla de afadirlo es ir a config/packages/security.yaml. El usuario con el
gue estamos conectados ahora mismo tiene ROLE_ADMIN. Por lo tanto, en role_hierarchy

también le damos a nuestro usuario ROLE_NGLAYOUTS_ADMIN:

config/packages/security.yaml

1 security:

T // ... lines 2 - 6

7 role_hierarchy:

8 ROLE_ADMIN: [ROLE_USER, ROLE_NGLAYOUTS_ ADMIN]
T // ... lines 9 - 56

Creando nuestro primer diseio

Y ahora si volvemos a hacer clic, jtachan! jBienvenido a la seccion de administracion de
layouts! Para entender lo que hace Layouts... lo mejor es verlo en accion. Empieza en esta

seccion de Disefos... y haz clic para crear un nuevo disefio. Esto nos muestra unos seis tipos

de disefio diferentes entre los que podemos elegir. Como veras, son mucho menos importantes
de lo que puede parecer al principio, porque, una vez que estas en una disposicion, puedes
hacer realmente lo que quieras, incluso hacer flotar cosas a izquierda y derecha. Yo suelo elegir
la "Disposicion 2". Llamalo "Disefio de la pagina de inicio" porque pienso utilizarlo en nuestra

pagina de inicio.

Y... jbienvenido al editor de disefio! Recorrido rapido: estos elementos del lado izquierdo se
llaman "bloques", y hay muchos tipos diferentes, desde simples bloques de titulo a mapas de
Google... hasta cosas mas complejas como listas y cuadriculas en las que puedes representar
colecciones dinamicas de cosas, como recetas destacadas. Lo principal que "hacemos" en esta

pagina es elegir un bloque de la izquierda... y arrastrarlo a una de las "zonas" del centro.

Colocar los blogues en el disefio

Coge un bloque "Titulo" y arrastralo a algun lugar de la pagina... luego dale algo de texto.

jGenial!

Es un comienzo modesto, pero, jbastante bueno! En la parte superior derecha, pulsa "Publicar

diseno".

Y ahora que tenemos este nuevo diseno, abre una segunda pestafa y ve a la pagina de inicio

para descubrir que... jno ha cambiado absolutamente nada! Deja que reorganice mis pestafias.

Mapeo de un disefio

De todos modos, nada ha cambiado porque, una vez que tienes una disposicion, necesitas
asignarla a una pagina o conjunto de paginas especificas. Ese es el trabajo de la seccion de
mapeo de disenos. Realmente son las dos unicas secciones importantes en el area de

administracion.

Aqui, aflade un nuevo mapeo y luego ve a Detalles. Hay varias formas de asignar un disefio a
una URL especifica. Puedes utilizar, por ejemplo, la informacién de la ruta, que es un término
elegante que significa "la URL, pero sin parametros de consulta". O puedes usar un prefijo de
informacion de la ruta, como usar esta disposicion para todas las URL que empiecen por

"/productos”. O incluso puedes asignar un disefio a un nombre de ruta especifico.

Vamos a probar eso. Pulsa "Afadir objetivo". Entonces... vamos a buscar el nombre de la ruta
de nuestra pagina de inicio: src/Controller/MainController.php. Aqui esta:

app_homepage:

src/Controller/MainController.php

T // ... lines 1 - 9

10 class MainController extends AbstractController

11 {

12 #[Route('/"', name: 'app_homepage')]

13 public function homepage(RecipeRepository $recipeRepository): Response
14 {

$ // ... lines 15 - 22

23 }

24}

Vuelve a desplazarte, pega y pulsa "Guardar objetivo".

Mas adelante hablaremos de otras formas de mapear o "activar" un disefio para las paginas,

pero la informacién de rutas y caminos es la mas sencilla y flexible. Dicen:
“Si la ruta o la URL actuales coinciden con lo que tenemos aqui, utiliza este disefio.”

Pulsa guardar cambios. Para elegir qué maquetacion va con este mapeo, pulsa "Maquetacion

de enlace" y selecciona la unica: "Disefo de la pagina de inicio".

iGenial! Ahora, cuando vayamos a la pagina de inicio, se utilizara el disefo de la pagina de
inicio. Pero... ¢ qué significa eso? jVamos a averiguarlo! Actualiza y... jtodavia no vemos

ninguna diferencia! jEs la misma pagina estatica de Symfony!

Ampliando el disefio base dinamico

Ah, eso es porque nos hemos saltado un paso importante de la instalacion. jCulpa mia! Ve a
abrir la plantilla de esta pagina: templates/main/homepage.html.twig. Ahora mismo,

estamos ampliando base.html.twig:

templates/main/homepage.html. twig

1 {% extends 'base.html.twig' %}
2
$ // ... lines 3 - 60

Y esa plantilla, como es habitual, tiene un bloque llamado body en el centro:

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

T // ... lines 3 - 16

17 <body>

T // ... lines 18 - 46
47 {% block body %}{% endblock %}
$ // ... lines 48 - 60
61 </body>
62 </html>

Asi que es una configuracion super tradicional.

Ahora, cambia el extends por una variable dinamica llamada nglayouts.layoutTemplate:

templates/main/homepage.html. twig

1 {% extends nglayouts.layoutTemplate %}
$ // ... lines 2 - 60

Configurar el disefio base

Prueba la pagina de nuevo. jError! jEso es un progreso! Dice:

“Diseno base de la pagina, no especificado. Para renderizar la pagina con Layouts,

especifica el disefio base de la pagina con esta configuracion.”

Todo esto tendra mas sentido dentro de un minuto. Lo que quiere que hagamos es
abrirconfig/packages/ y crear un nuevo archivo -que puede llamarse como sea- pero
llamémoslo netgen_layouts.yaml. Dentro, anade netgen_layouts vy, debajo,pagelayout

ajustado a nuestro base.html.twig:

config/packages/netgen layouts.yaml

1 netgen_layouts:
2 pagelayout: 'base.html.twig'

Te explicaré todo esto en un minuto. Si refrescamos ahora... jeh, el mismo error! Es posible que
Symfony no haya visto mi nuevo archivo de configuracion... asi que déjame borrar la caché

para estar seguro:

php ./bin/console cache:clear

Y ahora... jsi! jFunciona! Excepto que... jsigue siendo la misma pagina estatica! Pero, por
primera vez, abajo en la barra de herramientas de depuracion de la web, muestra que se esta
utilizando el "Disefio de la pagina de inicio". Asi que se ha dado cuenta de que el disefio debe

ser utilizado... sélo que no parece estar renderizandolo.

Renderizar el blogue de disefio

Para solucionarlo, tenemos que hacer una ultima cosa... y luego retrocederemos para explicar
lo que esta pasando y lo genial que es. En base.html.twig, alrededor de

{% block body %}, afiade {% block layout %}... luego después de {% endblock %}:

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

$ // ... lines 3 - 16

17 <body>

$ // ... lines 18 - 46
47 {% block layout %}
48 {% block body %}{% endblock %}
49 {% endblock %}

$ // ... lines 50 - 62
63 </body>
64 </html>

Actualiza una vez mas. Y... jguau! jNuestra pagina ha desaparecido! Vale, todavia tenemos el
nav y el pie de pagina... que vienen de arriba y de abajo de los bloques en base.html.twig,
pero el contenido real de nuestra pagina ha desaparecido y ha sido sustituido por el bloque de

titulo dinamico ¢ Qué magia negra es ésta?

La magia de la herencia de plantillas de disefio

En primer lugar, antes de explicarlo, permiteme decir que hay formas mucho mas rapidas de
empezar con Netgen Layouts: tienen proyectos de inicio para aplicaciones normales de

Symfony, aplicaciones de Sylius y aplicaciones de Ibexa CMS. Pero hemos hecho todo este

trabajo de configuracion manualmente a propdsito... porque realmente quiero que entiendas

cémo funcionan los Layouts: es sorprendentemente sencillo.

En primer lugar, nuestra pagina sigue llegando a nuestra ruta normal - app_homepage - y sigue
ejecutando nuestro controlador normal y sigue renderizando nuestra plantilla normal. No hay

nada de magia ahi.

Pero entonces, extendemos nglayouts.layoutTemplate. ;A qué apunta eso? Si no hay
ningun disefo asignado a una pagina concreta, nglayouts.layoutTemplate resolvera a

base.html.twig. Eso es gracias a la configuracion que hemos anadido aqui:

config/packages/netgen_layouts.yaml

1 netgen_layouts:
2 pagelayout: 'base.html.twig'

Pero si Layouts encuentra una asignacion de disefo para esta pagina,
entoncesnglayouts.layoutTemplate resuelve a una plantilla de Layouts del nucleo. En este
caso, si pulsas Shift+Shift, se llamara layout2.html.twig... ya que hemos seleccionado

"Layout 2".

Esto renderiza el disefio dinamico a través de estas etiquetas nglayouts_render_zone: cada

una de ellas se refiere a una seccion diferente -o "zona"- dentro de nuestro diseno.

En cualquier caso, lo realmente importante es que convierte el disefio en un bloque Twig
llamado layout . A continuacion, extiende nglLayouts.pagelLayoutTemplate, que resuelve a

nuestro base.html.twig.

El resultado final es que nuestra pagina se renderiza con total normalidad y sigue
extendiendobase.html.twig... pero se ha afadido un bloque llamado layout que contiene el

contenido del disefio dinamico.

Por eso no vimos ningun cambio en la pagina al principio. Hasta que no incluimos
{% block layout %} en base.html.twig, el disefio se estaba cargando... sélo que no lo

estdbamos mostrando en ningun sitio.

La conclusion es la siguiente: si estas en una pagina que no esta maquetada, todo es
exactamente igual que siempre. Pero si estas en una pagina que se mapea a un disefio,
simplemente significa que ahora tienes un bloque llamado layout cuyo contenido es igual a lo

que tengas dentro de ese disefo.

Extender el disefio dinamico a todas las paginas

Como he mencionado antes, no tenemos que anadir maquetas a todas las paginas de nuestro
sitio: jpodriamos anadirlas a la pagina de inicio y listo! Pero todas las paginas que queramos
que admitan disefios tienen que ampliar nglayouts.layoutTemplate. Lo bueno es que,
incluso si ampliamos esto, no ocurre hada a menos que asignemos un disefio a esta pagina.
Asi que no hay ningun inconveniente en utilizarla en todas partes. Actualizaré

rapidamente login.html.twig para utilizarlo:

templates/security/login.html.twig
1 {% extends nglayouts.layoutTemplate %}
$ // ... lines 2 - 39

luego list.html.twig y show.html.twig:

templates/recipes/list.html.twig

1 {% extends nglayouts.layoutTemplate %}
T // ... lines 2 - 33

templates/recipes/show.html. twig

1 {% extends nglayouts.layoutTemplate %}
$ // ... lines 2 - 38

jRealmente puedo moverme rapido cuando lo necesito!

De vuelta al navegador, las paginas de la lista de recetas y de la muestra de recetas siguen
teniendo el mismo aspecto... porque no se ha resuelto el disefio. Pero ahora estan preparadas

para usar maquetas, si queremos.

Ahora, por muy interesante que sea controlar dinamicamente el contenido de la pagina de
inicio, jhemos hecho demasiado! Todo nuestro antiguo contenido ha desaparecido. ¢ Es posible
mezclar el contenido dinamico con parte del contenido estatico de nuestra plantilla Twig de la
pagina de inicio? Por supuesto. Y eso es una gran parte de lo que hace que los disefios sean

especiales. Eso a continuacion.

Chapter 3: Anadir bloques Twig a tu disefno
dinamico

Acabamos de sustituir por completo nuestra pagina de inicio por un diseio dinamico. Pero, eso
no es realmente tan interesante. Lo que realmente quiero es poder utilizar mi plantilla de pagina

de inicio existente y todo este buen contenido que he preparado:

templates/main/homepage.html. twig

1 {% extends nglayouts.layoutTemplate %}

2

3 {% block body %}

4 <div class="hero-wrapper">

5 <hl class="header">Bark & Bake</h1>

6 <p class="text-center">Doggone Good Treat & Meal Recipes</p>
7 <div class="d-flex justify-content-center">

8 <img src="{{ asset('images/dog-bone.png') }}" width="auto"

height="50" alt="dog bone icon">

9 </div>
10 </div>

$ // ... lines 11 - 58

59 {% endblock %}

pero luego retocarla afiadiendo pequefios fragmentos de contenido dinamico aqui y alla... o
incluso reorganizar las cosas. Para ello, en el disefio, debajo de los bloques, en la parte inferior,
afiade uno especial llamado "Bloque Twig"... y pongamoslo justo debajo del titulo. Fijate en que
puedes poner tantos bloques como quieras dentro de una misma zona. En realidad, estas

zonas no acaban siendo tan importantes.

De todas formas, cuando hagas clic en un bloque, en la parte derecha veras las opciones de
ese bloque, que tiene una importante llamada "Nombre del bloque Twig". Introduce body para

que coincida con el {% block body %} que tenemos en la plantilla:

templates/main/homepage.html. twig

1 {% extends nglayouts.layoutTemplate %}

2
3 {% block body %}
T // ... lines 4 - 58

59 {% endblock %}

Vale, dale a "publicar y continuar editando"... luego ve a actualizar la pagina de inicio. jSanto
hombre murciélago del contenido! Nuestro contenido Twig vive ahora dentro de esta pagina
dinamica. jEs increible! Y todo sigue funcionando: incluso el elegante "componente vivo" del

centro de la pagina.

Anadir mas bloques a tu plantilla

Vale, esto es genial... pero sigue siendo sélo un montén de contenido dinamico en la parte
superior... y luego contenido de plantilla Twig en la parte inferior: realmente no podemos

mezclar nada en el centro de nuestra pagina.

A menos que... afadamos mas bloques a nuestra plantilla. Por ejemplo, mantener el

block body ... sélo para que la pagina siga funcionando aunque no mapeemos un disefo...
pero luego afadir un{% block hero %} alrededor de la seccidn superior, un bloque llamado,
qué tal, latest_recipes,{% endblock %}, otro llamado subscribe newsletter,

{% endblock %} y uno final lamado featured_skills, {% endblock %}:

templates/main/homepage.html. twig

T // ... Llines 1 - 2

3 {% block body %}

4

5 {% block hero %}

6 <div class="hero-wrapper">

T // ... lines 7 - 11

12 </div>

13 {% endblock %}

14

15 {% block latest recipes %}

16 <div class="container">

$ // ... lines 17 - 31

32 </div>

33 {% endblock %}

34

35 {% block subscribe_newsletter %}
36 <div class="text-center pt-4 pb-5 my-4" style="background-color: #fdedf0;">
$ // ... lines 37 - 40
41 </div>
42 {% endblock %}
43
44 {% block featured skills %}
45 <div class="container py-4 my-5">
T // ... lines 46 - 65
66 </div>
67 {% endblock %}
68
69 {% endblock %}

Si nos detuviéramos ahora, esto no supondria ninguna diferencia para nuestra app: seguimos
renderizando el bloque body aqui abajo... que incluye todos esos. Pero acabamos de darnos

un montén de poder nuevo.

Compruébalo: cambia el nombre del bloque body por hero. Y luego vamos a anadir unos
cuantos bloques Twig mas. Renderiza latest_recipes para éste. Por cierto, las "etiquetas"
de los bloques son sélo para nosotros en el area de administracion: sélo para mayor claridad.

Si introduzco "Ultimas recetas", aparecera encima del bloque. Totalmente opcional.

Anade dos bloques mas: uno que muestre subscribe_newsletter vy, por ultimo, uno para

featured_skills. Luego, aqui arriba, voy a eliminar por ahora el bloque title.

Por cierto, estoy utilizando la palabra "bloque" para referirme a dos cosas distintas a la vez. Los

bloques son las "cosas" que afiadimos a nuestro disefio, como un titulo, un mapa de Google o

una lista de elementos. Pero los bloques también se refieren a los bloques Twig de nuestras
plantillas. Y, por supuesto, uno de los tipos de bloques que podemos anadir... €s uno que

renderiza... bloques Twig. Bloques Twig. Un poco confuso, pero no puede ser peor.

De todos modos, di "Publicar y continuar editando"... y luego ve a actualizar el frontend. Y...
igenial! Nuestra pagina funciona. Lo sé, tiene exactamente el mismo aspecto que hace un

minuto, pero ahora esta siendo renderizada por layouts... jy podemos reorganizar las piezas!

Observa: Moveré el subscribe_newsletter hacia abajo, le daré a "Publicar y continuar
editando", actualizaré y... jpoom! Esa parte estatica de la pagina se ha movido magicamente a

la parte inferior. Es genial.

O podriamos volver a subirla... y luego afadir algun contenido dinamico, como texto, entre uno

de los otros bloques.

A continuacién, vamos a ser aun mas agresivos y flexibles permitiendo que la navegacion

superior y el pie de pagina inferior sean opcionales, pero faciles de afadir, dentro del Disefio.

Chapter 4: Disefios compartidos

Abre base.html.twig y mueve el {% block layout %} para que esté alrededor de todo.
Asi, pon el inicio justo dentro de la etiqueta body ... y el final justo antes de la etiqueta de

cierrebody :

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

T /7 ... lines 3 - 16

17 <body>

18 {% block layout %}

19 <nav class="navbar navbar-expand-1g navbar-light bg-light">
$ // ... lines 20 - 45
46 </nav>
47
438 {% block body %}{% endblock %}
49

50 <div class="container mt-5">

1 // ... lines 51 - 60

61 </div>

62 {% endblock %}

63 </body>

64 </html>

Si ahora actualizamos la pagina de inicio... jse destruye! La parte superior nav y footer han
desaparecido. s Por qué he hecho esto? jPorque me encanta el caos! Es broma, lo he hecho

porque nos da el poder, dentro de los layouts, de disefiar paginas totalmente personalizadas:

incluso paginas sin los tradicionales navigation y footer, tal vez como una pagina de

aterrizaje temporal para una promocion.

Pero seamos sinceros, el 99% de las veces, querremos los nav y footer. No hay problema,
vuelve a base.html.twig. Recuerda: afiadir bloques nos da mas flexibilidad. Asi que, encima
de la navegacion, afiade un nuevo bloque llamado navigation, con {% endblock %}

después. Luego, aqui abajo, otro llamado footer... y{% endblock %}:

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

1 // ... lines 3 - 16

17 <body>

18 {% block layout %}

19 {% block navigation %}

20 <nav class="navbar navbar-expand-1lg navbar-light bg-light">
T // ... lines 21 - 46
47 </nav>
48 {% endblock %}
49

50 {% block body %}{% endblock %}
51

52 {% block footer %}

53 <div class="container mt-5">

$ // ... lines 54 - 63

64 </div>

65 {% endblock %}

66 {% endblock %}

67 </body>

68 </html>

Apuesto a que sabes lo que voy a hacer a continuacion. En el administrador del disefo, ahora
podemos anadir un bloque Twig en la parte superior que muestre navigation... y otro aqui
abajo en la parte inferior. No es necesario que esté en esta ultima zona... pero tiene sentido alli.

Renderiza footer.

iVamos a probarlo! Pulsa "Publicar y continuar editando" y... actualiza. jYa estamos de vuelta!

Crear una segunda maqueta

Vamos a crear un segundo disefio, esta vez para la pagina /recipes. Si miras en
RecipeController, veras que ya he hecho todo el trabajo para consultar las recetas y

pasarlas a esta plantilla:

src/Controller/RecipeController.php

$ // ... lines 1 - 12

13 class RecipeController extends AbstractController

14 {

15 #[Route('/recipes/{page<\d+>}"', name: 'app_recipes')]

16 public function recipes(RecipeRepository $recipeRepository, int $page = 1):
Response

17 {

18 $queryBuilder = $recipeRepository->createQueryBuilderOrderedByNewest();

19 $adapter = new QueryAdapter($queryBuilder);

20 /** @var Recipe[]|Pagerfanta $pagerfanta */

21 $pagerfanta = Pagerfanta::createForCurrentPageWithMaxPerPage($adapter,
$page, 4);

22

23 return $this->render('recipes/list.html.twig', [

24 ‘pager' => $pagerfanta,

25 1);

26 }

T // ... lines 27 - 34

35 %}

Y en esa plantilla, hacemos un bucle y renderizamos cada una, con paginacion:

templates/recipes/list.html.twig

T // ... lines 1 - 4
{% block body %}
<div class="hero-wrapper">

<h1>Doggone Good Recipes</hl>

</div>
// ... lines 16 - 31
32 {% endblock %}

5
6
7
8 <p>Recipes your pup will lovel</p>
9
)

Y asi, definitivamente quiero incluir todo este trabajo personalizado en el nuevo disefo.

De vuelta al area de administracion, pulsaré "Publicar disefio" como una forma facil de volver a
la lista de disefios. A continuacion, pulsa en nuevo disefio, elegiré mi disefio favorito 2 y lo
llamaré "Disefo de la lista de recetas". Para empezar, anade un nuevo bloque llamado "Vista

completa"... y arrastralo a cualquier parte de la pagina, jvaya! Ya esta.

¢ Qué es esta "Vista completa"? No es nada especial, de hecho, jes un poco redundante! No es
mas que un "bloque Twig" que renderiza el bloque llamado body. Asi que, si, podriamos haber

hecho esto facilmente utilizando el bloque Twig normal y escribiendo body .

Publica este disefio... y luego ve a "Mapeos de disefio". Aflade una nueva... y esta vez la
enlazaré primero... a "Disefno de la lista de recetas". Luego haz clic en "Detalles". Como la
ultima vez, podriamos mapear esto a través del nombre de la ruta. Pero para ver algo diferente,
utiliza "Informacién de la ruta", que, de nuevo, es sélo una palabra elegante para la URL, pero
sin ningun parametro de consulta. Haz que coincida con /recipes... "Guarda los cambios" y...

jbien!

Cuando probamos la pagina... jse ve genial! Excepto que, jme olvidé del nav y del pie de
pagina! Afadir esos dos bloques al "Disefo de la lista de recetas" es facil. Pero ¢ qué pasa si,
mas adelante, decidimos que cada pagina debe mostrar tanto el bloque de navegacién en la
parte superior como un banner dinamico, quiza para una venta que estemos realizando? Si eso

ocurriera, tendriamos que editar cada disefo para anadir manualmente ese nuevo banner.

Disenos compartidos

Afortunadamente, hay una forma mejor de manejar elementos de disefio repetidos como éste.

Pulsa "Descartar" para volver a la lista de disefios, y luego haz clic en "Disefios compartidos" y
"Nuevo disefio compartido". Como siempre, el tipo de disefio no importa mucho, asi que usaré

el normal... y lo llamaré "Disefio de navegacion y pie de pagina".

Este no va a ser un disefio real que esté vinculado a ninguna pagina. No, soélo va a ser una
maqueta de la que robaremos piezas. En la zona superior, crea un bloque de Twig que se
muestre en navigation... e incluso lo etiquetaré como "Top Nav" para que quede mas claro. A
continuacion, en cualquier otra zona -puedes ponerla en la parte inferior, pero no es necesario-,

afiade otro bloque Twig que renderice footer y se etiquete como Pie de pagina.

jGenial! Pulsa "Publicar disefo". Ahora tenemos un disefio compartido. De nuevo, no estan
pensados para ser asignados a paginas: estan pensados para que los utilicemos en otros

disefnos reales.

Compruébalo: edita el "Disefno de la lista de recetas". En la parte inferior izquierda de la
pantalla, escondido detras de la barra de herramientas de depuracion web -la cerraré
temporalmente- hay un botdn para vincular una zona con una zona de disefio compartido. Haz
clic en él y selecciona la zona superior... lamada zona "Cabecera", aunque ese nombre no es

importante.

Ahora, podemos encontrar una zona compartida desde un disefio compartido... y s6lo tenemos
una. Pulsa "Seleccionar zona" y... jya esta! La zona superior de nuestro disefio sera ahora igual
al bloque o bloques que haya en la zona superior de ese disefio compartido. Si afiadimos mas

cosas a esa zona en el disefio compartido, apareceran automaticamente aqui.

Hazlo una vez mas: selecciona la ultima zona para que el pie de pagina aparezca

definitivamente en la parte inferior, selecciona la zona compartida y... jlisto!

Publica eso, muévete, actualiza y... jla pagina completa esta de vuelta! Repitamos rapidamente
esto para la "Disposicion de la pagina de inicio". Pero esto es complicado porque pongo todos
mis bloques dentro de esta zona superior. En general, estas zonas no importan, pero en este
caso, para evitar sobrescribir todo esto, arrastraré todo excepto el bloque Twig de navegacién

hacia abajo. Podemos arreglar el orden mas tarde.

Y ahora, configura la zona superior para que utilice la del disefio compartido. Si Reemplaza lo
que teniamos alli antes. A continuacién, enlaza también la zona inferior con el disefio

compartido.

jPerfecto! Comprobemos el orden de nuestros bloques... que es lo bueno de los disefios. Si no
me gusta el orden de lo que hay en mi pagina, jsiempre puedo cambiarlo! Eso es mejor.

Publica el disefio, vuelve a la pagina de inicio en el frontend y... jbien!

Siguiente: hagamos que nuestra pagina de la lista de recetas sea mas flexible permitiendo que
esta zona superior de hlse construya y personalice desde dentro de los disefos... en lugar de

que esté codificada en la plantilla.

Chapter 5: Anadir mas bloques personalizados

Vamos a trabajar mas en este Disefo de Lista de Recetas mas adelante. Pero, vamos a hacer
una cosa mas ahora. Editar este disefio. Quiero dar a nuestros usuarios administradores la
flexibilidad de cambiar este titulo. jGenial! Ahadamos un nuevo bloque de titulo justo encima...

e introduzcamos algo de texto.

Pulsa "Publicar y continuar editando"... y luego ve al frontend. Lo que intento hacer es replicar
este titulo, o area "héroe", para poder eliminarlo de nuestra plantilla Twig. Pero cuando

refrescamos, todavia no se ve bien.

Ve y mira esa plantilla. Bien: para replicar esto, necesitamos una etiqueta hl envuelta en un div

hero-wrapper:

templates/recipes/list.html.twig

T // ... lines 1 - 4
{% block body %}
<div class="hero-wrapper">
<h1>Doggone Good Recipes</hl>

5
6
7
8 <p>Recipes your pup will lovel</p>
9 </div>

)

// ... Lines 16 - 31
32 {% endblock %}

Ahora mismo, Layouts esta simplemente renderizando un h1l.Y, por cierto, puedes, en las

opciones del bloque de titulo, elegir entre hl, h2, 0 h3. hl es lo que necesitamos esta vez.

Anadir una columna Div envolvente

Entonces: ;coémo podemos envolver esto en un div y darle una clase hero-wrapper? La
respuesta: ainadiendo un ingenioso bloque "columna"... y luego moviendo el titulo a esa
columna. Genial, jverdad? Por ultimo, al hacer clic en la columna, puedes anadir la clase que

quieras. Afdade hero-wrapper.

iVamos a probarlo! Pulsa "Publicar y continuar editando", actualiza el frontend y... jmucho

mejor! ; Qué pasa con ese texto? Copialo, afiade un nuevo bloque de "texto" justo debajo de

nuestro "titulo" y... pega. Publica y continua editando de nuevo... prueba de nuevo el frontend

y... imira eso! jUna réplica perfecta!

Para celebrarlo, en la plantilla, podemos eliminar esa seccién por completo:

templates/recipes/list.html.twig

1 // ... lines 1 - 5

6 <div class="hero-wrapper">

7 <h1>Doggone Good Recipes</hl>

8 <p>Recipes your pup will lovel</p>
9 </div>

$ // ... lines 10 - 33

El resultado final es el mismo que antes... excepto que los usuarios administradores tienen

ahora la posibilidad de cambiar el texto.

¢ CSS personalizado en las plantillas o tipo de bloque
personalizado prefabricado?

Sin embargo, probablemente te hayas dado cuenta de que esto me obligd a ser un poco
técnico: tuve que conocer la clase CSS que necesitaba la columna. Si los usuarios
administradores que disefian tus disefios son un poco técnicos, entonces esto podria no ser un
problema. Pero si tus editores son menos técnicos, podrias, en cambio, crear un tipo de bloque
personalizado -como un bloque de héroe- en el que el usuario sélo tenga que escribir el texto y
tu lo renderices todo por él. No vamos a crear bloques personalizados en este tutorial... pero
eso es sobre todo porque, al final del tutorial, sabras todo lo que necesitas para seguir los

documentos para ello.

La barra de herramientas de depuracion de Layouts Web

Muy bien, de vuelta en el front-end, Layouts viene con su propio icono de la barra de
herramientas de depuracién web. Y si haces clic en esto, es bastante genial. Vamos a usar esto
un monton de veces. Te muestra el disefio que se ha resuelto e incluso la razon por la que se

ha elegido.

Pero lo realmente util es la seccion "Bloques renderizados". Esto nos muestra todos los
bloques de disefio que se renderizaron para construir esta pagina. Puedes ver que hay uno

llamado "Bloque Twig" para la navegacion superior, una "Columna", luego el bloque "Titulo",

"Texto", "Vista completa" y finalmente el ultimo bloque "Twig" para el pie de pagina. Esta es una
gran manera de ver todos los diferentes bloques que se estan renderizando, asi como la
plantilla que hay detras de cada uno. Mas adelante, hablaremos de cédmo anular esas plantillas,

para poder personalizar su aspecto.

Vinculacion con el administrador de disenos

De vuelta al administrador de Disefios, publica el disefio para volver a la pagina principal. Si
vas a /admin, veras que nuestra aplicacion ya tiene EasyAdmin instalado. Vamos a afadir un
enlace desde el menu de aqui a Disefios para hacer la vida mas facil.

Abre src/Controller/Admin/DashboardController.php... y encuentra
configureMenuItems().Anade otro con yield MenuItem::1linkToUrl(), llamalo "Layouts"
y dale unos iconos: fas fa-list. Para la url, utiliza this->generateUrl() y pasa el nombre

de la ruta, que resulta ser nglayouts _admin_layouts_ index:

src/Controller/Admin/DashboardController.php

T // ... lines 1 - 12

13 class DashboardController extends AbstractDashboardController

14 {

T // ... lines 15 - 34

35 public function configureMenuItems(): iterable

36 {

T // ... lines 37 - 38

39 yield MenulItem::1linkToUrl('Layouts', 'fas fa-list', $this-
>generateUrl('nglayouts _admin_layouts index'));

40 }

41 '}

jPerfecto! Es un pequeno detalle, pero ahora, cuando estemos en /admin, podemos hacer clic

en "Disenos" para saltar directamente alli.

Bien, jcomprobacién de estado! Podemos representar los bloques Twig y mezclar titulos, texto,
HTML, Google Maps y otros bloques donde queramos. Cuantos mas bloques Twig tengamos

en la plantilla, mas flexibilidad tendremos.

¢ Pero qué pasa con la posibilidad de representar una coleccion de recetas de nuestra base de
datos, como las "Ultimas recetas" que tenemos en la pagina de inicio? Esa es una pieza

importante de los disefios: asi que empecemos a sumergirnos en ella a continuacion.

Chapter 6: Anadir listas: Tipo de valor

Tenemos una entidad Recipe vy, en el frontend, una pagina que enumera las recetas. También
hemos visto lo facil que es crear un diseno, que hace que partes de esta pagina sean

configurables al instante.

¢ Anadir listas de contenido existente a traves de maquetas?

Pero ahora, viendo la pagina de inicio, me pregunto si podemos afadir bloques mas complejos,
mas alla del simple texto. ¢ Podriamos, por ejemplo, afadir un bloque que muestre una lista de

recetas? ;Algo similar a lo que tenemos aqui ahora... excepto que en lugar de anadirlo a través
de un bloque Twig, se afiade completamente a través de disefios por un usuario administrador?
Y, para ir mas lejos, ¢ podriamos incluso dejar que el usuario administrador eligiera qué recetas

mostrar aqui?

j Totalmente! Si la primera gran idea de Layouts es permitir que los bloques de plantillas Twig se
reorganicen y se mezclen con contenido dinamico, entonces la segunda gran idea es permitir
que los usuarios administradores incrusten en nuestra pagina piezas de contenido existente,

como las recetas de nuestra base de datos.

¢ Coémo? Edita el diseno de la pagina de inicio. En los bloques de la izquierda, fijate en este
llamado "Rejilla". Afidadelo después de nuestro bloque Twig "Héroe". La cuadricula nos permite
afnadir elementos individuales a ella... que podrian ser cualquier cosa. Pero, jno veo la forma de

hacerlo!

Vale, sabemos que muchos bloques, como los titulos, los mapas, el markdown, etc., pueden
afnadirse a nuestras paginas en los disefios de forma inmediata, sin ningun trabajo de
configuracion adicional. Pero el propésito de algunos bloques -como el de Lista, el de
Cuadricula y el de Galeria aqui abajo (que no son mas que cuadriculas extravagantes que
tienen un comportamiento de JavaScript asociado a ellas)- es representar una coleccion de
"elementos" que se cargan desde otro lugar, como nuestra base de datos local, el CMS o
incluso tu tienda Sylius. Las "cosas" o "elementos" que podemos afiadir a estos bloques se

llaman "tipos de valores". Y... actualmente tenemos cero. Si se tratara de un proyecto de Sylius,

podriamos instalar la integracion de Sylius y Layouts y al instante podriamos seleccionar

productos. Lo mismo ocurre si utilizas Ibexa CMS.

Anfadir un tipo de valor

Este es nuestro siguiente gran objetivo: afiadir nuestra entidad Doctrine Recipe como "tipo de

valor" en los disefios para poder crear listas y cuadriculas que contengan recetas.

El primer paso para anadir un tipo de valor es informar a Layouts sobre él en un archivo de
configuracion. En config/packages/netgen_layouts.yaml, de forma muy sencilla, di
value_types, y debajo, doctrine_recipe . Este es el nombre interno del tipo de valor, y nos
referiremos a él en algunos lugares. Dale un nombre amigable para los humanos name -

Recipe -y por ahora, pon manual_items a false... y asegurate de que tiene una "s" al final:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 3

4 value types:

5 doctrine_recipe:
6 name: Recipe
7

manual_items: false

Hablaremos mas tarde de manual_items, pero es mas facil ponerlo en falsepara empezar.

Dirigete, actualiza nuestra pagina de disefios (no pasa nada por recargarla)... jy echa un
vistazo a nuestro bloque Grid! Hay un nuevo campo "Tipo de coleccién" y "Coleccion manual”
es nuestra unica opcidon ahora mismo. Entonces... parece que esto sigue sin funcionar. No

puedo cambiar esto por otra cosa... y tampoco puedo seleccionar elementos manualmente.

Consultas dinamicas vs manuales

Hay dos formas de afiadir elementos a uno de estos bloques de "coleccién". La primera es una
coleccién dinamica en la que elegimos a partir de una consulta preelaborada. Podriamos elegir
una consulta "Mas populares" que buscara las recetas mas populares o una consulta "ultimas

recetas", por poner dos ejemplos. La segunda forma de elegir elementos es manual: el usuario

administrador selecciona literalmente los que quiere de una lista.

Anadir un tipo de consulta

Vamos a empezar con el primer tipo: la coleccién dinamica. Todavia no vemos la opcion
"Colecciéon dinamica" porque primero tenemos que crear una de esas consultas prefabricadas.
Esas consultas prefabricadas se llaman query_types. Podriamos, por ejemplo, crear un tipo

de consulta para Recipe llamado "Mas popular" y otro llamado "Mas reciente".

¢, Coémo las creamos? Vuelve al archivo de configuracion, afiade query_types y debajo,
digamos, latest_recipes. Una vez mas, esto es sélo un "nombre interno". También dale un

nombre legible para los humanos name: Latest Recipes:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 8

9 query_types:

10 latest_recipes:

11 name: 'Latest Recipes'

Entonces... ;qué hacemos ahora? Si volvemos atras y refrescamos... obtenemos un error muy

bonito que nos dice qué hacer a continuacion:
“El gestor de tipos de consulta para el tipo de consulta Latest_recipes no existe.”
jEsta intentando decirnos que tenemos que construir una clase que represente este tipo de

consulta! jHagamoslo!

La clase manejadora del tipo de consulta

En el directorio src/, voy a crear un nuevo directorio Layouts/: aqui organizaremos muchas
de nuestras cosas de Layouts personalizados. A continuacion, afiade una nueva clase PHP
llamada... qué tal LatestRecipeQueryTypeHandler. Haz que esto

implemente QueryTypeHandlerInterface:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 2
3 namespace App\Layouts;
T // ... lines 4 - 5
6 use Netgen\Layouts\Collection\QueryType\QueryTypeHandlerInterface;
T // ... lines 7 - 8
9 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
10 {

T // ... lines 11 - 29
30}

Luego ve a "Generar codigo" (o0 Command+N en un Mac), y selecciona "Implementar métodos"

para afadir los cuatro que necesitamos:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 4

5 wuse Netgen\Layouts\API\Values\Collection\Query;

T // ... line 6

7 use Netgen\Layouts\Parameters\ParameterBuilderInterface;

8

9 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
10 {
11 public function buildParameters(ParameterBuilderInterface $builder): void
12 {
13 // TODO: Implement buildParameters() method.
14 }
15
16 public function getValues(Query $query, int $offset = 0, ?int $limit = null):

iterable

17 {
18 // TODO: Implement getValues() method.
19 }
20
21 public function getCount(Query $query): int
22 {
23 // TODO: Implement getCount() method.
24 }
25
26 public function isContextual(Query $query): bool
27 {
28 // TODO: Implement isContextual() method.
29 }
30}

iBien! Veamos... Dejaré buildParameters() vacio por un momento, pero volveremos a él

pronto:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 -9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

11 {

T // ... lines 12 - 15

16 public function buildParameters(ParameterBuilderInterface $builder): void
17 {

18 }

T // ... lines 19 - 40

41 %}

El método mas importante es getValues() . Aqui es donde cargaremos y devolveremos los
"articulos". Si nuestras recetas estuvieran almacenadas en una API, hariamos aqui una peticion

a la API para obtenerlas. Pero como estan en nuestra base de datos local, las consultaremos.

Para ello, ve a la parte superior de la clase, afiade un método __construct()

conprivate RecipeRepository $recipeRepository:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 4
5 use App\Repository\RecipeRepository;
$ // ... lines 6 - 9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
11 {

12 public function _ construct(private RecipeRepository $recipeRepository)
13 {
14 }
T // ... lines 15 - 40
41 }

A continuacion, baja a getValues(), return $this->recipeRepository...y utiliza un
metodo que ya he creado dentro de RecipeRepository

llamado ->createQueryBuilderOrderedByNewest (). Afiade también
->setFirstResult($offset)y ->setMaxResults($1limit) . El usuario administrador podra
elegir cuantos elementos mostrar e incluso podra saltarse algunos. Y asi, Layouts nos pasa
esos valores como $1imit y $offset... y los utilizamos en nuestra consulta. Terminamos

con->getQuery() y ->getResult():

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 -9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

11 {

T // ... lines 12 - 19

20 public function getValues(Query $query, int $offset = 0, ?int $limit = null):
iterable

21 {

22 return $this->recipeRepository->createQueryBuilderOrderedByNewest ()

23 ->setFirstResult($offset)

24 ->setMaxResults($limit)

25 ->getQuery()

26 ->getResult();

27 }

$ // ... lines 28 - 40

41 }

jPerfecto! A continuacion, para getCount(), vamos a hacer exactamente lo mismo... excepto
gue no necesitamos ->setMaxResults() ni ->setFirstResult(). En su lugar,

afnadimos ->select('COUNT(recipe.id)"'):

src/Layouts/LatestRecipeQueryTypeHandler.php

T /7 ... lines 1 - 9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
11 {

$ // ... lines 12 - 28

29 public function getCount(Query $query): int

30 {

31 return $this->recipeRepository->createQueryBuilderOrderedByNewest ()
32 ->select('COUNT(recipe.id)")

33 ->getQuery()

T // ... line 34

35 }

$ // ... lines 36 - 40

41 }

Estoy utilizando recipe porque, en RecipeRepository... si miramos el método

personalizado, utiliza recipe como alias en la consulta:

src/Repository/RecipeRepository.php

0
18
19

0

43

44
45

0
54
55

// ... lines 1 - 17

class RecipeRepository extends ServiceEntityRepository
{

// ... lines 20 - 42

public function createQueryBuilderOrderedByNewest(string $search = null):
QueryBuilder

{
$queryBuilder = $this->createQueryBuilder('recipe’)
// ... lines 46 - 53

Después, actualiza ->getResult() para que sea ->getSingleScalarResult():

src/Layouts/LatestRecipeQueryTypeHandler.php

0

10
11

0
29
30
31
32
33
34
35

0

41

// ... lines 1 - 9
class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
{
// ... lines 12 - 28
public function getCount(Query $query): int
{

return $this->recipeRepository->createQueryBuilderOrderedByNewest()
->select("COUNT(recipe.id)")
->getQuery()
->getSingleScalarResult();

// ... lines 36 - 40
}

jUf! Ha sido un poco de trabajo, pero bastante sencillo. Ah, y paraisContextual(),

return false:

src/Layouts/LatestRecipeQueryTypeHandler.php

0
10
11

0
37
38
39
40
41

// ... Llines 1 - 9
class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
{
// ... lines 12 - 36
public function isContextual(Query $query): bool
{

return false;

No lo vamos a necesitar, pero este método es bastante chulo. Si devuelve true, puedes leer la
informacion de la pagina actual para cambiar la consulta, como si estuvieras en una pagina de

"categoria" y necesitaras listar solo los productos de esa categoria.

Etiquetar la clase manejadora del tipo de consulta

De todos modos, eso es todo. jEsto es ahora un manejador de tipos de consulta funcional!
Pero si vuelves a actualizarlo... sigue sin funcionar. Nos da el mismo error. Esto se debe a que
tenemos que asociar esta clase de manejador de tipos de consulta con el tipo de consulta
latest_recipes en nuestra configuracién. Para ello, tenemos que dar una etiqueta al

servicio... y hay una forma muy interesante de hacerlo gracias a Symfony 6.1.

Sobre la clase, afiade un atributo llamado #[AutoconfigureTag()]. El nombre de la etiqueta
que necesitamos es netgen_layouts.query_ type handler: esta sacado de la
documentacion. También necesitamos pasar un array con una clave type establecida

enlatest_recipes:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 8

9 use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;

10

11 #[AutoconfigureTag('netgen_layouts.query_type_handler', ['type' =>
"latest_recipes'])]

12 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

13 {

$ // ... lines 14 - 42

43 '}

Este type debe coincidir con lo que tenemos en nuestra configuracion:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 8

9 query_types:

10 latest_recipes:
T // ... lines 11 - 12

Esto une a los dos.

Y ahora... jla pagina funciona! Si hacemos clic en nuestro bloque Grid... podemos cambiar a

"Coleccion dinamica". jEspectacular! Le doy a Aplicar y... jtodo deja de cargarse

inmediatamente!

Cuando tengas un error en la seccion de administracion, es muy probable que aparezca a
través de una llamada AJAX. A menudo, los disefios te mostraran el error en un modal. Pero si
no lo hace, no te preocupes: solo tienes que mirar aqui abajo en la barra de herramientas de

depuracion web. jSi! Tenemos un error 400.

Vamos a solucionarlo creando un convertidor de valores. Luego haremos nuestra consulta aun

mas inteligente.

Chapter 7: Convertidor de valores

En cuanto cambiamos nuestro tipo de cuadricula para utilizar una coleccion dinamica... dejé de
cargarse. El error se esconde aqui abajo en esta llamada AJAX. La mejor manera de verlo es

abrir esa URL en una nueva pestana. Ahi lo tenemos:
“El convertidor de valores para el tipo App\Entity\Recipe no existe.”

Bien, hasta ahora hemos creado un "tipo de valor" personalizado para Recipe, que no era mas
que esta configuracion, y un "tipo de consulta" personalizado que nos permite cargar una lista
de las ultimas recetas ejecutando la consulta dentro de la clase asociada. Ahora recibimos este

error del convertidor de valores.

Creacion de la clase convertidor de valores

Un convertidor de valores es realmente sencillo: es una clase que transforma el objeto
subyacente - Recipe - en un formato que los Layouts puedan entender. En ese mismo
directoriosrc/Layouts/, vamos a crear una clase RecipeValueConverter... y hacer que

implemente ValueConverterInterface:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 2
namespace App\Layouts;

use Netgen\Layouts\Item\ValueConverterInterface;

class RecipeValueConverter implements ValueConverterInterface
{

// ... Llines 9 - 42

43 '}

© 00 N o 1 MW

Ya conoces el procedimiento: ve a "Cdodigo" -> "Generar" (o Command+N en un Mac) y pulsa

"Implementar métodos" para generar los siete que necesitamos:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 6

7 class RecipeValueConverter implements ValueConverterInterface
8 {

9 public function supports(object $object): bool

10 {

11 // TODO: Implement supports() method.

12 }

13

14 public function getValueType(object $object): string
15 {

16 // TODO: Implement getValueType() method.

17 }

18

19 public function getId(object $object)

20 {

21 // TODO: Implement getId() method.

22 }

23

24 public function getRemoteld(object $object)

25 {

26 // TODO: Implement getRemoteId() method.

27 }

28

29 public function getName(object $object): string
30 {

31 // TODO: Implement getName() method.

32 }

33

34 public function getIsVisible(object $object): bool
35 {

36 // TODO: Implement getIsVisible() method.

37 }

38

39 public function getObject(object $object): object
40 {
41 // TODO: Implement getObject() method.
42 }
43 }

Lo sé, parece mucho, pero son super faciles de rellenar.

En primer lugar, para supports(), Layouts llamara a este método cada vez que tenga un
"valor" que no entienda. Queremos decirle que sabemos como convertir el $objectsi es un

instanceof Recipe :

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 4

5 use App\Entity\Recipe;

T // ... lines 6 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

10 public function supports(object $object): bool
11 {
12 return $object instanceof Recipe;
13 }

$ // ... lines 14 - 45
46 }

En segundo lugar, para getValueType(), return la clave interna de nuestro tipo de

valor:doctrine_recipe:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ // ... lines 10 - 14

15 public function getValueType(object $object): string

16 {

17 return ‘'doctrine_recipe';

18 }

T // ... lines 19 - 45
46 '}

Lo siguiente es getId() ... y literalmente vamos a return nuestro ID con$object->getId():

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ // ... lines 10 - 19

20 public function getId(object $object)

21 {

22 return $object->getId();

23 }

$ // ... lines 24 - 45
46 }

No tenemos autocompletado en esto, pero sabemos que este objeto sera un Recipe.

Para getRemoteId(), solo return $this->getId($object):

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

T // ... lines 10 - 24

25 public function getRemoteld(object $object)

26 {

27 return $this->getId($object);

28 }

T // ... Lines 29 - 45
46 '}

Este método sélo es importante si planeas utilizar la funcién de importacion en Layouts para
mover los datos, por ejemplo, entre la puesta en escena y la produccion. Si piensas hacerlo,

puedes dar a tus objetos un UUID y devolverlo aqui.

Aqui abajo, para getName(), éste sera un nombre legible para los humanos que se mostrara
en el area de administracion. Esta vez, para ayudar a mi editor, vamos a assert() que

$object instanceof Recipe:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

T // ... lines 10 - 29

30 public function getName(object $object): string
31 {

32 assert($object instanceof Recipe);

T // ... lines 33 - 34

35 }

$ // ... lines 36 - 45
46 }

Dos cosas sobre esto. Primero, sabemos que este objeto sera siempre un Recipeporque,
arriba en supports(), dijimos que es el Unico objeto que soportamos. En segundo lugar, si no
has visto la funcién assert() antes, si el $object no es uninstanceof Recipe , lanzara
una excepcion. Es una forma muy facil de decirle a tu editor -u otras herramientas como
PHPStan- que el objeto es definitivamente una instancia de Recipe...., lo que significa que

ahora obtendremos el autocompletado cuando digamosreturn $object->getName():

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ /7 ... lines 10 - 29

30 public function getName(object $object): string
31 {

32 assert($object instanceof Recipe);

33

34 return $object->getName();

35 }

$ // ... lines 36 - 45
46 }

Lo siguiente es getIsVisible(). Solo return true:

src/Layouts/RecipeValueConverter.php

$ /... lines 1 - 7

8 «class RecipeValueConverter implements ValueConverterInterface
9 {

T // ... lines 10 - 36

37 public function getIsVisible(object $object): bool

38 {

39 return true;
40 }

T // ... lines 41 - 45
46 '}

Si tus recetas pudieran ser publicadas o no, por ejemplo, entonces podrias comprobarlo aqui

para devolver true o false.

Por ultimo, para getObject(), return $object:

src/Layouts/RecipeValueConverter.php

T /7 ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ // ... lines 10 - 41
42 public function getObject(object $object): object
43 {
44 return $object;
45 }

46 }

Lo sé, parece una tonteria, pero es una forma practica de cambiar tu Recipe después de que

se haya cargado, si lo necesitas. Pero eso no es algo que necesitemos hacer.
Y... jlisto!

Esta vez, a diferencia del manejador de tipos de consulta, la autoconfiguracion se encarga de
todo... asi que no necesitamos afadir una etiqueta manual aqui arriba. Observa: muévete y
prueba a refrescar la ruta AJAX primero. jEso funciona! Ahora vete, refresca la pagina de
administracion de los disefios... y guau. jFijate! jVemos un monton de elementos en nuestra

parrilla! Si hacemos clic en él, vemos que los elementos se cargan abajo. jEs increible!

Personalizar los resultados de los articulos

Fijate en que s6lo hemos tenido que elegir "coleccion dinamica". Nosotros... nunca le dijimos al
sistema que queriamos utilizar el tipo de consulta "ultimas recetas". Esto se debe simplemente
a que solo tenemos un tipo de consulta... y por lo tanto, Layouts adivind que eso era lo que
queriamos. Si afadiéramos un segundo tipo de consulta al sistema, veriamos aqui otro
desplegable de seleccidn en el que podriamos elegir entre las ultimas recetas y las recetas

"mas populares”, por ejemplo.

Asi que estamos utilizando nuestro tipo de consulta "ultimas recetas" para obtener 25
resultados. Si intentaramos recrear esta zona aqui, sélo querriamos 4. Asi que vamos a limitar

el numero de elementos a cuatro. jGenial!

Comprobando el Frontend

¢ Qué aspecto tiene esto en el frontend? jAveriguémoslo! Pulsa "publicar y continuar editando"
y.... una vez que se guarde, ve y actualiza. Deberia aparecer aqui, pero... jno vemos

absolutamente nada! O... eso parece al principio.

Pero cuando inspeccionamos el elemento... y hacemos un poco de zoom... hay un div con la
clasengl-vt-grid en él. Y dentro, una fila y dentro de ésta, un montdn de divs vacios. Si
ignoras los elementos de clearfix, jesto renderiza 1, 2, 3, 4 divs para nuestros cuatro

elementos! Asi que los elementos se renderizan... simplemente se renderizan vacios.

Y eso tiene sentido. Todavia no le hemos dicho a los layouts como deben representarse los

elementos de la receta. En unos minutos hablaremos de ello.

Opciones del formulario del tipo de consulta (parametros)

Pero antes de llegar alli, quiero hacer que nuestro tipo de consulta sea un poco mas elegante.
En la primera pasada, ignoramos el método buildParameters() . Resulta que es una forma
de anadir campos de formulario adicionales para que un usuario administrador pueda pasar

opciones a la consulta.

Por ejemplo, vamos a afadir un término de busqueda opcional. Digamos que
$builder->add() pasa aterm - que sera el nombre interno de este nuevo parametro -y

luego TextType: el de Netgen\Layouts:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 8

9 use Netgen\Layouts\Parameters\ParameterType\TextType;

T // ... lines 10 - 12

13 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
14 {

$ // ... lines 15 - 18

19 public function buildParameters(ParameterBuilderInterface $builder): void
20 {

21 $builder->add('term', TextType::class);

22 }

T // ... lines 23 - 44
45 }

Hay un montén de otros tipos de campos para URLs, fechas y mas.

Sdlo con esto, cuando refresquemos la seccidon de administracion... y hagamos clic abajo en la
cuadricula, jahi esta! jTenemos un gran cuadro nuevo! Por supuesto, si escribimos algo dentro,

no pasa nada... y ademas tiene una etiqueta rara.

Traducir |la etiqueta del campo

Primero vamos a arreglar esa etiqueta. Layouts tiene por defecto esta extrana cadena, pero ya
la esta pasando por el traductor a través de un dominio llamado nglayouts. Asi que, en el
directoriotranslations/, crea un archivo llamado nglayouts.en.yaml, o utiliza el formato

gue quieras.

Pega la etiqueta y ponla como "Término de busqueda":

translations/nglayouts.en.yaml

1 query.latest_recipes.term: 'Search term’

Prueba ahora la seccion de administracion. Cuando hagamos clic... jmucho mejor! Si sigues

viendo la etiqueta antigua, prueba a borrar la caché:

symfony console cache:clear

A veces Symfony no se da cuenta cuando anades un nuevo archivo de traduccion.

Utilizar el parametro

Bien, para utilizar el término de busqueda, dirigete a nuestro manejador de tipo de consulta. El
objeto Queryque se pasa a getValues() contiene los parametros que hemos afiadido.
Ademas, jya he preparado el método createQueryBuilderOrderedByNewest() para que
acepte un término de busqueda opcional! Pasa este $query->getParameter(), su nombre -

term - y luego ->getValue():

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 12

13 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

14 {

$ // ... lines 15 - 23

24 public function getValues(Query $query, int $offset = 0, ?int $limit = null):
iterable

25 {

26 return $this->recipeRepository->createQueryBuilderOrderedByNewest($query-
>getParameter('term')->getValue())

$ // ... lines 27 - 30

31 }

T // ... lines 32 - 44

45 }

Copia eso y repitelo aqui abajo para el método getCount():

src/Layouts/LatestRecipeQueryTypeHandler.php

$ // ... lines 1 - 12
13 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
14 {

$ // ... lines 15 - 32

33 public function getCount(Query $query): int

34 {

35 return $this->recipeRepository->createQueryBuilderOrderedByNewest($query-

>getParameter('term')->getValue())

$ // ... lines 36 - 38

39 }

$ // ... lines 40 - 44
45 '}

Muy bien, jvamos a probar esto! Refresca la zona de Disefos, baja aqui y jcreo que ha
funcionado! No muestra ningun elemento... porque he utilizado un término de busqueda
bastante tonto. Despeja la zona. Lo tenemos todo. Ahora escribe unas cuantas letras... y

observa cémo cambia abajo.

A continuacién, vamos a ensefar a los disefiadores como mostrar los elementos de la receta

tanto en el frontend como en la vista previa del area de administracion.

Chapter 8: Plantilla de la vista del articulo

Bien, equipo, las cosas tienen buena pinta. Hemos creado un "tipo de valor" de Recipe, una
consulta personalizada para cargarlos y un convertidor de valores para ayudar a los layouts a

entender nuestros objetos de Recipe.

Lo que aun no hemos hecho es decirle a Layouts cdmo representar un elemento Recipe,
siendo elemento la palabra que Layouts utiliza para las "cosas" individuales que los bloques de
rejilla y lista representan. Y, de hecho, tenemos que decirle a Layouts cdmo representar una
version de administrador de un elemento de receta, que se mostrara aqui, asi como la version

mas importante del elemento en el frontend.

Anadir una vista de elemento

La forma en que se muestra un elemento se denomina "vista de elemento". Para afiadir una
nueva vista de articulo, empezaremos en la configuracion. Afdade una clave view con
item_view debajo y app debajo. Afiadiré un comentario, porque en Layouts, app significa
"admin". Asi que lo que vamos a definir bajo la clave app sera la vista de administrador para

nuestro elemento de receta:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item view:

15 # app = admin
16 app:

$ // ... lines 17 - 22

A continuacién, afiade recipes_app ... con una pequeia nota para decir que esta clave no es

importante:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item_view:

15 # app = admin

16 app:

17 # this key is not important
18 recipes_app:

T // ... lines 19 - 22

A diferencia de otras cosas, como latest_recipes, esta clave interna no se utilizara en
ningun sitio. A continuacion, necesitamos dos cosas importantes. En primer lugar, template -
no incluyas la "s" como he hecho yo- pon una ruta de acceso a la plantilla, como nglayouts/ -
ese es un nombre de directorio estandar para usar en las plantillas, pero podrias usar cualquier

cosa-, y luego, ¢qué taladmin/recipe_item.html.twig:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item_view:

15 # app = admin
16 app:
17 # this key is not important
18 recipes_app:
19 template: 'nglayouts/admin/recipe_item.html.twig'
$ // ... lines 20 - 22

La segunda cosa importante es la clave muy especial match. Tenemos que decirle a Layouts
que ésta es la plantilla que debe utilizarse cuando se esta renderizando un elemento de la
receta. Por ejemplo, imagina que tenemos dos tipos de valores: recetas y también entradas de
blog. Pues bien, Layouts necesitaria saber que ésta es la plantilla que debe usarse para las

recetas... pero que debe usar una plantilla de elemento diferente para las entradas del blog.

La clave de configuracion "match"

Para ello, utilizaremos una sintaxis extrana: item\value_type ajustado a doctrine_recipe:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

15 # app = admin

16 app:

17 # this key is not important

18 recipes_app:

19 template: 'nglayouts/admin/recipe_item.html.twig’
20 match:

21 item\value type: 'doctrine_recipe’

Donde doctrine_recipe hace referencia al nombre de nuestro tipo de valor aqui arriba:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ /... lines 2 - 3

4 value_types:

5 doctrine_recipe:
T // ... lines 6 - 22

Vamos a ver esta clave match varias veces mas en este tutorial. Layouts tiene un monton de
"emparejadores" incorporados, que se identifican con cadenas comoitem\value_type. Se
utilizan para ayudar a emparejar una pieza de configuracién, como esta plantilla, con otra pieza
de configuracion, como el tipo de valor doctrine_recipe. Hay un numero finito de estos
emparejadores, y vamos a ver los mas importantes a lo largo del camino. Asi que no te

preocupes demasiado por ellos.

Ah, pero déjame que corrija mi error tipografico: deberia ser template sin "s".

Los dos tipos de vista: item_view y block view

De todos modos, quiero mencionar una cosa rapida sobre la clave de configuracion view: sélo

hay un pequefio numero de subclaves que van debajo de ella.

Busca tu terminal y ejecuta:

php ./bin/console debug:config netgen_layouts view

Esto volcara una enorme lista de config, pero no te abrumes Veremos las partes importantes de
esto mas adelante. Lo que quiero que mires son las claves raiz que van por debajo de view,

como block_view y layout_view.

Resulta que hay seis claves diferentes que puedes poner debajo de la claveview en tu
configuracion, pero sélo nos interesan dos de ellas... y por eso lo menciono. Cuando se trata de
personalizar tus vistas, jes realmente muy sencillo! La primera clave de la que nos ocupamos
es item_view, que controla las plantillas que se utilizan cuando se representan "elementos":
es decir, cuando se representan cosas dentro de una cuadricula o una lista. La otra subclave
de la que nos ocupamos es block_view, que es la forma de configurar la plantilla que se

utiliza para representar diferentes tipos de bloques, como el bloque title o el bloquetext.

Si, o bien estas renderizando un bloque y quieres personalizar su plantilla o bien estas
renderizando un elemento dentro de un bloque y quieres personalizar la plantilla de ese
elemento. Asi que la configuracion parece gigantesca, pero la mayoria de estas cosas son

internas y nunca tendras que preocuparte por ellas.

Creacion de la plantilla de administracion

Bien: tenemos nuestro item_view para nuestro doctrine_recipe para el area de
administracion. Vamos a anadir esa plantilla. En el directorio templates/, crea dos nuevos
subdirectorios:nglayouts/admin/. Y luego, un nuevo archivo llamado
recipe_item.html.twig. Dentro, escribe Does it work? y... usemos también la funcion

dump() para poder ver a qué variables tenemos acceso:

templates/nglayouts/admin/recipe_item.html.twig

1 Does it work?

2 {{ dump() }}

Bien, vuelve a tu navegador, actualiza el administrador de disefios y... jfunciona! Y,
aparentemente, tenemos acceso a varias variables. La mas importante es item. jSe trata de
un objeto CmsItem de Layouts... y tiene una propiedad llamada object establecida a nuestro

Recipe!

iVamos a utilizarlo! Digamos {{ item.object.name }}, luego una tuberia, y... imprimamos
también una fecha: {{ item.object.createdAt }} - una de las otras propiedades de

Recipe canalizada en el filtro date con Y-m-d:

templates/nglayouts/admin/recipe_item.html.twig

1 {{ item.object.name }} | <time>{{ item.object.createdAt|date('Y-m-d') }}</time>

iVamos a comprobarlo! Muévete, refresca y... jya esta! Puedes hacer esto mas elegante si

quieres, pero esto nos servira.

A continuacién: vamos a crear la vista de articulos del frontend.

Chapter 9: Vista de articulos del frontend

Es hora de crear la vista de articulos Recipe para el frontend. Esto empieza casi exactamente
igual. De hecho, copia la configuracion del admin... y pégala. En Layouts, sabemos que la clave

app significa la seccion "admin". Y resulta que default se utiliza para significar el frontend:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item view:

T // ... lines 15 - 21

22 # default = frontend

23 default:

24 # this key is not important
25 recipes_default:

T // ... lines 26 - 29

Frontend (por defecto) item_view & Template

Una vez mas, este nombre interno no es importante, para la plantilla, utiliza la misma ruta pero

frontend... y mantén match exactamente igual:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

24 # this key is not important

25 recipes_default:

26 template: 'nglayouts/frontend/recipe_item.html.twig'
27 match:

28 item\value_type: 'doctrine_recipe’

iMe encanta cuando las cosas son aburridas y faciles! Vamos a crear esa plantilla. En

nglayouts/, haz el directorio frontend/ ... y dentro, recipe_item.html.twig.

A esta plantilla le pasaremos las mismas variables que a la plantilla de elementos de
administracion. Esto significa que podemos, una vez mas, utilizar {{ item.object }} para
acceder a nuestro objeto Recipe. Vamos a imprimir la clave name para ver si las cosas

funcionan:

templates/nglayouts/frontend/recipe_item.html.twig

1 {{ item.object.name }}

Y... estan funcionando. jEsta vivo!

Comprobando las plantillas en el perfil de Twig

Una de mis cosas favoritas cuando empiezo a trabajar con plantillas dentro de Layouts es
hacer clic en el elemento Twig de la barra de herramientas de depuracion web. Aqui podemos
ver realmente cdmo esta renderizando Layouts. Si, renderiza layout_2.html.twig... y luego
empieza a renderizar cada zona. Renderiza nuestro bloque navigation, el bloque hero, y
luego, finalmente aqui abajo, la cuadricula. Puedes ver que esta usando
grid/3_columns.html.twig. Esto es algo que podemos controlar en el area de
administraciéon. Haz clic en la cuadricula. A la derecha, vemos la pestafa "Contenido". Pero
también hay una pestana "Diseno". Cambia esto a "4 columnas"... y le doy a "Publicar y

continuar editando".

Si ahora refrescamos y volvemos a cargar el perfilador Twig, veremos que se
renderiza4_columns.html.twig. Entonces, jeh! Dentro de cada columna, renderiza
nuestrorecipe_item.html.twig. Esto es realmente genial de ver, y vamos a ver esto de

nuevo mas tarde cuando hablemos de anular las plantillas del nucleo.

CSS de Bootstrap 4

Una cosa que tengo que mencionar es que nuestra aplicacion esta utilizando la version 4 de
Bootstrap, no Bootstrap 5. La razdn es que, en este momento, la plantilla de cuadricula muestra
el marcado de la version 4 de Bootstrap. Si quisieras usar Bootstrap 5, es totalmente posible,
pero tendrias que anular estas plantillas de columnas -como4_columns.html.twig - para
modificar las clases. Anular las plantillas del nucleo es en realidad super facil, y hablaremos de

cdémo hacerlo pronto.

Personalizar nuestra plantilla frontal

Bien, jvamos a dar vida a esta vista frontal! Abre la plantilla de la pagina de
inicio:main/homepage.html.twig... y desplazate hacia arriba hasta el lugar en el que
hacemos un bucle con las ultimas recetas. Perfecto. Lo que basicamente quiero hacer es robar

el marcado de uno de estos mosaicos de recetas... y pegarlo en la plantilla del frontend:

templates/nglayouts/frontend/recipe_item.html.twig

1 <a href="{{ path('app_recipes_show', { slug: recipe.slug }) }}" class="text-
center recipe-container p-3">

2 <div class="p-3 entity-img">

3 <img src="{{ asset(recipe.imageUrl) }}" width="auto" height="115" alt="{{
recipe.name }} image">

4 </div>

5 <h3 class="mt-3">{{ recipe.name }}</h3>

6 <small>{{ recipe.timeAsWords }} (prep & cook)</small>

7

Ahora so6lo tenemos que ajustar algunas variables: en lugar de recipe.slug, tiene que ser

item.object.slug. Haré una busqueda y sustitucion: sustituye recipe. poritem.object.:

templates/nglayouts/frontend/recipe_item.html.twig

1 <a href="{{ path('app_recipes_show', { slug: item.object.slug }) }}" class="text-
center recipe-container p-3">

2 <div class="p-3 entity-img">

3 <img src="{{ asset(item.object.imageUrl) }}" width="auto" height="115"
alt="{{ item.object.name }} image">

4 </div>

5 <h3 class="mt-3">{{ item.object.name }}</h3>

6 <small>{{ item.object.timeAsWords }} (prep & cook)</small>

7

Envolver los blogues en un contenedor

iMuy bien! Veamos si ha funcionado. Muévete, refresca... jy lo hizo! Esto parece el frontend.
iSomos increibles! Excepto que falta el "canalén" que tenemos en el original. Inspecciona el
elemento. Ah, la diferencia es que las columnas originales estaban dentro de un div
container, que anade el margen. En el nuevo cddigo, estamos dentro de una fila... pero no de

un container.

Para arreglar esto en Layouts, vamos a anadir nuestro bloque de utilidad favorito: juna
columna! Mueve la cuadricula dentro de esa columna. Entonces, podriamos afiadir una clase
CSS como hicimos antes en la zona del héroe. Pero en su lugar, toma un atajo y marca

"Envolver en contenedor".

Pulsa "Publicar y continuar editando" y actualiza. Vaya, pagina equivocada. Vuelve a la pagina

de inicio y... jse ve muy bien! jAhora esta dentro de un elemento con una clase container!

Esta "envoltura en el contenedor" es super util: anade literalmente un divextra alrededor de tu
bloque con class="container" y todos los bloques lo admiten. Diablos, ni siquiera
necesitamos una columna: podriamos haber marcado simplemente la opcion "Envolver en

contenedor" en la propia cuadricula.

La unica razon por la que he puesto esto dentro de una columna es para que también podamos
afadir alli la cabecera "Ultimas recetas". Arrastra un nuevo bloque "Titulo" dentro de la

columna. jSal de aqui, Apple! Dentro, escribe "Ultimas recetas" y cambia a un h2.

Pulsa nuestro favorito "Publicar y continuar editando”, actualiza y... jaun mas cerca! Solo
tenemos que centrar esto... y quizas darle un pequefo margen superior. Aflade dos clases al
titulo: text-center y my-5 para darle un poco de margen vertical: ambas clases provienen de

Bootstrap. Sélo estoy repitiendo las clases que mi disefiador ya utilizaba en la plantilla.

Publica eso... y cuando lo probamos... coincide exactamente. jGuau! Pero ahora, jtenemos un
control total sobre las recetas que hay dentro! Podemos cambiar a una consulta diferente,
cambiar el numero de elementos o, dentro de un rato, podemos optar por seleccionar
manualmente las recetas exactas a mostrar. Ahora también podemos incrustar listas y

cuadriculas de recetas en cualquier lugar que queramos del sitio.

jLimpieza!

Para celebrarlo, elimina todo el bloque Twig de latest_recipes:

templates/main/homepage.html. twig

7

15
16
17
18
19
20
21

22
23

24
25
26
27
28
29
30
31

32
33
0

// ... lines 1 - 14
{% block latest recipes %}
<div class="container">
<h2 class="text-center my-5">Latest Recipes</h2>
<div class="row">
{% for recipe in latestRecipes %}
<div class="col-3">
<a href="{{ path('app_recipes_show', { slug: recipe.slug })
}}" class="text-center recipe-container p-3">
<div class="p-3 entity-img">
<img src="{{ asset(recipe.imageUrl) }}" width="auto"
height="115" alt="{{ recipe.name }} image">
</div>
<h3 class="mt-3">{{ recipe.name }}</h3>
<small>{{ recipe.timeAsWords }} (prep & cook)</small>

</div>
{% endfor %}
</div>
<div class="text-center mt-5 text-underline"><u>Show More
</u></div>

</div>
{% endblock %}
// ... lines 34 - 706

Y, arriba en MainController, elimina la consulta, la variable, el argumento del repositorio y la

declaracion use:

src/Controller/MainController.php

O 00 N O U1 b W

10
11
12
13
14
15
16
17

// ... Llines 1 - 2

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class MainController extends AbstractController

{
#[Route('/', name: 'app_homepage')]
public function homepage(): Response

{

return $this->render('main/homepage.html.twig', [

1)

Cuando actualicemos, sélo tendremos una seccion "Ultimas recetas" procedente de nuestro
bloque dinamico. Ah, pero fijate en que en el admin de layouts, seguimos mostrando el
bloque latest_recipes... jaunque ya no exista! Layouts es bastante indulgente con los

usuarios administradores: en lugar de lanzar un error, simplemente no renderiza nada.
Pero borremos eso... luego publiquemos... y echemos un ultimo vistazo. jMe encanta!

A continuacién: ahora que tenemos esta cuadricula dentro de Layouts, podemos hacer algunas

cosas interesantes con ella, como activar la paginacion con Ajax.

Chapter 10: Paginacion Ajax y CSS/JS

Ahora que estamos renderizando estos elementos de la receta a través del tipo de bloque de
rejilla, comprueba lo que podemos hacer. Haz clic en la cuadricula, ve a la pestana de disefio y
marca "Activar la paginacion”. Entonces podras elegir entre un estilo de paginacion con enlaces

de pagina, como 1, 2, 3 y 4, o simplemente un botdn de "cargar mas". Utilicemos este ultimo.

Muy bien, pulsa "Publicar y continuar editando”. Entonces... una vez que se guarde, actualiza
para ver... jabsolutamente nada! La paginacion se realiza completamente a través de
JavaScript y Ajax. Y no vemos nada porque aun no hemos incluido el JavaScript necesario en

nuestra pagina.

Incluir las plantillas CSS/JS

Anadirlo es bastante facil. Ve a templates/base.html.twig. Aqui arriba, en la zona de head,
vamos a incluir dos plantillas. La primera
es:@NetgenLayoutsStandard/page_head.html.twig... y pasarle una variable extra:

full: true:

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

3 <head>

T // ... lines 4 - 7

8 {{ include('@NetgenLayoutsStandard/page_head.html.twig', { full: true })
1}

T // ... lines 9 - 16

17 </head>

T // ... lines 18 - 69

70 </html>

Esto cargara el CSS y el JavaScript que soportan estos elementos de galeria aqui abajo. No
voy a hablar de estos bloques de galeria en este tutorial, pero son basicamente como un
bloque de lista o de cuadricula, excepto que tienen JavaScript para convertirlos en deslizadores

o galerias de miniaturas.

Asi que esto incluye el CSS y el JavaScript para ellos, asi como un pequefio archivo CSS de
cuadricula para ayudar a representar las columnas de cuadricula en tu pagina en caso de que
no tengas Bootstrap. Elfull: true le dice que traiga jQuery asi como otras dos bibliotecas de
JavaScript lamadas magnific-popup y swiper. Todas ellas son necesarias para los bloques

de la galeria.

Asi que, si, si no estas usando uno de esos bloques de galeria, podrias evitar incluir este

archivo por completo. Pero yo lo dejaré.

Pero fijate, no he dicho nada sobre la paginacion. Para eso, necesitamos incluir una segunda
plantilla. Copia esta linea, pégala, quita la palabra Standard y esto no necesita la variable
full:

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

3 <head>

T // ... lines 4 - 7

8 {{ include('@NetgenLayoutsStandard/page_head.html.twig', { full: true })

1}

9 {{ include('@NetgenLayouts/page_head.html.twig"') }}

$ // ... lines 10 - 16
17 </head>

1 // ... lines 18 - 69
70 </html>

Esta plantilla es muy sencilla: incorpora un poco de CSS y un poco de JavaScript para
potenciar la paginacion Ajax. Y éstas son las dos unicas plantillas que necesitaras incluir para

las maquetas JavaScript y CSS.

Anadir la plantilla de elementos "ajax

Actualiza y... jahi esta! Y cuando hacemos clic en el nuevo enlace... jestalla con un error 500!

Ups.

Abre esa URL en una nueva pestana. Interesante:

“No se ha encontrado ninguna coincidencia de plantilla para la vista "item_view" y el

"

contenido "ajax".

Cuando hacemos clic en "Cargar mas", no es de extraiar que esa llamada Ajax muestre los
siguientes elementos de la receta. Podrias pensar que esto reutilizaria nuestra plantilla de vista
de articulo "frontend", pero... en realidad hay una seccién diferente especificamente para
cuando el contenido se renderiza a través de Ajax. Copia por completo la seccion default

frontend, pégala y cambiala porajax:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item_view:

$ // ... Llines 15 - 29

30 ajax:

31 # this key is not important

32 latest_recipes_default:

33 template: 'nglayouts/frontend/recipe_item.html.twig'
34 match:

35 item\value_type: 'doctrine_recipe’

No hay que cambiar nada mas: cuando estemos en modo ajax, utiliza la plantilla normal del

frontend.

Ahora, si refrescamos la ruta Ajax... jfunciona! Recarga la pagina de inicio y haz clic en "Cargar

mas". jEsto es muy bonito!

Traducir el boton de paginacion

Aunque, cosa menor, nuestros disefadores realmente quieren utilizar el texto "Mostrar mas".
No hay problema: todo lo que renderiza Layouts se procesa a traves del traductor. Haz clic en
el icono de traduccion de la barra de herramientas de depuracion web. jAhi esta! Al parecer, la

clave de traduccion es collection.pager.load_more.

Copiala... y luego ve a abrir nuestro archivo de traduccion - nglayouts.en.yaml -y pégalo. Mi
editor cambié el formato... que en realidad funcionaria... pero volveré al formato mas plano.

Ponlo en "Mostrar mas":

translations/nglayouts.en.yaml

$ // ... line 1
2 collection.pager.load_more: 'Show More'

Giray... jlo tenemos!

Cambios CSS en la paginacion

Vale, un cambio mas para contentar a nuestros disefiadores. Inspecciona el elemento del
botdn. Layouts afiade un monton de clases, que se estilizan a través del CSS que hemos

incluido. Y, por supuesto, podemos anularlo si es necesario.

En nuestro editor, abre assets/styles/app.css. Como recordatorio, ya estamos ejecutando
Webpack Encore en segundo plano. Asi que, si cambiamos este archivo, ese cambio se

reconstruira automaticamente y se utilizara en el frontend.

En la parte inferior, pegaré algo de CSS para dar mas margen a ese botdn pero sin borde:

assets/styles/app.css

$ // ... lines 1 - 101

102 .ajax-navigation {

103 margin-top: 2rem;
104 }

105 .ajax-load-more {

106 border: none;

107 }

Volvemos a dar la vuelta, actualizamos y... nuestros disefiadores estan contentos.

Asi que, gracias a los disenos, obtenemos una paginacién Ajax gratuita, que podemos

personalizar con bastante facilidad. Eso es genial.

Rejillas frente a contenido Twig_personalizado

Llegados a este punto, ya que somos capaces de renderizar rejillas y listas de recetas,
podriamos entrar en el disefio "Lista de recetas" y sustituir este HTML codificado, que proviene
de la plantilla: templates/recipes/list.html.twig. Si, en teoria podriamos eliminar esto y

sustituirlo por un bloque de lista.

El unico problema... es que no se veria del todo bien. En lugar de renderizarse como lo hace
ahora, Layouts utilizaria nuestra plantilla de articulos: asi que cada articulo se veria como lo

hace en la pagina de inicio.

Ahora, podemos arreglar esto creando una segunda forma de representar los elementos de la
receta, y hablaremos de ello mas adelante. Pero saco esto a colaciéon por una razén

importante. A no ser que pensemos reutilizar esta lista y su aspecto en otras paginas de

nuestro sitio, no hay grandes beneficios en hacer el trabajo de convertirla en algo que podamos
representar mediante Disefios. Como sélo se utiliza aqui, renderizarla mediante Twig esta

perfectamente bien.

A continuacion: vamos a mejorar el sistema de recetas haciendo posible la seleccion manual de

elementos.

Chapter 11: Navegador de contenidos

Ahora podemos incrustar listas, cuadriculas o galerias de recetas en miniatura en cualquier
disefio de forma dinamica. jEs genial! Y siempre podemos crear mas tipos de consulta para,

por ejemplo, elegir entre las ultimas recetas o las recetas mas populares.

Pero, ¢y si pudiéramos seleccionar recetas manualmente? Quiza queramos destacar cuatro
recetas concretas en la pagina de inicio. En el area Disefos, en la rejilla, si cambiamos el "Tipo
de coleccién", podemos cambiar a "Coleccion manual”. Pero entonces... en realidad no

podemos seleccionar ningun elemento.

Activar elementos manuales en la configuracion

Para permitir que los elementos (en nuestro caso, las recetas) se seleccionen manualmente,
primero tenemos que permitirlo en la configuracién. Antes, cuando creamos la configuracion

value_types, pusimos manual_items en false. Cambialo a true:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 3

4 value_types:

5 doctrine_recipe:

T /7 ... line s

7 manual_items: true
T // ... lines 8 - 36

Y ahora, cuando intentamos acceder a la pagina, jnos aparece un error!

“El backend del Navegador de Contenidos Netgen para el tipo de valor doctrine_recipe

no existe.”

iSi! Necesitamos implementar una clase que ayude a los Layouts a navegar por nuestras

recetas. Eso se llama "navegador de contenido".

Configurar el "tipo de elemento” en
NetgenContentBrowserBundle

En realidad, afadir un navegador de contenidos se hace mediante un bundle completamente
distinto, que puedes utilizar fuera de Netgen Layouts. Es util si necesitas una interfaz agradable

para navegar y seleccionar elementos.

Como el navegador de contenidos se encuentra en un bundle diferente, no es necesario, pero
voy a configurarlo con un nuevo archivo de configuracion llamado
netgen_content_browser.yaml. Dentro, establece la clave raiz en

netgen_content_browser para configurar el "NetgenContentBrowserBundle":

config/packages/netgen_content_browser.yaml

1 netgen_content_browser:
$ // ... lines 2 - 8

Dentro de éste, podemos describir todas las diferentes "cosas manuales" que queremos poder
navegar. Para ello, anade una clave item_types vy, para el primer elemento, coge el nombre
interno del tipo de valor - doctrine_recipe - para que coincidan, pégalo y dale un nombre.

Queé te parece... Recipes con un bonito icono de fresa:

config/packages/netgen_content_browser.yaml

1 netgen_content_browser:

2 item_types:

3 # must match "value_types" key in netgen_layouts config
4 doctrine_recipe:

5 name: 'Recipes @'

T // ... lines 6 - 8

Lo unico que necesitamos aqui es una clave preview con una subclave template, que

pondré nglayouts/content_browser/recipe_preview.html.twig:

config/packages/netgen_content_browser.yaml

1 netgen_content_browser:

2 item_types:

3 # must match "value_types" key in netgen_layouts config

4 doctrine_recipe:

5 name: 'Recipes @'

6 preview:

7 template: 'nglayouts/content_browser/recipe_preview.html.twig"’

Y asegurate de escribir "plantilla" correctamente. jUy! De todas formas, estamos poniendo este
preview.template porque la configuracion nos lo exige... pero ya nos preocuparemos de

crear esa plantilla mas adelante.

Crear la clase backend

Si nos dirigimos y actualizamos... obtenemos el mismo error. Eso es porque necesitamos una
clase backend que se conecte a este nuevo tipo de elemento. Crear un backend es un proceso

sencillo, pero requiere algunas clases diferentes.

En el directorio src/, vamos a crear un nuevo directorio llamado ContentBrowser/ ... y dentro
de él, una clase PHP llamada RecipeBrowserBackend. Esta necesita implementar

BackendInterface: la de Netgen\ContentBrowser\Backend:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 2
namespace App\ContentBrowser;

// ... Lines 6 - 8

3

4

5 use Netgen\ContentBrowser\Backend\BackendInterface;

I

9 class RecipeBrowserBackend implements BackendInterface

10 {
$ // ... lines 11 - 54
55 }

A continuacién, ve a "Codigo"->"Generar" (o Command+N en un Mac) para implementar los

nueve métodos que necesita No te preocupes: no es tan malo como parece:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 2

3 namespace App\ContentBrowser;

4

5 use Netgen\ContentBrowser\Backend\BackendInterface;

6 use Netgen\ContentBrowser\Item\ItemInterface;

7 use Netgen\ContentBrowser\Item\LocationInterface;

8

9 «class RecipeBrowserBackend implements BackendInterface
10 {

11 public function getSections(): iterable

12 {

13 // TODO: Implement getSections() method.

14 }

15

16 public function loadLocation($id): LocationInterface
17 {

18 // TODO: Implement loadLocation() method.

19 }

20

21 public function loadItem($value): ItemInterface

22 {

23 // TODO: Implement loadItem() method.

24 }

25

26 public function getSubLocations(LocationInterface $location): iterable
27 {

28 // TODO: Implement getSubLocations() method.

29 }

30

31 public function getSubLocationsCount(LocationInterface $location): int
32 {

33 // TODO: Implement getSublLocationsCount() method.
34 }

35

36 public function getSubItems(LocationInterface $location, int $offset = 0, int

$limit = 25): iterable

37 {

38 // TODO: Implement getSubItems() method.

39 }
40
41 public function getSubItemsCount(LocationInterface $location): int
42 {
43 // TODO: Implement getSubItemsCount() method.
44 }

45

46 public function search(string $searchText, int $offset = @, int $limit = 25):

iterable
47 {
48 // TODO: Implement search() method.
49 }
50
51 public function searchCount(string $searchText): int
52 {
53 // TODO: Implement searchCount() method.
54 }
55}

Por ultimo, para vincular esta clase backend al tipo de elemento en nuestra configuracién,
tenemos que dar a este servicio una etiqueta. Haremos esto de la misma forma que hicimos
antes para el tipo de consulta: con AutoconfigureTag. De hecho, robaré este
AutoconfigureTagya que estoy aqui... pegaré eso... y afiadiré la declaracion use para ello.
Esta vez, el nombre de la etiqueta es netgen_content_browser.backend, y en lugar de
type, utilizaitem_type. Ajustalo a la clave que tenemos en la config: doctrine_recipe.

Pegay... jgenial!

src/ContentBrowser/RecipeBrowserBackend.php

T /77 ... lines 1 - 7
8 use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;
9

10 #[AutoconfigureTag('netgen_content_browser.backend', ['item_type' =>
"doctrine_recipe'])]

11 class RecipeBrowserBackend implements BackendInterface
12 {

$ // ... lines 13 - 56
57 }

Esta vez cuando actualizamos... el error ha desaparecido. Aiiadamos temporalmente una
nueva Rejilla al disefio... y elijamos "Coleccién manual". Ahora... jcompruébalo! Como tenemos
un backend, jvemos un boton "Anadir elementos"! Y cuando hacemos clic en él... falla. Eso no
deberia sorprendernos demasiado... ya que nuestra clase backend sigue estando

completamente vacia. Si quieres ver el error exacto, puedes abrir la llamada AJAX.

Creacion de la clase de ubicacion

El sistema del navegador de contenidos funciona asi: en estos métodos, describimos una

"estructura de arbol", algo asi como un sistema de archivos. las "ubicaciones" son como

directorios y los "elementos" son como los "archivos" o, en nuestro caso, las recetas

individuales.

Vamos a simplificar mucho las cosas. En lugar de tener diferentes "directorios" o "categorias”
de recetas por las que puedas navegar, vamos a tener un unico directorio -o "ubicacién"- en el
que viviran todas las recetas. Veras qué aspecto tiene esto en la interfaz de usuario dentro de

unos minutos.

Para que esto funcione, dentro de src/ContentBrowser/, tenemos que crear una clase que
represente una ubicacion. La llamaré BrowserRootLocation. Esta clase... no es
superinteresante: es sélo un poco de fontaneria de bajo nivel que debemos tener. Haz que

implemente LocationInterface, y a continuacion, genera los tres métodos que necesitamos:

src/ContentBrowser/BrowserRootLocation.php

T // ... lines 1 - 2
3 namespace App\ContentBrowser;
4

use Netgen\ContentBrowser\Item\LocationInterface;

5
6
7 class BrowserRootLocation implements LocationInterface
8
9

{
public function getLocationId()

10 {
11 // TODO: Implement getlLocationId() method.
12 }
13
14 public function getName(): string
15 {
16 // TODO: Implement getName() method.
17 }
18
19 public function getParentId()
20 {
21 // TODO: Implement getParentId() method.
22 }
23 }

De nuevo, esta clase representara la unica "ubicacion". Asi que paragetLocationId(),
podemos devolver cualquier cosa. Voy a return 0. Veras como se utiliza en un segundo. Para
getName(), esto es lo que se mostrara en la seccion de administracion. Voy a return 'All’.

Y para getParentId(), return null:

src/ContentBrowser/BrowserRootLocation.php

T // ... lines 1 - 6

7 class BrowserRootLocation implements LocationInterface
8 {

9 public function getlLocationId()
10 {

11 return 0;

12 }

13

14 public function getName(): string
15 {

16 return 'All’;

17 }

18

19 public function getParentId()

20 {

21 return null;

22 }

23 }

Si tienes un sistema mas complejo con multiples subdirectorios, podrias crear una jerarquia de

ubicaciones.

Muy bien, actualicemos nuestra clase backend para utilizar esto. Aqui arriba,
getSections () sera llamado en cuanto el usuario abra el navegador de contenidos. Nuestro
trabajo consiste en devolver todos los "directorios" raiz, o "ubicaciones". Nosotros s6lo tenemos

uno:return [new BrowserRootLocation()]:

src/ContentBrowser/RecipeBrowserBackend. php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface
12 {

13 public function getSections(): iterable

14 {

15 return [new BrowserRootLocation()];

16 }

T // ... lines 17 - 60

61 }

Después de llamar a éste, el navegador de contenidos llamara a getLocationId() en cada
uno de ellos y hara una peticion AJAX para obtener mas informacion sobre ellos. En nuestro
caso, esto ocurrira una sola vez cuando el ID sea 0. Parece raro, pero todo lo que tenemos
que hacer es devolver esa misma ubicaciéon: if ($id === '0'),y

luegoreturn new BrowserRootLocation():

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface
12 {

$ // ... lines 13 - 17

18 public function loadLocation($id): LocationInterface
19 {

20 if ($id === '0') {

21 return new BrowserRootLocation();

22 }

$ // ... lines 23 - 24

25 }

$ // ... lines 26 - 60

61 }

Fijate en que estoy utilizando '@' como cadena, pero... en getLocationId() devolvimos un

numero entero:

src/ContentBrowser/BrowserRootLocation.php

0

7
8
9
10
11
12

0

23

e

lines 1 - 6

class BrowserRootLocation implements LocationInterface

{

VA

public function getlLocationId()
{

return 0;

Lines 13 - 22

Eso es porque el id se pasara a JavaScript y se utilizara en una llamada Ajax. Para cuando

llegue aqui, sera una cadena. Un pequeio detalle a tener en cuenta.

Al final, por si acaso throw a new \InvalidArgumentException() y pasa un mensaje sobre

una ubicacion no valida:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface

12 {

T // ... lines 13 - 17

18 public function loadLocation($id): LocationInterface

19 {

20 if ($id === '0') {

21 return new BrowserRootLocation();

22 }

23

24 throw new \InvalidArgumentException(sprintf('Invalid location "%s"',
$id));

25 }

$ // ... lines 26 - 606

61 1}

iVale! Asi que nuestro backend tiene una ubicacion. Para los demas métodos, devolvamos lo
mas sencillo posible. Deja 1loadItem() vacio por un momento, paragetSubLocations(),
return [], para getSubLocationsCount(), return 0, paragetSubItems(), return [],
para getSubItemsCount(), return @, para search(),return []...y finalmente, para

searchCount(), return o:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface

12 {

$ // ... lines 13 - 26

27 public function loadItem($value): ItemInterface

28 {

29 // TODO: Implement loadItem() method.

30 }

31

32 public function getSubLocations(LocationInterface $location): iterable

33 {

34 return [];

35 }

36

37 public function getSublLocationsCount(LocationInterface $location): int

38 {

39 return 0;

40 }

41

42 public function getSubItems(LocationInterface $location, int $offset = 0, int
$limit = 25): iterable

43 {

44 return [];

45 }

46

47 public function getSubItemsCount(LocationInterface $location): int

48 {

49 return 0;

50 }

51

52 public function search(string $searchText, int $offset = 0, int $limit = 25):
iterable

53 {

54 return [];

55 }

56

57 public function searchCount(string $searchText): int

58 {

59 return 0;

60 }

61 }

Uf... Hablaremos de cada uno de esos métodos mas adelante. Pero nuestra clase backend ya

es, al menos, algo funcional.

Si volvemos a actualizar el area de administracién... hacemos clic en nuestra cuadricula, y
vamos a "Afadir elementos"... jse carga! jDi "hola" al navegador de contenido! Actualmente
esta vacio, pero puedes ver el "Todo", que es de nuestra unica ubicacion. Todavia no hay
elementos dentro... porque tenemos que devolverlos desde getSubItems(). Hagamoslo a

continuacion

Chapter 12: Navegador de Contenidos: Devolver
los elementos

Nuestro Navegador de Contenidos esta funcionando mas o menos. Podemos ver nuestra unica
ubicacion... sélo que aun no tenemos ningun resultado. Esto se debe a que, para cualquier
ubicacion seleccionada, el Navegador de Contenidos llama a getSubItems() . Nuestro trabajo
aqui es devolver los resultados. En este caso, todas nuestras recetas. Si tuviéramos varias
ubicaciones, como recetas divididas en categorias, podriamos utilizar la variable $location

para devolver el subconjunto. Pero haremos la consulta y devolveremos todas las recetas.

Consulta en getSubltems()

Para ello, ve a la parte superior de la clase y crea un constructor

conprivate RecipeRepository $recipeRepository:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 4

5 use App\Repository\RecipeRepository;

T // ... lines 6 - 11
12 class RecipeBrowserBackend implements BackendInterface
13 {
14 public function _ construct(private RecipeRepository $recipeRepository)
15 {
16 }

$ // ... lines 17 - 70
71}

Luego, aqui abajo en getSubItems(), di $recipes = $this->recipeRepository vy utiliza el
mismo método de antes: ->createQueryBuilderOrderedByNewest (). A continuacion anade
->setFirstResult($offset)...y ->setMaxResults($1limit). El Navegador de Contenidos
viene con la paginacion incorporada. Nos pasa el desplazamiento y el limite de la pagina en la
que se encuentre el usuario, lo introducimos en la consulta y todos contentos. Termina con

getQuery() y getResult():

src/ContentBrowser/RecipeBrowserBackend.php

T /7 ... lines 1 - 11

12 class RecipeBrowserBackend implements BackendInterface

13 {

T // ... lines 14 - 46

47 public function getSubItems(LocationInterface $location, int $offset = 0, int
$1limit = 25): iterable

48 {

49 $recipes = $this->recipeRepository

50 ->createQueryBuilderOrderedByNewest ()

51 ->setFirstResult($offset)

52 ->setMaxResults($limit)

53 ->getQuery()

54 ->getResult();

55 }

$ // ... Llines 56 - 70

71 }

Fijate en que getSubItems() devuelve un iterable... en realidad se supone que es un
iterable de algo llamado ItemInterface. Asi que no podemos devolver simplemente estos

objetos Recipe.

Crear la clase envolvente ltemlinterface

En su lugar, en src/ContentBrowser/, crea otra clase llamada, qué talRecipeBrowserItem.
Haz que implemente ItemInterface -la deNetgen\ContentBrowser -y genera los cuatro

meétodos que necesita:

src/ContentBrowser/RecipeBrowserItem.php

7

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// ... Llines 1 - 2

namespace App\ContentBrowser;

use Netgen\ContentBrowser\Item\ItemInterface;

class RecipeBrowserItem implements ItemInterface

{
public function getValue()
{
// TODO: Implement getValue() method.
}
public function getName(): string
{
// TODO: Implement getName() method.
}
public function isVisible(): bool
{
// TODO: Implement isVisible() method.
}
public function isSelectable(): bool
{
// TODO: Implement isSelectable() method.
}
}

Esta clase sera una pequena envoltura de un objeto Recipe. Observa: afiade un método

__construct() con private Recipe $recipe:

src/ContentBrowser/RecipeBrowserItem.php

7

O 00 & U

10
11
12

7

33

// ... lines 1 - 4

use App\Entity\Recipe;

// ... lines 6 - 7

class RecipeBrowserItem implements ItemInterface

{
public function __construct(private Recipe $recipe)
{
}

// ... lines 13 - 32

}

Ahora, para getValue(), esto deberia devolver el "identificador", asi

quereturn $this->recipe->getId().Para getName(), solo necesitamos algo visual que

podamos mostrar, como $this->recipe->getName(). Y para isVisible(), return true.
Esto es util si un Recipe puede estar publicado o no. Tenemos una situacion similar

conisSelectable():

src/ContentBrowser/RecipeBrowserItem.php

T // ... lines 1 -7

8 class RecipeBrowserItem implements ItemInterface
9 {

$ // ... lines 10 - 13

14 public function getValue()

15 {

16 return $this->recipe->getId();
17 }

18

19 public function getName(): string
20 {

21 return $this->recipe->getName();
22 }

23

24 public function isVisible(): bool

25 {

26 return true;

27 }

28

29 public function isSelectable(): bool
30 {

31 return true;

32 }

33 }

Si tuvieras un conjunto de reglas en las que quisieras mostrar ciertas recetas pero hacer que no

se pudieran seleccionar, podrias return false aqui.

Y... jya esta! jHa sido facil!

De vuelta a nuestra clase backend, necesitamos convertir estos objetos Recipe en
objetosRecipeBrowserItem. Podemos hacerlo con array_map() . Volveré a utilizar la
elegante sintaxis fn(), que recibira un argumento Recipe $recipe, seguido de

=> new RecipeBrowserItem($recipe). Para el segundo arg, pasa $recipes:

src/ContentBrowser/RecipeBrowserBackend.php

I
13
14

0

48

49

I
56
57

58

0

74

// ... lines 1 - 12

class RecipeBrowserBackend implements BackendInterface
{

// ... Lines 15 - 47

public function getSubItems(LocationInterface $location, int $offset = 0, int
$1limit = 25): iterable

{
// ... Lines 50 - 55

return array_map(fn(Recipe $recipe) => new RecipeBrowserItem($recipe),
$recipes);
}
// ... lines 59 - 73

}

Es una forma elegante de decir

“Recorre todas las recetas del sistema, crea un nuevo RecipeBrowserItem para cada una,

y devuelve esa nueva matriz de elementos.”

Muy bien, jvamos a ver qué aspecto tiene! Actualiza el disefio, haz clic en la Rejilla, vuelve a

"Afadir elementos" y... jya esta! {Vemos diez elementos!

Implementando getSubltemsCount()

Pero deberiamos tener varias paginas. Ah, eso es porque seguimos devolviendo @desde

getSubItemsCount(). Vamos a arreglarlo. Roba la consulta de arriba... pega, devuelve esto,

quita setFirstResult() y setMaxResults(), anade ->select('COUNT(recipe.id)'),y

luego llama a getSingleScalarResult() al final:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface
14 {

$ /7 ... lines 15 - 59

60 public function getSubItemsCount(LocationInterface $location): int
61 {

62 return $this->recipeRepository

63 ->createQueryBuilderOrderedByNewest ()

64 ->select('COUNT(recipe.id)")

65 ->getQuery()

66 ->getSingleScalarResult();

67 }

T // ... lines 68 - 77

78 }

Y asi, cuando actualicemos... y abramos el Navegador de Contenidos... jtendremos paginas!

Anadir la funcién de busqueda

Vale, pero ¢ podemos buscar recetas? Por supuesto. Podemos aprovechar search()
ysearchCount (). Esto es muy sencillo. Roba toda la I6gica de getSubItems(), pégala en

search() y pasa $searchText al método QueryBuilder, que ya permite este argumento:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface

14 {

$ // ... lines 15 - 68

69 public function search(string $searchText, int $offset = @, int $limit = 25):
iterable

70 {

71 $recipes = $this->recipeRepository

72 ->createQueryBuilderOrderedByNewest ($searchText)

73 ->setFirstResult($offset)

74 ->setMaxResults($limit)

75 ->getQuery()

76 ->getResult();

77

78 return array_map(fn(Recipe $recipe) => new RecipeBrowserItem($recipe),
$recipes);

79 }

$ // ... lines 80 - 88

89 }

Si quieres tener un poco menos de duplicacion de cédigo, podrias aislar esto en un método

private en la parte inferior.

Copia también la l6gica del otro método de recuento... pégalo en searchCount(), y pasalo

también a $searchText:

src/ContentBrowser/RecipeBrowserBackend. php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface
14 {

$ // ... lines 15 - 80

81 public function searchCount(string $searchText): int
82 {

83 return $this->recipeRepository

84 ->createQueryBuilderOrderedByNewest($searchText)
85 ->select('COUNT(recipe.id)")

86 ->getQuery()

87 ->getSingleScalarResult();

88 }

89 }

Y asi de facil, si nos movemos hacia aqui e intentamos buscar... funciona. jEstupendo!

Muy bien - selecciona algunos elementos, pulsa "Confirmar" y... joh no! jSe rompe! Sigue
diciendo "Cargando". Si miras hacia abajo en la barra de herramientas de depuracion web,

tenemos un error 400. Maldita sea. Cuando lo abrimos, vemos

“El cargador de valores para el tipo de valor doctrine_recipe no existe.”

Sélo nos falta una pieza final: Una clase muy sencilla llamada "cargador de valores". Eso a

continuacion.

Chapter 13: Cargador de valores + Plantilla de
vista previa

Asi que nuestro navegador de contenidos funcionaba de maravilla... hasta que seleccionamos
un elemento. En ese momento, eligié hacer una cosa extrana: jexplotar! La llamada Ajax que

fallo dice
“El cargador de valores para el tipo de valor doctrine_recipe no existe.”

Para repasar: tenemos un tipo de valor personalizado llamado doctrine recipe, que
creamos para poder anadir cuadriculas y listas de entidades Recipe. Para que esto funcione,
tenemos (1): un conversor de valores para convertir los objetos Recipe a un formato que
entiendan los disefios. (2) una clase de consulta que nos permita utilizar colecciones
dinamicas. (3) una clase de backend de navegador para permitirnos seleccionar elementos
manuales. Y ahora (4), necesitamos un cargador de valores que sea capaz de tomar el "id" de
estos elementos seleccionados manualmente y convertirlos en objetosRecipe. Esta sera la

ultima "cosa" que necesitaremos para nuestro tipo de valor, jlo prometo!

Crear y_etiquetar el cargador de valores

Dentro del directorio src/Layouts/, crea una nueva clase llamada RecipeValueloader, haz

que implemente ValuelLoaderInterface y genera los dos métodos que necesita:

src/Layouts/RecipeValueloader.php

0
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// ... Llines 1 - 2

namespace App\Layouts;

use Netgen\Layouts\Item\ValuelLoaderInterface;

class RecipeValuelLoader implements ValuelLoaderInterface

{
public function load($id): ?object
{
// TODO: Implement load() method.
}
public function loadByRemoteId($remoteId): ?object
{
// TODO: Implement loadByRemoteId() method.
}
}

Son bastante sencillos. Pero, antes de rellenarlos, vuelve a la ruta Ajax y actualiza para ver...

exactamente el mismo error. s Por qué? Como hemos visto con otras cosas, necesitamos

"asociar" este RecipeValuelLoader a nuestro tipo de valor doctrine_recipe. ;Como? Sin

sorpresas Con una etiqueta. Digamos #[AutoconfigureTag()] y esta vez se

llamanetgen_layouts.cms_value_loader. Para el segundo argumento, pasa

value_typeajustado a doctrine_recipe:

src/Layouts/RecipeValuelLoader.php

0
6
7
8

9
10

0

20

// ... lines 1 - 5
use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;

#[AutoconfigureTag('netgen_layouts.cms_value_loader', ['value_type' =>
"doctrine_recipe'])]

class RecipeValueloader implements ValueloaderInterface
{
// ... lines 11 - 19

}

jPerfecto! Si recargamos ahora... jmejor! Ese error se debe a que aun no hemos rellenado la

l6gica.

Anadir la Iégica

Muy sencillo, necesitamos tomar el ID y devolver el objeto Recipe. Para ello, crea un

constructor que acepte un argumento RecipeRepository $recipeRepository. Y... déjame

limpiar las cosas:

src/Layouts/RecipeValuelLoader.php

0

5

0
10
11
12
13
14

0

25

// ... lines 1 - 4

use App\Repository\RecipeRepository;

// ... lines 6 - 9

class RecipeValueloader implements ValuelLoaderInterface

{
public function _ construct(private RecipeRepository $recipeRepository)
{
}

// ... lines 15 - 24

}

Ahora, aqui abajo, devuelve $this->recipeRepository->find() y pasa $id. Para

loadByRemoteId(), que solo necesitamos si vamos a utilizar la funcion de importacién para

mover contenido entre bases de datos, sélo return $this->load($id):

src/Layouts/RecipeValueloader.php

0

10
11

0
16
17
18
19
20
21
22
23
24
25

// ... lines 1 - 9
class RecipeValueloader implements ValuelLoaderInterface
{
// ... lines 12 - 15
public function load($id): ?object
{

return $this->recipeRepository->find($id);

public function loadByRemoteId($remoteId): ?object

{
return $this->load($remoteld);

Y ahora... jla llamada Ajax funciona! Y lo que es mas importante, si actualizamos todo el

administrador de disefios... jsi! jMira nuestra cuadricula! jTenemos cuatro elementos manuales!

jEso es genial!l Podemos reordenarlos si queremos, afiadir mas, eliminarlos, lo que sea.

Prueba a publicar esta pagina y luego recarga la pagina de inicio. jAhi estan! Aunque faltan

nuestras "ultimas recetas". jVaya! Creo que accidentalmente también cambié esto a una

coleccion manual. Vuelve a cambiarla a una coleccion dinamica, se ve bien, publica y....

ahora... genial: todo esta de vuelta.

Afadir la vista previa

Asi que ya podemos seleccionar elementos manuales a través del navegador de contenido...
aunque cuando afiadimos originalmente la configuracién para todo esto, establecimos una

plantilla de vista previa... jpero nunca la creamos!

Abramos de nuevo el navegador de contenidos. Entonces, en la rejilla manual, pulsa "Anadir
elementos". La plantilla de vista previa activa el modo de vista previa aqui arriba. Si hacemos
clic en un elemento, nos muestra una vista previa. Bueno, lo haria... excepto porque en realidad

no hemos anadido esa plantilla.

Para que esto funcione, tenemos que hacer dos pequefias cosas. Primero,
abrirRecipeBrowserBackend. Aqui nos hemos saltado algunos métodos. Por ejemplo,
omitimos getSubLocations() y getSubLocationsCount() porque solo son necesarios si

tienes una jerarquia de ubicaciones.

También nos hemos saltado loadItem(). Se utiliza para la vista previa. Nos pasara el ID de lo
que se ha cargado y necesitamos devolver un ItemInterface. Asi de sencillo, podemos
devolver un new RecipeBrowserItem() -que es la pequefa clase que envuelve al Recipe -

pasando $this->recipeRepository->find($value):

src/ContentBrowser/RecipeBrowserBackend. php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface

14 {

1 // ... lines 15 - 32

33 public function loadItem($value): ItemInterface

34 {

35 return new RecipeBrowserItem($this->recipeRepository->find($value));
36 }

$ // ... Llines 37 - 88

89 }

iGenial! Lo unico que tenemos que hacer es... jcrear la plantilla de vista previa! En
templates/nglayouts/, afade un nuevo directorio llamado content_browser/, y dentro, un
nuevo archivo llamado recipe_preview.html.twig. Para empezar, solo tienes que imprimir

la funciéndump () :

templates/nglayouts/content_browser/recipe_preview.html.twig

1 {{ dump() }}

Lo bueno es que ni siquiera necesitamos actualizar. Mientras hagamos clic en un elemento en
el que no hayamos hecho ya clic... jfunciona! Y mira esta variable item: es una instancia de

RecipeBrowserItem... asi que una instancia de esta clase de aqui.

Eso es genial... excepto que RecipeBrowserItem no tiene una forma de que obtengamos el
objeto Recipe real. Afortunadamente, podemos arreglar eso nosotros mismos. Después de

todo, jesta es nuestra clase! Iré a "Codigo"->"Generar" para generar un método getRecipe():

src/ContentBrowser/RecipeBrowserItem.php

T /7 ... lines 1 - 7

8 class RecipeBrowserItem implements ItemInterface
9 {

$ // ... lines 10 - 33

34 public function getRecipe(): Recipe

35 {

36 return $this->recipe;
37 }
38 }

Ahora, en la plantilla, podemos decir {{ item.recipe.name }}.Y para hacerlo mas elegante,
afade un <img cuyo src se establezca en item.recipe.imageUrl... también con un atributo

alt:

templates/nglayouts/content_browser/recipe_preview.html.twig

1 {{ item.recipe.name }}
2

3

Una vez mas, no necesitamos actualizar. Si haces clic en un elemento que ya has
previsualizado, lo cargara desde la memoria. Pero si haces clic en uno nuevo... jsi! jAhi esta

nuestra vista previa! Genial.

Vale, ya hemos terminado con los elementos manuales, el navegador de contenidos y todo
esto. Por cierto, hay una forma de afadir mas columnas a esta tabla, como nombre de archivo,
tamano de archivo, fecha de creacion, etc. No vamos a hablar de eso, pero es totalmente

posible.

Comprobacion de estado: en este punto, tenemos la capacidad de afadir un disefio a cualquier

pagina, reordenar el contenido de la pagina, afadir titulo, texto, bloques HTML, o incluso listas

y cuadriculas de recetas dinamicas. Eso es mucho poder. jAhora quiero mas poder! Quiero que
sea posible utilizar la cuadricula y los bloques de lista para afnadir otros elementos a nuestra

pagina... elementos que no viven en absoluto en nuestra base de datos. Eso a continuacion.

Chapter 14: Contentful: Cargar datos de un CMS
externo

Si anadiéramos cinco entidades mas y quisiéramos poder seleccionarlas como elementos en el
admin de Layouts, podriamos afadir otros cinco tipos de valor, tipos de consulta y vistas de
elementos. Ahora que sabemos lo que estamos haciendo, es un proceso bastante rapido y nos

daria mucha potencia en nuestro sitio.

Pero una de las cosas bonitas de los Layouts es que nuestros tipos de valor pueden proceder
de cualquier parte: una Entidad Doctrine, datos de una API externa, datos de un almacén Sylius
o de Ibexa CMS. De hecho, sistemas como Sylius e Ibexa ya tienen paquetes que hacen todo

el trabajo de integrar y anadir los tipos de valor por ti.

Una de las grandes piezas que faltan en nuestro sitio son las habilidades. Las habilidades de la
pagina de inicio estan codificadas y el enlace "Todas las habilidades" ni siquiera va a ninguna
parte. Podriamos haber optado por almacenar estas habilidades localmente a través de otra
entidad Doctrine, pero en lugar de eso, vamos a cargarlas desde una API externa a través de

un servicio llamado "Contentful".

iHola Contentful!

Me dirigiré a Contentful.com e iniciaré sesidén. Esto me lleva a un espacio "Contentful" llamado
"Bark & Bake" que ya he creado. jContentful es increible! Es basicamente un CMS como
servicio. Nos permite crear diferentes tipos de contenido llamados "modelos de contenido".
Ahora mismo, tengo un modelo de contenido llamado "Habilidad" y otro llamado "Anuncio”. Si
hiciéramos clic en ellos, podriamos introducir contenido a través de una interfaz superamigable.

Ya he creado 5 habilidades, cada una con un montéon de datos.

Asi que, aqui creas y mantienes tu contenido. Luego Contentful tiene una API restful que

podemos utilizar para obtener todo esto.

Contentful es genial. Pero el objetivo de esto no es ensefarte sobre Contentful, jno! Se trata de
mostrarte como podemos obtener contenido para los disefios desde cualquier lugar. Por

ejemplo, si queremos cargar "habilidades" de Contentful, podriamos crear manualmente un

nuevo tipo de valor y hacer todo el trabajo que hicimos antes, excepto hacer peticiones a la API

de Contentful en lugar de consultar la base de datos.

iPero! iNi siquiera necesitamos hacer eso! Por qué? Porque Layouts ya tiene un bundle
compatible con Contentful. Ese bundle afiade el tipo de valor, algunos tipos de consulta, las

vistas de elementos e incluso la integracién del navegador de contenido por nosotros. Woh.

iVamos a cogerlo!

Instalar el bundle Contentful

Ve a tu terminal y ejecuta:

composer require netgen/layouts-contentful -W

El -W esta ahi s6lo porque, al menos al grabar esto, Composer necesita poder degradar un

pequeno paquete para contentar a todas las dependencias. Esa bandera le permite hacerlo.

De acuerdo La receta de este paquete ha afadido un nuevo archivo de

configuracion: config/packages/contentful.yaml:

config/packages/contentful.yaml

1 # For the complete configuration, please visit

2 # https://www.contentful.com/developers/docs/php/tutorials/getting-started-with-
contentful-and-symfony/

3 contentful:

delivery:

4
5 main:
6 token: "%env(CONTENTFUL_ACCESS_TOKEN)%"
7 space: "%env(CONTENTFUL_SPACE_ID)%"

Y éste lee dos nuevas variables de entorno... que viven en .env:

$ // ... lines 1 - 30

31 ###> contentful/contentful-bundle ###
32 CONTENTFUL_SPACE_ID=cfexampleapi

33 CONTENTFUL_ACCESS_TOKEN=b4c@n73n7ful
34 ###< contentful/contentful-bundle ###

Ya que estamos aqui, actualicemos estos valores para que apunten a mi espacio Contentful.
Copia las claves del bloque de cédigo de esta pagina y pégalas aqui. Aqui estan
mMiCONTENTFUL_SPACE_ID... y mi CONTENTFUL_ACCESS_TOKEN, que nos daran acceso de

lectura a mi espacio:

.env

$ // ... lines 1 - 30

31 ###> contentful/contentful-bundle ###

32 CONTENTFUL_SPACE_ID=uvx9svgj8l12

33 CONTENTFUL_ACCESS_TOKEN=3qgirzC8zMKQEnGgXNtrjRibdXYuhiFEBY9tHPyfjnw
34 #i##< contentful/contentful-bundle ###

Contentful + Layouts

Vale, la integracion Layouts + Contentful nos da dos cosas muy distintas, y es super importante

entender la diferencia para que todo quede claro.

En primer lugar, el paquete anade una integracién entre Layouts y Contentful. Esto significa que
afiade nuevos tipos de valores, nuevos tipos de consulta y todas las demas cosas que
acabamos de afadir para Doctrine. En otras palabras, podemos afadir instantdneamente las
competencias o anuncios de Contentful en bloques de lista o cuadricula. Eso es genial, y lo

veremos pronto.

La segunda cosa que afiade la integracion de Contentful no tiene nada que ver con Layouts.
Son las rutas dinamicas. Afiade un sistema para que cada "elemento" de Contentful esté
disponible a través de su propia URL. Literalmente, todas estas habilidades tendran al instante
Su propia pagina en nuestro sitio. Esto no tiene nada que ver con los Disefios, que consisten en

controlar el disefio de las paginas existentes en tu sitio, no en afiadir paginas nuevas.

Configurar el enrutamiento dinamico

Pero, como Contentful es un CMS, es bueno tener una pagina para cada contenido. Para poner
en funcionamiento las rutas dinamicas, entra en el directorio config/packages/ y afade un
nuevo archivo llamado cmf_routing.yaml. CMF Routing es un paquete que Contentful utiliza

entre bastidores para afiadir las rutas dinamicas. Pego aqui un poco de configuracion:

config/packages/cmf_routing.yaml

1 cmf_routing:

2 chain:

3 routers_by id:

4 router.default: 200

5 cmf_routing.dynamic_router: 100

6 dynamic:

7 default_controller: netgen_layouts.contentful.controller.view
8 persistence:

9 orm:
10 enabled: true

Es feo... pero esta parte no tiene nada que ver con Layouts, asi que no importa demasiado. Se

trata de permitir que Contentful anada automaticamente URL dinamicas a nuestro sitio.

Este sistema de enrutamiento almacena las rutas en la base de datos... y eso significa que

necesitamos una nueva base de datos. Dirigete a tu consola y ejecuta:

symfony console make:migration

Y... Me aparece un error. Grosero. Probemos a borrar la caché... puede que haya pasado algo

raro... 0 que aun no haya visto mi nuevo archivo de configuracion.

php bin/console cache:clear

Una vez borrada la caché... Volveré a hacer la migracion:

symfony console make:migration

Esta vez... jperfecto! Abro el directorio migrations/, busco ese archivo y... jse ve bien!

migrations/Version20221024142326.php

0
13
14
15
16
17
18
19
20
21
22
23

24

25

26

27

28

// ... lines 1 - 12
final class Version20221024142326 extends AbstractMigration
{
public function getDescription(): string
{
return '';
}

public function up(Schema $schema): void

{

// this up() migration is auto-generated, please modify it to your needs

$this->addSql('CREATE TABLE contentful_entry (id VARCHAR(255) NOT NULL,
name VARCHAR(255) NOT NULL, json LONGTEXT NOT NULL, is_published TINYINT(1) NOT
NULL, is_deleted TINYINT(1) NOT NULL, PRIMARY KEY(id)) DEFAULT CHARACTER SET
utf8mb4 COLLATE ~utf8mb4 unicode ci® ENGINE = InnoDB');

$this->addSql('CREATE TABLE contentful entry route (contentful entry id
VARCHAR(255) NOT NULL, route_id INT NOT NULL, INDEX IDX 58B6BC6E877C153C
(contentful_entry id), INDEX IDX_58B6BC6E34ECB4E6 (route_id), PRIMARY
KEY(contentful_entry_id, route_id)) DEFAULT CHARACTER SET utf8mb4 COLLATE
“utf8mb4_unicode ci® ENGINE = InnoDB');

$this->addSql('CREATE TABLE orm_redirects (id INT AUTO_INCREMENT NOT
NULL, host VARCHAR(255) NOT NULL, schemes LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', methods LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\',
defaults LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\', requirements LONGTEXT NOT
NULL COMMENT \'(DC2Type:array)\', options LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', condition_expr VARCHAR(255) DEFAULT NULL, variable_pattern
VARCHAR(255) DEFAULT NULL, staticPrefix VARCHAR(255) DEFAULT NULL, routeName
VARCHAR(255) NOT NULL, uri VARCHAR(255) DEFAULT NULL, permanent TINYINT(1) NOT
NULL, routeTargetId INT DEFAULT NULL, UNIQUE INDEX UNIQ 6CA17E©391F30BA8
(routeName), INDEX IDX_6CA17E034C0848C6 (routeTargetId), INDEX
IDX_6CA17EO@3A5B5867E (staticPrefix), PRIMARY KEY(id)) DEFAULT CHARACTER SET
utf8mb4 COLLATE ~“utf8mb4 unicode ci® ENGINE = InnoDB');

$this->addSql('CREATE TABLE orm_routes (id INT AUTO_INCREMENT NOT NULL,
host VARCHAR(255) NOT NULL, schemes LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', methods LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\',
defaults LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\', requirements LONGTEXT NOT
NULL COMMENT \'(DC2Type:array)\', options LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', condition_expr VARCHAR(255) DEFAULT NULL, variable_pattern
VARCHAR(255) DEFAULT NULL, staticPrefix VARCHAR(255) DEFAULT NULL, name
VARCHAR(255) NOT NULL, position INT NOT NULL, INDEX IDX_ 5793FCA5B5867E
(staticPrefix), UNIQUE INDEX name_idx (name), PRIMARY KEY(id)) DEFAULT CHARACTER
SET utf8mb4 COLLATE “utf8mb4_unicode_ci® ENGINE = InnoDB');

$this->addSql('ALTER TABLE contentful_entry_route ADD CONSTRAINT
FK_58B6BC6E877C153C FOREIGN KEY (contentful entry id) REFERENCES contentful_entry
(id) ON DELETE CASCADE');

$this->addSql('ALTER TABLE contentful entry route ADD CONSTRAINT
FK_58B6BC6E34ECB4E6 FOREIGN KEY (route_id) REFERENCES orm_routes (id) ON DELETE
CASCADE"');

29 $this->addSql('ALTER TABLE orm_redirects ADD CONSTRAINT
FK_6CA17E034C0848C6 FOREIGN KEY (routeTargetId) REFERENCES orm_routes (id)');

30 }
T // ... lines 31 - 42
43}

Tenemos unas cuantas tablas que contienen informacién sobre nuestros datos de Contentful...

y unas cuantas para almacenar esas rutas dinamicas.

Ahora Ejecuta:

symfony console doctrine:migrations:migrate

Y... jwoohoo! Tenemos las nuevas tablas que necesitamos.

Por ultimo, podemos ejecutar un comando para cargar todo nuestro contenido desde Contentful
y crear esas rutas dinamicas. Una vez mas, se trata de una funcionalidad que no tiene nada

que ver con los Disenos. Ejecuta:

symfony console contentful:sync

Y... jprecioso! Cargo seis elementos. En produccién puedes configurar un webhook para que tu
sitio se sincronice instantaneamente con cualquier cambio que hagas en Contentful. Pero

mientras estamos desarrollando, ejecutar este comando funciona bien.

El resultado de este comando es que cada contenido de Contentful tiene ahora su propia

pagina Para verlas, ejecuta:

symfony console contentful:routes

Y... jimpresionante! Parece que tengo una URL llamada /mashing. Vamos a comprobarlo!
Vuelve a nuestro sitio, navega hasta /mashing y... jfunciona! Mas o menos. Esta aqui, pero la

parte central esta vacia.

Hablemos de lo que ocurre a continuacion y de como podemos aprovechar los Disefos para

dar vida a esta pagina.

Chapter 15: Asignar un disefio a las paginas de
Contentful

La integracion de Contentful que acabamos de instalar ha afiadido dos cosas a nuestro sitio. En
primer lugar, ha anadido una integracion de Layouts: nuevos tipos de valores, tipos de consulta,
etc. para que podamos seleccionar nuestro contenido de Contentful en bloques de listas y
cuadriculas. En segundo lugar, ha afiadido la posibilidad de que cada contenido de Contentful
tenga su propia URL y pagina en nuestro sitio. La segunda parte no tiene nada que ver con los

Disenos.

Hace un minuto, utilizamos este practico comando contentful:routes para ver que ahora
deberia haber una pagina en la URL /mashing. Cuando fuimos alli, no nos dio un error 404,

pero no funcion6 exactamente. La pagina esta casi vacia.

Depuraciéon del funcionamiento de las paginas dinamicas de
Contentful

Veamos qué esta pasando. Haz clic en el icono Twig de la barra de herramientas de depuracion
web para averiguar qué plantillas se estan renderizando. Veamos aqui... si bajamos un poco...
aparentemente se renderiza @NetgenLayoutsContentful/contentful/content.html.twig.

jEsa debe ser la plantilla de esta pagina! Vamos a comprobarlo.

Le daré a Shift+Shift y buscaré content.html.twig: queremos la

de layouts-contentful. Y... jgenial! Esta es la plantilla que esta renderizando esa pagina.
Imprime content.name... pero en realidad nunca la vemos. Ah, eso es porque la renderiza en
un block llamado content. Este acaba extendiendobase.html.twig... y como nuestra
plantilla base nunca renderiza block content, no vemos nada. De nuevo, esta parte de
Contentful en la que obtienes una URL que renderiza un controlador, que a su vez renderiza
esta plantilla... no tiene nada que ver con los Disefios. Es s6lo una bonita forma de exponer

cada pieza de contenido de Contentful como una pagina de nuestro sitio.

Asi que, sin relacion con Layouts, si quisiéramos, podriamos reemplazar esta plantilla en

nuestra aplicacion y personalizarla para que funcione. Podriamos cambiarla para utilizar

block body y aprovechar esta variable content, que representa el contenido, para mostrar

todos los campos.

Pero... espera un segundo. ¢ No es ese el objetivo de Layouts? Los disefios nos permiten crear
paginas dinamicamente, en lugar de escribirlas completamente en Twig. Ahora mismo, esta
pagina no esta vinculada a ningun disefo. Pero si la vincularamos, podriamos empezar a
construir la pagina utilizando los datos de la Habilidad Contentful correspondiente, en este

caso, de la Habilidad "Machacar".

Asignar un disefo a la pagina dinamica

Dirigete a nuestra seccion de administracion, publica ese disefio y crea un nuevo disefio. Lo
llamaré "Disefio de habilidad individual"... y elige "Disefio 2". Con el tiempo, haremos que se
parezca mas al "Disefio 5"... pero podemos hacerlo mas adelante mediante los bloques de

columnas. Esa es una de las razones por las que me gusta la "Presentacion 2": es bastante

sencilla, y podemos hacerla mas compleja mas adelante con las herramientas que ya tenemos.

Bien, empieza como siempre. Cierra la barra de herramientas de depuraciéon web para que
podamos vincular la cabecera a la cabecera compartida... y nuestro pie de pagina al pie de
pagina compartido. Estupendo. Luego, para empezar, afiade un bloque Titulo, escribe algo... y

publica el disefio.

Asignar un diseno a las entradas de Contentful

A continuacion, tenemos que asignar este disefio a esa pagina. Hasta ahora, hemos mapeado
maquetaciones por el nombre de la ruta o por la URL, también conocida como "Informacion de
la ruta". Podriamos volver a hacerlo aqui. Pero, como veras, lo que realmente queremos hacer
es utilizar este diseno para todas las paginas de Skills. Dentro de unos minutos, cambiaremos
la URL de estas paginas de algo como /mashing a /skills/mashing. Cuando lo hagamos
(permiteme anadir una nueva asignacion aqui y pulsar detalles), podriamos utilizar el "Prefijo
de informacién de ruta" para asignar esta disposicién a cualquier URL que empiece por
/skills/.

Pero, algo que puede anadirse a los Disenos es otra forma de mapear o resolver qué disefo
debe utilizarse en cada pagina. Y, jsi! El bundle Contentful afiadié dos nuevos: Entrada

Contentful y Espacio Contentful. Cuando vamos a una de estas paginas de Contentful, la ruta

dinamica le dice a Symfony a qué Contentful Entry - que es la pieza individual de contenido en

Contentful - y a qué Contentful Space corresponde esta pagina.

Gracias a esto, podemos aprovechar uno de estos nuevos objetivos para que coincida con la
entrada o el espacio. Por ejemplo, podriamos utilizar la Entrada Contentful para mapear un

disefio especifico a un elemento especifico en Contentful. Literalmente, podriamos decir

“Si el Contenido actual es especificamente esta habilidad "Machacar", entonces utiliza esta

disposicion.”

O podriamos hacer lo que yo voy a hacer: mapear a través del Espacio de Contentful. Sélo

tenemos un Espacio, asi que es bastante facil. Basicamente, estamos diciendo
“Si estamos en cualquier pagina dinamica de Contentful, quiero que mapees a este disefio.”
Guardemos esto... y luego vinculemos este disefio al "Disefio de habilidad individual". Pulsa

"Confirmar" y... jlisto! Ve, actualiza y... jfunciona! Si!

Asignacion a un tipo de contenido especifico

Como he mencionado antes, en realidad tenemos dos tipos de contenido en Contentful:
Habilidades y Anuncios. Los anuncios no deben tener su propia pagina, solo las habilidades.

Vamos a incrustar anuncios en algunas paginas existentes un poco mas adelante.

Vuelve a los detalles de la vinculacion del disefio. Ademas del espacio Contentful, podemos
bajar aqui a una lista de condiciones y seleccionar "Tipos de contenido Contentful". Las
condiciones son una forma de hacer que tu vinculacion sea mas especifica. Afade esa
condicion. Y, esto es un poco dificil de ver, pero podemos seleccionar "Habilidad" o "Anuncio".
Selecciona "Habilidad", guarda los cambios y... jgenial! Ahora solo coincidira si vamos a una

URL de Contentful que esté mostrando una habilidad.

En la linea de comandos, puedes ver que tenemos un anuncio... es esta URL de aspecto
gracioso. Si, ahora mismo, el anuncio esta disponible como pagina en nuestro sitio. Lo
arreglaremos en unos minutos. Pero, como minimo, si fuéramos a esa URL rara, la pagina
funcionaria... pero no coincidiria con ningun disefio gracias a nuestro mapeo. Asi que,

basicamente, estaria en blanco.

Asi que ahora tenemos control sobre las paginas de Contentful. jGenial! Aunque... lo Unico que

estamos renderizando es un titulo manual. Snooze.

A continuacién: Hagamos nuestro disefio mas inteligente mostrando contenido real de la
habilidad correspondiente.

Chapter 16: Construir la pagina Contentful

Ahora tenemos un control total sobre como se muestran las paginas de Contentful. Eso es
gracias al "disefio de habilidad individual" que hemos asignado a todas las paginas de
"habilidad" de Contentful.

Pero... todo lo que tenemos es este titulo manual de hl. ; Como podemos mostrar los datos

reales de la habilidad de Contentful que estamos viendo?

En primer lugar, en el sitio de Contentful, si navego hasta "Modelo de contenido" y hago clic en
"Skill", puedes ver que cada Skill tiene 5 campos... y cada campo tiene un nombre interno. Es...
casi mas facil ver esto a través de la vista previa JSON. Alla vamos. Asi que hay un campo
"Titulo", su nombre interno es title, "Descripcion breve", "Técnica", y algunos otros como

"Imagen" y "Anuncio”. El anuncio es en realidad un enlace a ese otro tipo de contenido.

Uso del tipo de blogue "Campo de entrada de contenido

En cualquier caso, lo que realmente queremos hacer aqui es imprimir el titulo de la habilidad
enhl. Afortunadamente, eso es posible, gracias a un nuevo tipo de bloque que ha afadido el

bundle Contentful. Esta aqui abajo: "Campo de entrada Contentful".

Esto nos permite renderizar un unico campo de cualquier entrada de Contentful que se esté

renderizando en ese momento. j{Vamos a probarlo! A continuacion, borra el antiguo h1.

El nuevo bloque tiene una opcion superimportante: identificador de campo. Establécelo con el
nombre interno del campo: title. Y conviértelo en un hl. Como de costumbre, la etiqueta del

bloque es opcional, pero yo la incluiré.

iGenial! Dale a publicar y sigue editando, muévete y... jsi! Es dinamico. Si vamos a la URL de

alguna otra habilidad, como /basic-chop, jtambién funciona!

Anadir el area de héroe

Pongamonos mas elegantes. Aflade una columna... y mueve este titulo dentro. ;Adivinas lo
que voy a hacer? Dale a la columna la misma clase hero-wrapper que hemos utilizado antes.
¢ Y sabes qué mas? Cada habilidad tiene una "Breve descripcion”. Vamos a afiadir otro bloque

de campo de entrada justo debajo.

Fijate en que una opcidn de este bloque es "tipo de vista". Pronto hablaremos mas sobre esto,
pero deberia coincidir con el "tipo" del contenido que estas extrayendo de Contentful. Hasta

ahora, tanto title como este shortDescription son tipos "cadena". Deja esto como div.

i Temporizador de pruebas! Pulsa "Publicar y continuar editando". Y... a ver qué tal queda. jMe

encanta! jAhadamos mas!

Anadir una imagen de Contentful

Cada habilidad tiene una imagen. Dentro de esa misma columna héroe, aflade otro bloque de
entrada Contentful en la parte inferior. Se llamara image... y el tipo sera "activos
referenciados". Tienes que establecer una anchura y una altura. Hagamos 200 por 200. Publica

eso... actualiza y... jya estamos en marchal

Una ultima cosa: renderizar el contenido de la habilidad debajo de todo. Por cierto, podriamos
renderizarlo en la misma zona... o utilizar la zona de abajo. Las zonas no importan mucho en la

mayoria de los casos.

Utilizar un bloque de 2 columnas

Pero hagamos este punto mas interesante. Quiero mostrar el contenido de la habilidad a la
izquierda y un anuncio a la derecha. Para ello, utiliza por primera vez un bloque de 2 columnas.
Ajustalo a 66, 33 para que el lado izquierdo ocupe la mayor parte del espacio. Ahade un titulo a
la parte izquierda y conviértelo en un h3 con el texto "La Técnica:". Debajo, arrastra un campo

de entrada de contenido.

Este... si voy a comprobar mis campos... se llama technique y contiene texto enriquecido. Si
lo modificaras en Contentful, verias un editor de texto enriquecido... y el valor final es HTML.

Asi que escribe technique, mantenlo como div y selecciona Richtext.

Renderizar una entrada relacionada de Contentful

Por ultimo, en el lado derecho, afiade un campo de entrada Contentful mas. Vuelve a mirar el
modelo de contenido de Habilidades... y desplazate un poco hacia abajo. El que queremos
utilizar se llama advertisement, y es de tipo "Entrada referenciada". Si, si editaras una
habilidad, elegirias el Anuncio de la lista de Anuncios que tenemos en Contentful. Es como una

relacion de base de datos.

De todos modos, introduce advertisement, pulsa "Publicar y continuar editando"... actualiza
y... jbien! Mas o menos genial. Necesitamos un contenedor para introducirlos. Ya tenemos una

columna, asi que haz clic en "Envolver en contenedor".

Y... si... aunque a esto también le vendria bien algo de margen superior. En esa misma
columna, afade una clase: my-3. Publica esto... y vuelve a cargar. jMucho mejor! Aunque, el
Anuncio sélo esta imprimiendo una URL... no renderizando un anuncio. Eso es porque

Contentful no sabe como renderizar el tipo de contenido "Anuncio". Pronto lo solucionaremos.

Pero primero, vamos a arreglar nuestras paginas Skill anteponiendo a todas las URL el prefijo
/skills.

Chapter 17: Personalizar el Slugger de Contentful

Antes de que sigamos personalizando el aspecto de nuestro sitio, quiero arreglar las URL de
las habilidades para que en lugar de ser /mashing, la pagina sea /skills/mashing.
Recuerda: el hecho de que nuestro contenido Contentful tenga instantaneamente URL en
nuestro sitio proviene del paquete Contentful que instalamos antes. Pero esa magia no tiene
nada que ver con los Disefos. Por tanto, personalizar esta URL también es especifico de

Contentful, no de Layouts. Pero... Realmente quiero arreglarlo.

Crear la clase Slugger

En el directorio src/Layouts/, crea una nueva clase llamada ContentfulSlugger. Haz que
implemente EntrySluggerInterface... y genera el unico método que necesitamos:
getSlug():

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 2
namespace App\Layouts;

use Netgen\Layouts\Contentful\Entity\ContentfulEntry;
use Netgen\Layouts\Contentful\Routing\EntrySluggerInterface;

class ContentfulSlugger implements EntrySluggerInterface

{

10 public function getSlug(ContentfulEntry $contentfulEntry): string
11 {

12 // TODO: Implement getSlug() method.

13 }

14 }

O 00 N O U1 b W

Vamos a configurar las cosas para que se llame a este método cuando se creen las URL
dinamicas de todas las entradas de Contentful. Nos permitira controlar el "slug", que en

realidad es la URL de cada elemento.

Para facilitarte las cosas, utiliza FilterSlugTrait para acceder a un método que utilizaremos

dentro de un minuto:

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 5

6 use Netgen\Layouts\Contentful\Routing\EntrySlugger\FilterSlugTrait;
T /7 ... lines 7 - 8

9 class ContentfulSlugger implements EntrySluggerInterface

10 {

11 use FilterSlugTrait;
T // ... lines 12 - 20
21}

Vale, en Contentful tenemos tanto Habilidades como Anuncios. Pero en realidad no queremos
que los anuncios tengan su propia pagina. Por desgracia, con la integracion de Contentful, no
hay forma de desactivar las URL para un tipo de contenido especifico. Hablaré de como

solucionarlo en un minuto.

En cualquier caso, este método se pasara tanto a las habilidades como a los anuncios. Utiliza
la nueva funcién PHP match() para que coincida con
$contentfulEntry->getContentType()->getId(). Eso devolvera el nombre interno de
cada tipo, que puedes encontrar en Contentful. Si es skill, devuelve /skills/ y luego

$this->filtersSlug() -que viene del rasgo- pasando $contentfulEntry->get('title'):

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 8

9 class ContentfulSlugger implements EntrySluggerInterface

10 {

T // ... lines 11 - 12

13 public function getSlug(ContentfulEntry $contentfulEntry): string
14 {

15 return match ($contentfulEntry->getContentType()->getId()) {
16 'skill' => '/skills/'.$this->filterSlug($contentfulEntry-

>get('title')),

T // ... lines 17 - 18
19 }s
20 }
21 }

Para advertisement, devuelve /_ad para todos ellos:

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 8

9 class ContentfulSlugger implements EntrySluggerInterface

10 {

T // ... lines 11 - 12

13 public function getSlug(ContentfulEntry $contentfulEntry): string

14 {

15 return match ($contentfulEntry->getContentType()->getId()) {

16 'skill' => '/skills/'.$this->filterSlug($contentfulEntry-
>get('title')),

17 ‘advertisement' => '/ ad',

T // ... line 18

19 s

20 }

21 }

Al menos, en este punto, sélo un anuncio podria tener una pagina en nuestro sitio: si el usuario

fuera a /_ad, coincidiria con el primero.

Al final, lanza una nueva Excepcion con "Tipo no valido":

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 8

9 class ContentfulSlugger implements EntrySluggerInterface

10 {

T /... lines 11 - 12

13 public function getSlug(ContentfulEntry $contentfulEntry): string

14 {

15 return match ($contentfulEntry->getContentType()->getId()) {

16 'skill' => '/skills/'.$this->filterSlug($contentfulEntry-
>get('title")),

17 'advertisement' => '/ ad',

18 default => throw new \Exception('Invalid type'),

19 s

20 }

21 }

Asi que, si, en este punto, los anuncios seguiran teniendo su propia pagina. No hay forma de
desactivar eso desde el principio. Pero si te importa lo suficiente, yo asignaria todos los
anuncios a la misma URL o patron de URL de esta forma. Luego crearia una ruta y un

controlador con la misma URL y devolveria un 404. Esa ruta tendra prioridad sobre la dinamica.

Etiquetar y configurar el Slugger

Para decirle a Contentful que utilice nuestro slugger, necesitamos, por supuesto, jdarle una
etiqueta! Ahade #[AutoconfigureTag] y éste se llamara
netgen_layouts.contentful.entry_slugger. Esto también necesita una opcién type...

que puedes establecer en cualquier cadena. Utilicemosdefault_slugger:

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 7
8 use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;

10 #[AutoconfigureTag('netgen_layouts.contentful.entry slugger', ['type' =>
"default_slugger'])]

11 class ContentfulSlugger implements EntrySluggerInterface

12 {

T // ... lines 13 - 22

23 '}

¢, Como se utiliza? En config/packages/, necesitamos crear un nuevo archivo de
configuracion para el paquete contentful de layouts. Llamémoslo

netgen_layouts_contentful.yaml.

Repite eso para la clave raiz. A continuacion, afiade entry_slug type, luego default

configurado con el tipo que hemos utilizado en nuestra etiqueta: default_slugger:

config/packages/netgen_layouts_contentful.yaml

1 netgen_layouts_contentful:
2 entry_slug_ type:
3 default: default_slugger

Esta curiosa sintaxis dice

“Para cada tipo de contenido en Contentful, utiliza default_slugger al generarla URL. Por

lo tanto, utiliza nuestro ContentfulSLlugger.”

Vale, jlisto! Pero... esto no se llama cuando recargamos la pagina. No. Se llama cuando
"sincronizamos" nuestro contenido desde Contentful. Bien, jvamos a resincronizar! En tu

terminal, ejecuta:

symfony console contentful:sync

Esto actualiza nuestra base de datos local con los ultimos datos de Contentful... y funcioné

bien. Pero cuando ejecutamos:

symfony console contentful:routes

iLas URL no cambiaron! Esto es una peculiaridad... 0 quizas una caracteristica para que las
paginas existentes no se rompan. En cualquier caso, una vez que se importa una ruta por

primera vez, su URL nunca cambia.

La forma mas facil de restablecer las cosas es eliminar la tabla de rutas y volver a importar

todo.

Y esto es bastante divertido. Podemos Ejecuta:

symfony console doctrine:migrations:migrate current-1

Eso anulara la migracion mas reciente, haciendo que se eliminen las tablas contentful y de

rutas. Vuelve a ponerlas con:

symfony console doctrine:migrations:migrate

Vuelve a sincronizar el contenido:

symfony console contentful:sync

Y ahora comprueba las rutas:

symfony console contentful:routes

iSi! jLa URL es /skills/mashing! Asi, en /mashing, obtenemos un 404 a la antigua usanza.

Pero /skills/mashing funciona.

Siguiente: aun no tenemos una pagina que enumere todas las habilidades. jVamos a arreglarlo!

Chapter 18: La pagina de lista de habilidades +
una cuadricula de habilidades

Gracias a la integracién con Contentful, ademas de nuestro tipo de valor doctrine_recipe,
ahora tenemos un segundo tipo de valor que puede cargar cosas de Contentful. Esto significa
que podemos mostrar listas y cuadriculas de habilidades dentro de cualquier disefio, como aqui

en nuestra pagina de inicio.

iVamos a probarlo! Publica este disefio... y edita el Disefio de la Pagina de Inicio. Ah, y

podemos eliminar esta antigua cuadricula con la que estabamos jugando antes.

Abajo, estamos representando el bloque Twig de featured_skills. Pero en realidad, si miras

nuestra plantilla, jestan totalmente codificados!

Anadir una cuadricula de habilidades

iNo hay problema! Ahade un bloque Rejilla... que ya esta configurado como "Coleccion manual”
iPero mira esto! jAhora podemos elegir entre seleccionar manualmente "Entradas de
contenido” o recetas! Y cuando hacemos clic en "ARadir elementos”, jel navegador de

contenidos ya funciona!

Selecciona unos cuantos... bien... luego publica esto. Actualiza. Um... jbien! Si se muestran...
pero solo el titulo. Buen comienzo. Para hacerlo un poco mejor, ve a la pestaia "Disefio"... y

envuelve esto en un contenedor.

Eso deberia, al menos, darnos algunos canalones. Ya esta. En ultima instancia, queremos que
se muestren como las habilidades codificadas que hay debajo. Y vamos a trabajar en ello en

unos minutos.

Anadir una pagina /habilidades

Pero antes de llegar ahi, ¢ qué tal una pagina /skills que enumere todas las habilidades?

Bueno, la integracion de Contentful no nos dio esta URL. Pero, jno hay problema! jPodemos

crearla nosotros mismos en Symfony!

Bueno, en realidad, jpodriamos hacerlo completamente en Contentful! Podriamos crear un tipo
de contenido "Pagina", crear una pagina "Habilidades", que podria convertirse en /skills,y
luego asignarla a un Disefo. Este es el tipo de cosas que harias normalmente cuando tienes un

CMS a tu alcance

Pero crearemos esta pagina de forma manual. Al fin y al cabo, los Disefos en realidad sirven
para ayudar a organizar el aspecto de las paginas existentes... en realidad no se trata de afadir

paginas dinamicas. Ese es un trabajo para un CMS.

En tu editor, abre src/Controller/MainController.php. Copia la accion homepage(),
pégala, cambiala a /skills, llamala app_skills y renombra el método a skills(). Parala

plantilla, renderiza main/skills.html.twig:

src/Controller/MainController.php

T // ... lines 1 - 8

9 class MainController extends AbstractController

10 {

T // ... lines 11 - 17

18 #[Route('/skills', name: 'app_skills')]

19 public function skills(): Response

20 {

21 return $this->render('main/skills.html.twig");
22 }

23 }

Ahora, en el directorio templates/main/, crea esto: skills.html.twig. Empecemos por lo

mas pequeno posible: extender nglayouts.layoutTemplate:

templates/main/skills.html.twig

1 {% extends nglayouts.layoutTemplate %}

Genial. Ya que estamos aqui, abre base.html.twig y enlaza con esto. Busca "Habilidades",

ahi esta el enlace. Establece el href en {{ path('app_skills') }}:

templates/base.html.twig

1
2
)

19

20

21

22
0

33

34
)

38

39

40
41

I
48
49
50

I
68
69
70

<!DOCTYPE html>
<html>
// ... lines 3 - 18
<body>
{% block layout %}
{% block navigation %}
<nav class="navbar navbar-expand-1lg navbar-light bg-light">
// ... lines 23 - 32
<div class="collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
// ... lines 35 - 37
<li class="nav-item">
All
Skills
</1i>

// ... lines 42 - 47
</div>
</nav>
{% endblock %}
// ... lines 51 - 67
{% endblock %}
</body>
</html>

iMe gusta! Actualiza, prueba el enlace de la cabecera y... jla pagina funciona!

¢, Anadir contenido manualmente?

Para poner contenido en esta pagina, jtambién podriamos hacerlo manualmente escribiendo

codigo en nuestra app! La biblioteca Contentful que instalamos antes tiene un servicio

ClientInterfaceque podriamos utilizar para obtener todas estas competencias de Contentful

en nuestro controlador.

Pero en lugar de eso, vamos a tomar el camino mas facil y dejar que los disefios obtengan las

habilidades por nosotros. Ah, pero antes de hacerlo, vuelve a skills.html.twig, anade

un{% block title %}, escribe "Todas las habilidades" y luego {% endblock %} :

templates/main/skills.html.twig

1
2
3

{% extends nglayouts.layoutTemplate %}

{% block title %}All Skills{% endblock %}

Esto, como probablemente sepas, controla el titulo de la pagina. Hago esto aqui porque el
bloque title en realidad no es algo que puedas controlar a través de Maquetaciones.
Recuerda: todo lo que construimos en nuestra maquetacion pasa a formar parte de un bloque

llamado layout.

Anadir el diseno de la lista de habilidades

Bien, pulsa "Publicar" en el Disefio de la pagina de inicio... y crea un nuevo disefo. Utilizaré mi

"Diseno 2" favorito y lo llamaré "Disefio de lista de habilidades".

Ya sabes cémo funciona. Empieza por enlazar la zona de cabecera... y la zona de pie de
pagina. A continuacion, vamos a crear otro héroe. Ailade una columna, dale una clase
hero-wrapper y pon dentro un bloque "Titulo" con "Todas las habilidades". Para molar aun

mas, afiade un bloque de texto debajo con algun contenido de introduccion.

iBuen comienzo! Publica la maquetacion... para que podamos ir a enlazarla a la pagina
/skills. Pulsa "AfRadir nueva maquetacion" y enlaza esto a la "Maquetacion de la lista de
habilidades". Luego ve a "Detalles". Esta vez mapearé a través de la Informacién de la Ruta,

establecida en /skills. Pulsa Guardar cambios.

Vamos a ver como queda nuestro primer intento. Y... jno esta mal!

Anadir la parrilla de habilidades

Ahora vamos a anadir lo importante. Vuelve al administrador de disefios y edita este diseio.

Debajo de la columna, afiade una nueva cuadricula. Cambiala de coleccién manual a coleccion
dinamica. El paquete Contentful nos ofrece dos nuevos "tipos de consulta", o formas de

"obtener" datos de Contentful. Utiliza la "Busqueda Contentful". Es la principal.

Esto te permite elegir qué tipos de contenido mostrar, como todos... 0 sélo habilidades. Luego
podemos ordenarlos, afadir una busqueda, omitir elementos o limitarlos. Es todo lo que

queremos, jdesde el principio!

¢ Qué aspecto tiene? Pulsa "Publicar". Seguro que lo adivinas. jSi! "Funciona"... imprimiendo el
titulo de cada habilidad. Oh, déjame al menos afadir esa clase "contenedor"... para obtener el

margen izquierdo y derecho.

Pero, jobviamente esto no es lo que queremos! Necesitamos poder darle estilo e imprimir mas

campos aparte del titulo. Tenemos el mismo problema en la pagina de inicio.

Y en realidad, jesto es aun mas complejo de lo que parece! Cuando personalizamos como se
muestra una cuadricula de habilidades, quiero poder hacer que esos elementos se vean de una
manera en la pagina de inicio, y de otra diferente en la pagina "Habilidades", probablemente

mas grandes y con mas campos impresos.

A continuacion: vamos a empezar a aprender el importantisimo tema de como podemos anular
y personalizar las plantillas de Disefios para que podamos hacer que las cosas se vean

exactamente como queremos.

Chapter 19: Temas y sustitucion de plantillas

Ahora podemos afadir mucho contenido dinamico a nuestro sitio, como estos bloques estaticos
de aqui arriba, cuadriculas o listas. Las cuadriculas y las listas pueden contener elementos de
Contentful o de nuestra entidadRecipe. Pero para que nuestro sitio brille de verdad,
necesitamos flexibilidad sobre el aspecto de estas piezas. Empecemos por lo mas sencillo,

anulando la plantilla que muestra el aspecto del bloque "Titulo" para toda nuestra aplicacién.

Encontrar plantillas de blogues en el perfilador

Para ello... primero tenemos que averiguar qué plantilla se encarga actualmente de representar
este bloque. Una forma facil de averiguarlo es ir a una pagina que muestre uno de estos
bloques, actualizarla y hacer clic en el icono Twig de la barra de herramientas de depuracion
web. Abajo, en la parte inferior, vemos todo el arbol. Y si nos fijamos bien, jah ja! jParece que

hay una plantilla lamada block/title.html.twig!

El propio Layouts también tiene una seccion de la barra de herramientas de depuracion web
realmente bonita. Si vas a "Bloques renderizados", muestra "Definicién de bloque: titulo",
"Texto", "Lista" y "Pie". Y, como hemos visto, el Titulo se renderiza mediante
title.html.twig.

Hola Temas

Observa que casi todas estas plantillas estan dentro de los directorios themes/standard/ .
Layouts tiene un concepto de temas, aunque no necesitaremos crear varios temas a menos
que estemos construyendo algun tipo de aplicacion multisitio. En nuestro caso, s6lo vamos a

utilizar el tema incorporado llamado standard.

Pero los temas siguen siendo importantes, porque cualquier cosa dentro de un tema puede ser
facilmente anulada colocando una plantilla en el lugar adecuado. Vamos a utilizar esa

convencion para anular la plantilla Titulo.

Anular la plantilla Titulo

iVamos a hacerlo! Primero, en el directorio templates/, asegurate de que tienes un
subdirectorio nglayouts/. Dentro de él, anade uno nuevo llamado themes/ ... seguido de otro
subdirectorio llamado standard/. Te habras dado cuenta de que estamos igualando la

estructura que hay aqui: nglayouts/themes/standard/.

Dentro de esto, como la plantilla de destino se llama block/title.html.twig, si creamos esa
misma ruta, nuestro title.html.twig ganara. Hazlo: afiade otro directorio llamado block/ y

un nuevo archivo dentro: title.html.twig. Para ver si funciona, escribe un texto ficticio:

templates/nglayouts/themes/standard/block/title.html.twig

1 OVERRIDING TITLES!!

iProbemos esto! Vuelve a la pagina Habilidades, actualiza y... no pasa absolutamente nada.
Eso es porque la primera vez que creamos este directorio themes/, tenemos que borrar la

caché.

php bin/console cache:clear

Hazlo... y después, vuelve a probar la pagina. jYupi! jAhora controlamos cémo se muestra el

bloque Titulo! jEI poder!

Hacer que la plantilla de titulo sea mas realista

Vale, pero aunque queramos personalizar como se muestra el Titulo... probablemente no
queramos empezar de cero. Seria mejor reutilizar parte de la plantilla principal, o al menos

utilizarla como referencia.

Pulsa Shift+Shift, busca title.html.twig, y selecciona "Incluir elementos no del

proyecto”. Abre la del nucleo desde nglayouts/themes/.

Vaya. Aqui pasan muchas cosas... incluido el hecho de que amplia otra plantilla:
block.html.twig. Abrela.

Contiene muchas funciones basicas, como leer la variable dinamica css_class, que contiene

las clases CSS que introducimos en el administrador. También gestiona si hay un contenedor o

no. jSon cosas utiles!

En title.html.twig, tiene codigo para saber si el titulo es 0 no un enlace y otras cosas.

Podriamos sustituir totalmente esta plantilla e ignorar todo esto si quisiéramos. Pero en lugar

de eso, copia la plantilla principal, pégala en nuestra version:

templates/nglayouts/themes/standard/block/title.html.twig

O 00 N O U1 »h W N B

=
(]

11
12
13
14
15
16
17
18
19

{% extends '@nglayouts/block/block.html.twig"' %}

{% import '@NetgenLayouts/parts/macros.html.twig' as macros %}

{% set tag = block.parameter('tag').value|default('hl') %}
{% set link = block.parameter('link') %}

{% block content %}

{# Located inside the "content"” block to include the context from the parent
template #}

{% set title = macros.inline_template(block.parameter('title"').value,
_context) %}

<{{ tag }} class="title">
{% if block.parameter('use_link').value and not link.empty %}
{{ nglayouts_render_parameter(link, {content: title}) }}
{% else %}
{{ title }}
{% endif %}
</{{ tag }}>
{% endblock %}

Y solo para demostrar que podemos, eliminemos esa clase title:

templates/nglayouts/themes/standard/block/title.html.twig

// ... lines 1 - 7

{% block content %}

// ... lines 9 - 11
<{{ tag }p>

// ... lines 13 - 17
</{{ tag }}»

{% endblock %}

iGenial! Ahora ve, actualiza y... vuelve a tener el mismo aspecto que antes. Pero aqui abajo, jla

clase title de <h1l> ha desaparecido!

Asi que la forma mas sencilla de controlar el aspecto de algo es encontrar la plantilla que lo

renderiza y anularla por completo utilizando esta estructura de directorios themes/ .

Volvamos a utilizar este truco para personalizar el aspecto de un campo "activo" de Contentful,
como este campo de imagen de habilidad. Pero por el camino, vamos a profundizar en algunos

conceptos de enorme importancia: las vistas en bloque y los tipos de vista.

Chapter 20: Vistas en bloque y tipos de vista

Vamos a anular completamente otra plantilla. Entra en el Disefo de habilidad individual. Aqui
estamos utilizando una entrada de Contentful, que es un "Activo referenciado"... y se esta

renderizando como esta etiqueta de imagen. jGenial!

Blogue "Tipos de vista" / Plantillas

Este es un gran ejemplo de cdmo un unico tipo de bloque -por ejemplo, el tipo de bloque
"Campo de entrada Contentful"- puede tener varios tipos de Vista, lo que basicamente significa
"varias plantillas". Cada uno de estos diferentes tipos de Vista sera representado por una
plantilla diferente. En realidad vemos esto con muchos tipos de bloque diferentes, incluso con
el tipo de bloque Rejilla. Ahadiré uno aqui abajo temporalmente. Tiene un tipo de Vista que te
permite cambiar entre Lista y Cuadricula. Si, los bloques Lista y Cuadricula son en realidad el
mismo tipo de bloque internamente: solo tienen un tipo de vista diferente, lo que significa que

cada uno es representado por una plantilla distinta. Adelante, borra eso.

En cualquier caso, cada tipo de bloque puede tener uno o mas tipos de vista. Y en realidad

quiero profundizar un poco mas en este concepto de "vistas". Busca tu terminal y ejecuta:

php ./bin/console debug:config netgen_layouts view

Estoy depurando la configuracién que podria vivir bajo la tecla view debajo de la tecla

netgen_layouts:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T /... lines 2 - 12
13 view:
T // ... lines 14 - 36

Cuando ejecutes esto, veras un montén de configuraciones. Observa que hay varias claves

raiz, como parameter_view, layout_ view, y algunas otras. Pero en realidad soélo hay dos

que nos interesen: block_view, de la que hablaremos ahora, y item_view, que controla
como se representan los elementos de una Lista o Cuadricula. En realidad, ya vimos esto antes
cuando personalizamos como se representaba nuestro "elemento" Receta dentro de una Lista

o Cuadricula. Pronto hablaremos mas de ello.

La configuracion de la vista en bloque

De todos modos, para ampliar las vistas de bloque, ejecuta el mismo comando, pero afiade

.block_view

php ./bin/console debug:config netgen layouts view.block view

Las vistas de bloque, en pocas palabras, controlan cémo se muestran los tipos de bloque
completos. Por ejemplo, podemos ver cdmo se visualiza el "Bloque de titulo"... o el "Bloque de

texto", o coOmo se visualiza el "Bloque de lista".

Esta configuracion block view puede tener varias claves debajo, como default, app,y
ajax.Y sabemos lo que significan. default significa que se utilizan en el frontend, app
significa que se utilizan en la seccion de administracion y ajax, que no es tan comun, se utiliza
en el frontend para las llamadas AJAX. Asi que para anular la plantilla del frontend para un
bloque, en realidad queremos decir que queremos anular su "vista" de bloque bajo la clave
default.

Vamos... a ampliarlo una vez mas afadiendo .default:

php ./bin/console debug:config netgen_layouts view.block view.default

La configuracion "coincidente

Estas son todas las vistas de bloque que se utilizaran en el frontend. Lo mas complicado de

éstas es la parte match.

Cuando defines una "vista de bloque", es bastante habitual definir la plantilla que debe
utilizarse cuando dos cosas coinciden. Busca "list\grid": es un gran ejemplo. Tiene dos
elementos match: block\definition se establece en list porque, técnicamente, el "Tipo
de bloque" para los bloques Lista y Cuadricula se llama 1ist. La segunda condicion de

coincidencia es block\view_type establecido en grid.

Juntas significan que si se esta renderizando un bloque cuyo block\definitiones list y

cuyo block\view_type es grid, utiliza esto.

Por cierto, ambas cosas pueden verse muy claramente desde la barra de herramientas de
depuracion web. Ve a la pagina de inicio, haz clic en la barra de herramientas de depuracion
web Disefios y ve a "Bloques renderizados". Aqui abajo... jmira esto! Puedes ver "Definicién de
bloque: jLista", "Tipo de vista: cuadricula"! Y luego apunta a la plantilla que se ha renderizado.

En este caso, se refiere a esta cuadricula de aqui.

Entonces... ¢ por qué el bloque Titulo es renderizado por title.html.twig? Podemos verlo
en la configuraciéon. Busca "titulo"... aqui lo tenemos. Esto dice: si el block\definitiones
title y el block\view_type es title, utiliza esta plantilla. Este es un ejemplo de un tipo de
Bloque que sélo tiene un tipo de Vista. Asi que, en la practica, ésta es la vista que se utiliza

para todos los bloques de titulo.

Buscar y anular |la vista de activos de campo de Contentful

Bien, recordemos nuestro objetivo original: anular la plantilla que renderiza esta imagen.
Sabemos que se trata de un "Campo de entrada Contentful" y que tiene un tipo de Vista

"Activos referenciados". Asi que... jpodemos encontrarlo aqui!

Busca "activos" y... jahi esta! Asi que si block\definition escontentful_entry field y
block\view_ type es assets, jésta es la plantilla! Esto significa que si queremos anular sélo

el tipo de Vista assets de la entrada Contentful, ésa es la plantilla que tenemos que anular.

Y si, podriamos haberlo encontrado muy facilmente yendo a la barra de herramientas de
depuracion web y encontrando alli la plantilla. Pero ahora entendemos un poco mejor como se
representan los bloques y como cada bloque puede tener varias vistas para que podamos
elegir como se representan. Mas adelante, afiadiremos un "tipo de vista" adicional a un bloque

existente.

Bien, manos a la obra. La ruta comienza con la normalnglayouts/themes/standard/, luego
necesitamos block/, seguida de esta ruta. Asi que dentro de nuestro directorio block/, crea
un nuevo subdirectorio llamado contentful_entry_field/.Y dentro de éste, un nuevo

assets.html.twig. Por ahora, solo diré ASSET:

templates/nglayouts/themes/standard/block/contentful_entry field/assets.html.twig

1 ASSET

Vale Gira hacia el frontend y... jsi! jLo ve al instante! jYa tenemos el control!

Hacer la plantilla mas elegante

Como antes, probablemente no queramos reemplazar toda la plantilla. En lugar de eso, abre la
plantilla principal - assets.html.twig - para que podamos robarla, tomarla prestada.

Temporalmente, copiala entera, pégala:

templates/nglayouts/themes/standard/block/contentful_entry field/assets.html.twig

1 {% extends '@nglayouts/block/block.html.twig"' %}

2

3 {% block content %}

4 {% set field_identifier = block.parameter('field_identifier').value %}
5 {% set field = block.dynamicParameter('field') %}

6 {{ dump() }}

7

8 {% block contentful entry field %}

9 {% if field is not empty %}
10 {% if field.type is constant('TYPE_OBJECT', field) or field.type is

constant('TYPE_ASSET', field) %}

11 <div class="field field-{{ field.type }} field-{{

field_identifier }}">

12 <img src="{{ field.value.file.url }}?h={{
block.parameter('height').value }}&w={{ block.parameter('width').value }}"
width="{{ block.parameter('width").value }}" height="{{
block.parameter('height').value }}" />

13 </div>

14 {% elseif field.type is constant('TYPE_ASSETS', field) %}

15 <div class="field field-{{ field.type }} field-{{
field_identifier }}">

16 {% for asset in field.value %}

17 <img src="{{ asset.file.url }}?h={{

block.parameter("height').value }}&w={{ block.parameter('width").value }}"
width="{{ block.parameter('width').value }}" height="{{
block.parameter('height').value }}" />

18 {% endfor %}

19 </div>

20 {% else %}

21 {{ 'contentful.field not_compatible'|trans({'%field identifier%':
field_identifier}, 'contentful') }}

22 {% endif %}

23 {% endif %}

24 {% endblock %}

25 {% endblock %}

Y... jsi! Funciona.

Contentful es bastante avanzado... y puedes ver que admite campos que contienen una sola
imagen, asi como multiples imagenes. Puedes mantener esto tan flexible como quieras, pero
también puedes hacerlo a tu gusto. Voy a simplificar drasticamente esta plantilla... y a sustituirla

por una imagen muy sencilla. Para el src, pegaré algo de cédigo:

templates/nglayouts/themes/standard/block/contentful_entry field/assets.html.twig

1 {% extends '@nglayouts/block/block.html.twig"' %}

3 {% block content %}

4 {% set field = block.dynamicParameter('field') %}
5

6

{{ dump() }}

<img src="{{ field.value.file.url }}?h={{ block.parameter('height"').value
}Y&w={{ block.parameter('width').value }}" />
7 {% endblock %}

Todas las partes Twig de este codigo estaban antes en la plantilla. Esto también muestra un
superpoder de Contentful en el que puedes controlar el tamafio de la imagen. Llamar
ablock.parameter() nos permite leer las opciones del administrador de disefios, donde antes

configuramos este bloque para que tuviera una anchura y una altura de 200.

iVeamos qué aspecto tiene! Actualiza. |Si! jParece que ha funcionado!

Elegir si mostrar o no opciones complejas

Pero quiero hacer una pequefia advertencia sobre la personalizacion de plantillas: asegurate de
no perder la flexibilidad que necesitas. Por ejemplo, sabemos que podemos afiadir clases CSS

adicionales a cualquier bloque a través del admin.

Si lo hiciéramos ahora, no funcionaria porque... jsimplemente no renderizariamos esas clases!
Y, eso podria estar bien. Pero si quieres admitirlas, tendras que asegurarte de afiadirlas. En
este caso podemos decir class="{{ css_class }}", que es una de las variables que vimos
antes. Y ya que estamos aqui, afiadamos también un atributo alt establecido en

field.value.title:

templates/nglayouts/themes/standard/block/contentful_entry field/assets.html.twig

T // ... lines 1 - 2

3 {% block content %}

$ // ... line 4

5 <img class="{{ css_class }}" src="{{ field.value.file.url }}?h={{

block.parameter('height').value }}&w={{ block.parameter('width').value }}" alt="
{{ field.value.title }}" />
6 {% endblock %}

Cuando probemos esto... jMe encanta! Ahi esta el atributo alt y ahi esta nuestra clase,

incluidas algunas clases principales que Layouts siempre afiade a esa variable.

Vale, acabamos de hablar de las vistas de bloque: como se configuran las plantillas para
bloques enteros. A continuacién, vamos a hablar de las vistas de elementos: como
personalizamos la plantilla que se utiliza al mostrar un elemento dentro de una cuadricula o

lista. Utilizaremos esto para dar estilo a nuestros elementos de habilidad.

Chapter 21: Inmersion profunda en las vistas de
elementos

Cuando se trata de personalizacién, puedes hacer mucho dafo mirando qué plantillas se estan
renderizando y utilizando el sistema de temas para anularlas. Pero hay algunos casos en los

qgue necesitaras ser aun mas especifico.

Por ejemplo, supongamos que queremos modificar la plantilla "elemento" para ver como se
muestra la cuadricula de habilidades en la pagina de inicio. Si compruebas aqui la barra de
herramientas de depuracién web y te desplazas hacia abajo... buscaré "contentful"... ah, ya
esta. Puedes vergrid.html.twig... que renderiza item/contentful_entry.html.twig.

Para personalizar el elemento, podriamos anular esa plantilla. Muy facil.

El problema es que, en Contentful, tenemos varios tipos de contenido: tenemos Habilidades y
Anuncios. Asi que si modificamos esta plantilla, la modificaremos tanto para Habilidades como
para Anuncios... y probablemente queramos que tengan un aspecto diferente. Entonces,

¢,como podemos resolver esto?

Profundizando en item_view Config

Antes hemos ejecutado debug:config netgen_layouts view y hemos hablado de las dos
secciones principales que hay aqui debajo: block_view (que controla como se muestran los

bloques) y item_view.

php ./bin/console debug:config netgen_layouts view.item_view

Como ya he dicho varias veces, algunos bloques, como Grid y List, muestran elementos
individuales. En esta configuracion de item _view es donde definimos esas plantillas. Y veras
algunas claves raiz familiares: default para el frontend, ajax para las llamadas AJAX 'y app

para el admin. Una vez mas, esto utiliza la configuracion match y... jeh! jVemos nuestra

entrada aqui! ; Recuerdas recipes_default ? Lo configuramos dentro de nuestro archivo de

configuracion, y es una de las dos plantillas de elementos reales que tenemos ahora mismo:

config/packages/netgen layouts.yaml

1 netgen_layouts:

T /7 ... lines 2 - 12

13 view:

14 item_view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

24 # this key is not important

25 recipes_default:

26 template: 'nglayouts/frontend/recipe_item.html.twig'
27 match:

28 item\value_type: 'doctrine_recipe’
$ // ... lines 29 - 36

Hay una para recetas, y luego Contentful tiene una para todos los elementos de Contentful.

Pero nuestro objetivo es anular esta plantilla s6lo cuando el elemento sea una habilidad, como
en este caso. ¢ Y como lo hacemos? Anadiendo nuestro propio item_view a esta lista que

coincide con ese unico tipo de contenido. jVamos a hacerlo!

Afadir un item_view personalizado

Por aqui... estamos bajo item_view, default para el frontend y tenemos la unica entrada de
antes: recipes_default. Vamos a afadir otra. LIamala contentful_entry/skill, aunque
esta clave en concreto no supone ninguna diferencia. Debajo de ella, pon template en

@nglayouts/item/contentful_entry, seguida de skill.html.twig:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

T // ... lines 24 - 28

29 contentful_entry/skill:

30 template: '@nglayouts/item/contentful_entry/skill.html.twig'
$ // ... lines 31 - 41

Antes, utilizabamos nglayouts sin el @... sélo porque te dije que nglayouts/ era un buen
directorio para organizar cosas. Internamente, Layouts utiliza @nglayouts en las rutas de sus
plantillas. ¢ Cual es la diferencia? Al afiadir el @, nos estamos enganchando al sistema de
temas. Asi, como tenemos un directorio templates/nglayouts/ con themes/standard/
dentro, utilizara nuestra plantilla. Puedes utilizar @nglayouts o simplemente nglayouts. Sélo

queria que entendieras la diferencia porque veras la sintaxis @nglayouts por todas partes.

Coincidencia con un solo tipo de contenido

La clave realmente importante aqui es match. Queremos que coincida sélo cuando estemos

trabajando con un contentful_entry. Vale, copia match de la config... y pega.

Pero tenemos que ser mas especificos. También necesitamos coincidir sélo cuando el tipo de
contenido sea una habilidad. Pero, ¢ cémo lo hacemos? ; Qué comparadores hay disponibles?
Hay una lista basica... pero, ¢ha afadido Contentful algin comparador adicional que podamos

aprovechar?

He aqui un pequenio truco para ver la verdadera lista de elementos de match. Es un poco

técnico, pero funciona de maravilla. Ejecuta:

php ./bin/console debug:container --tag=netgen_layouts.view_matcher

¢ Qué hace esto? Bueno, cualquiera puede crear un comparador personalizado, como
foo\bar. Para ello, creas una clase y le das esta etiqueta. Buscando todos los servicios con

esa etiqueta, podemos encontrar todos los matchers existentes en el sistema.

Y... jmira qué lista! Aqui hay uno interesante: contentful\content_type. Seguro que

podemos utilizarlo. Inténtalo: contentful\content_ type ajustado a skill:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T /7 ... lines 2 - 12

13 view:

14 item_view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

T // ... lines 24 - 28

29 contentful_entry/skill:

30 template: '@nglayouts/item/contentful entry/skill.html.twig'
31 match:

32 item\value_type: 'contentful_entry’
33 contentful\content_type: 'skill'

$ // ... lines 34 - 41

Bien, vamos a crear la plantilla. Dentro de themes/standard/, en lugar deblock/, esta vez,
crea un directorio llamado item/ ... luegocontentful_entry/, yluego skill.html.twig. De

momento pon un texto ficticio:

templates/nglayouts/themes/standard/item/contentful_entry/skill.html.twig

1 CONTENTFUL SKILL!

Vale, si esto funciona, cuando actualicemos, estos elementos -que son habilidades de
Contentful- deberian volver a renderizarse utilizando nuestra nueva plantilla. Pero cuando lo

intentamos... no cambia absolutamente nada. ¢ Qué ha ocurrido?

iOrden de configuracion incorrecto!

Vuelve a tu terminal y ejecuta

php ./bin/console debug:config netgen_layouts view.item_view

de nuevo. Todo parece correcto... excepto el orden. Esta de Contentful esta al principio de la

lista... y las nuestras nuevas estan al final. ;Y adivina qué? Cuando Layouts intenta averiguar

quée plantilla debe renderizar, lee la lista de arriba a abajo y encuentra la primera que coincide:

exactamente como funciona el sistema de enrutamiento de Symfony.

Asi, primero mira contentful_entry, ve que la value_type escontentful _entry...yla

utiliza. Nunca llega al contentful_entry/skill de la parte inferior.

Para solucionarlo, vamos a utilizar un elegante truco de configuracion de prefijo. Hagamoslo a

continuacion.

Chapter 22: Configuracion previa

Estoy bastante seguro de que nuestro nuevo item_view esta configurado correctamente.
Tenemos item\value_type: contentful entry, que sé que es correcto... y luego estamos
utilizando contentfullcontent_type ajustado a skill para que esto solo afecte a las
habilidades:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

$ // ... lines 24 - 28

29 contentful_entry/skill:

30 template: '@nglayouts/item/contentful_entry/skill.html.twig'
31 match:

32 item\value_type: 'contentful_entry’
33 contentful\content_type: 'skill'

$ // ... lines 34 - 41

Pero... parece que no funciona en el frontend. Antes, cuando ejecutamos debug: config, vimos
que el problema reside en el orden de la configuracion. Layouts lee de arriba abajo cuando
decide qué "vista" utilizar. Asi que mira ésta primero, ve que la value_type es
contentful_entry... y simplemente se detiene. Para solucionarlo, tenemos que invertir

nuestra configuracion.

Vale, entonces... s por qué esta en este orden para empezar? ;Por qué nuestra configuraciéon
aparece al final? Esto se debe a la forma en que Symfony carga la configuracion: primero carga
la configuracion del bundle - como la del paquete Contentful o Layouts - y luego carga nuestros
archivos de configuracién. Y ese suele ser el orden que queremos Nos permite anular la

configuracion establecida en los bundles.

Pero en este caso, queremos lo contrario. ; Como lo conseguimos? Pidiendo a Symfony que

preafiada nuestra configuracion.

Configurar el Prepend

En el directorio config/, crea un nuevo directorio llamado prepends/y mueve la
configuracion de Netgen Layouts a él. Esto evitara que Symfony cargue ese archivo de la forma

normal: vamos a cargarlo manualmente.

El siguiente paso es un poco técnico. En src/, crea una clase "extension" llamada, qué tal,

AppExtension. Voy a pegar el codigo: puedes cogerlo del bloque de codigo de esta pagina:

src/AppExtension.php

T // ... lines 1 - 2

namespace App;

use Symfony\Component\Config\Resource\FileResource;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use Symfony\Component\DependencyInjection\Extension\Extension;

use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;

O 00 N O U1 b W

use Symfony\Component\Yaml\Yaml;

10

11 class AppExtension extends Extension implements PrependExtensionInterface
12 {

13 public function load(array $configs, ContainerBuilder $container)
14 {
15 }
16
17 public function prepend(ContainerBuilder $container)
18 {
19 $configFile = _DIR__ . '/../config/prepends/netgen_layouts.yaml';
20 $config = Yaml::parse((string) file get contents($configFile));
21 $container->prependeExtensionConfig('netgen_layouts',
$config['netgen_layouts']);
22 $container->addResource(new FileResource($configFile));
23 }
24}

Esto carga nuestro archivo de configuracidon de forma normal... excepto que se le anadira una

extension.

Paso final. Para llamar a este método, abre la clase Kernel. Después

deuse MicroKernelTrait, anade configureContainer as baseConfigureContainer:

src/Kernel.php

0
11
12
13

0

21

// ... Llines 1 - 10
class Kernel extends BaseKernel
{

use MicroKernelTrait { configureContainer as baseConfigureContainer; }
// ... lines 14 - 20

}

Esto afade el método configureContainer de MicroKernelTrait a esta clase como haria

normalmente un trait... excepto que lo renombra abaseConfigureContainer. Hacemos esto

para poder definir nuestro propio método configureContainer (). Copia la firma

configureContainer() del trait, pégala, pulsa "OK" para afiadir las sentencias use y luego

llama a$this->baseConfigureContainer() pasando por $container, $loader y
$builder:

src/Kernel.php

0

6
7
8

0

11
12

0

15

16
17

0
20
21

// ... lines 1 - 5

use Symfony\Component\Config\Loader\LoaderInterface;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use
Symfony\Component\DependencyInjection\Loader\Configurator\ContainerConfigurator;
// ... Llines 9 - 10

class Kernel extends BaseKernel

{

// ... lines 13 - 14

private function configureContainer(ContainerConfigurator $container,
LoaderInterface $loader, ContainerBuilder $builder): void
{

$this->baseConfigureContainer($container, $loader, $builder);
// ... lLines 18 - 19

El método configureContainer() del trait se encarga de cargarservices.yaml y todos los

archivos de config/packages/. Todo eso son cosas buenas que queremos seguir haciendo.

Pero después de hacer eso, aflade una cosa mas:

$builder->registerExtension(new AppExtension()):

src/Kernel.php

T // ... lines 1 - 10

11 class Kernel extends BaseKernel

12 {

T // ... lines 13 - 14

15 private function configureContainer(ContainerConfigurator $container,
LoaderInterface $loader, ContainerBuilder $builder): void

16 {

17 $this->baseConfigureContainer($container, $loader, $builder);

18

19 $builder->registerExtension(new AppExtension());

20 }

21 }

De nuevo, si, esto es fastidiosamente técnico. Pero gracias a estas dos piezas, nuestra

configuracionnetgen_layouts.yaml estara preconfigurada.

iCompruébalo! Vuelve a ejecutar el comando debug:config:

php ./bin/console debug:config netgen_layouts view.item_view

Desplazate hacia arriba y... jsi! jNuestra configuracion esta ahora arriba! Y cuando

actualizamos... jwoohoo! jVemos el texto!

A continuacidn: vamos a hacer que esta plantilla se muestre exactamente igual que las
habilidades codificadas. A continuacion, crearemos una segunda plantilla de elementos para

personalizar la representacion del tipo de contenido "Anuncio" de Contentful.

Chapter 23: Plantilla de elementos Contentful

iNuestra plantilla "item" para habilidades ya se esta utilizando! Asi que, jvamos a terminarla!

Ya sabemos qué aspecto queremos que tengan las habilidades... asi que vamos a robarlo de
templates/main/homepage.html.twig. Busca el bloque featured_skills, copia el
aspecto de una de esas habilidades y pégalo en skill.html.twig. Afiladamos también
dump(item.object) en la parte superior. Ya hemos creado antes una plantilla de articulo, asi
que sabemos que item.object deberia darnos el "objeto" subyacente que representa esta

entrada de Contentful.

Si nos dirigimos y actualizamos... jgenial! Esto vuelca un objeto ContentfulEntry. Y, aunque
no puedas verlo desde aqui, esta clase tiene un método get() que podemos utilizar para leer

cualquiera de los datos subyacentes de Contentful.

Para las habilidades, si escarbamos un poco... tenemos campos como title y
shortDescription. jUsémoslos! Por ejemplo, en el <h3>, digamos

{{ item.object.get('title') }}.Y... jsi! Eso renderiza el titulo.

Para el , sustituye lo de asset() por item.object.get('image"), seguido de
.file.url, que es especifico de Contentful. Rellena también el atributo altcon

item.object.get('title').

Lo ultimo que tenemos que actualizar es la URL. Pero Si hubiéramos creado una pagina de
"demostracion de habilidades" en Symfony, jpodriamos utilizar la funcion de ruta de Twig y
enlazar a esa ruta! Sin embargo, cada pagina de habilidad se crea en realidad a través de una
ruta dinamica gracias al bundle Contentful. Y, para crear esas rutas, utiliza el sistema de rutas
CMF.

Asi que, para enlazar, tenemos que utilizar ese sistema. Por ejemplo,

path('cmf_routing object') y pasar _route object a item.object.

Si estuvieras utilizando Sylius o Ibexa CMS, utilizarias alguna funcion de su sistema para crear

este enlace: esto es especifico del sistema de enrutamiento CMF.

Si nos dirigimos a él y lo probamos... jsi! Y si hacemos clic en él... jdoble si!

Celebrémoslo eliminando el dump() ... y borrando el bloque featured_skillsde nuestra
plantilla de pagina de inicio. Ya no lo necesitaremos. Incluso podemos rehacer este <h2>
dentro del administrador de disefios. Hagamoslo: afiade un bloque Titulo llamado "Habilidades

destacadas", hazlo "Titulo 2"... y dale la misma clase CSS:text-center mb-4.

La Rejilla ya esta en un contenedor... pero queremos todo esto en un contenedor. Asi que
afiade una Columna, envuélvela en un Contenedor, mueve los bloques Rejilla y Titulo dentro de
ella... entonces ya no necesitaremos un Contenedor justo ahi. Elimina el bloque
"Caracteristicas Habilidades"... y finalmente pulsa "Publicar y continuar editando". Mientras

esperamos, elimina también ese bloque de la plantilla Twig.

Y ahora... jsi! jEl aspecto es perfecto!

La vista de elementos publicitarios

Vale, ya que estamos hablando de vistas de elementos, vamos a personalizar la plantilla de
elementos para nuestro otro modelo de contenido dentro de Contentful: Publicidad. S6lo vamos
a renderizarlo en un lugar, en una pagina especifica de habilidades justo... aqui. Vamos a

comprobarlo.

Publica este disefno... y luego edita el disefio individual de la habilidad. Antes hemos utilizado el
bloque Campo de entrada Contentful para mostrar el campo advertisements, que es una
"entidad referenciada". Si, si modificas una habilidad en Contentful, abajo en la parte inferior, el

campo "Anuncio" te permite elegir entre los Anuncios de nuestro sistema.

Haz clic en el icono Twig de la barra de herramientas de depuracion web... busca "elemento", y
desplazate hacia abajo.. No es ninguna sorpresa: esta utilizando la plantilla estandar "item" de

Contentful. Y, buena noticia, ya sabemos cémo anularla.

Ve a nuestra configuracion, copia la seccion contentful_entry/skill y pégala a
continuacion. A continuacioén, sustituye skill por ad para el nombre de la seccion, template
y, por ultimo, establece content_type en advertisement... porque ése es el nombre interno

de ese tipo en Contentful.

iVale! Vamos a afiadir esa plantilla. En contentful_entry, crea un nuevo archivo

llamadoad.html.twig... y luego simplemente afiade algo de texto: Advertisement.

Momento de la verdad. Vuelve, actualiza... jya lo tenemos! jHa sido facil!

Para el contenido real de la plantilla, simplemente pegaré algo. Una vez mas,
utilizaremos item.object.get() para leer el campo url. También hay un campo image y un

campo shortText. Y ahora... jya lo tenemos!

Lo siguiente: ¢ Qué pasaria si quisiéramos crear una Cuadricula de elementos en nuestro sitio,
pero hacer que esa Unica Cuadricula tuviera un aspecto diferente al de todas las demas
cuadriculas del sitio? Podemos hacerlo creando una "vista de bloque" adicional para un bloque

existente.

Chapter 24: Vistas de bloques y definiciones de
bloques

Vamos a crear un disefo para nuestra pagina de "receta individual" para poder personalizarla
un poco mas. Me encanta que podamos crear nuevos disefios sobre la marcha, siempre que

haya que modificar una pagina.

Anadir y asignar un nuevo diseno

Anade una nueva maquetacion, elige nuestra Maquetacién 2 favorita y llamala "Maquetacion de
receta individual". A estas alturas, ya conoces el procedimiento. Empieza por vincular la zona

del Encabezado... y luego la zona del Pie.

iGenial! Y luego, como vamos a aplicar esto a una pagina normal que ya existe en Twig, afiade

un bloque "Vista completa", que renderizara el bloque body de nuestra plantilla.

Un comienzo solido. Pulsa "Publicar”... para que podamos mapear esto. Aiiade un nuevo
mapeo, vinculalo a nuestro "Disefio de receta individual"... y pulsa "Detalles". esta vez, vamos a
vincularlo a través del nombre de la ruta. Para el nombre de la ruta, abre
src/Controller/RecipeController.php. Aqui esta: app_recipes_show. Pégalo, pulsa

"Guardar cambios" y... ja probar!

Aun no deberiamos ver ninguna diferencia y... no la vemos. Pero podemos ver que esta

utilizando nuestro disefo

Bien, jvamos a animar un poco esta pagina! Vuelve al administrador de disefos y edita el
"Diseno de receta individual". Afade una nueva Rejilla y cambiala por una "Coleccién
dinamica"... que utilice "Contentful Search". Como hicimos antes, carga Habilidades, muestra la

mas reciente primero y limita a 3.

Vale, si "Publicamos y seguimos editando"... y luego actualizamos... jguau! Es genial que ahora

podamos ponerlas en cualquier sitio. Aunque, envolvamos eso y contenedor. Y... ya esta.

Hasta ahora, todo esto es facil. ¢ Listo para la complicacion? Quiero personalizar el aspecto de
esta cuadricula: Quiero tener una receta grande a la izquierda y luego dos recetas mas
pequenas a la derecha. Pero no quiero cambiar el aspecto de la cuadricula en otras partes de
nuestro sitio, como en la pagina de inicio. Asi que la pregunta es como: ¢ podemos cambiar el

aspecto de esta cuadricula sélo en esta pagina?

Los tipos de vista cuadricula/lista

Haz clic en la cuadricula y ve a la pestafia de disefo. Resulta que una cuadricula es en

realidad un bloque "Lista" que tiene dos "tipos de vista": lista y cuadricula.

Dirigete a tu terminal y ejecuta:

php bin/console debug:config netgen_layouts view.block_view

Oh, pero escribe netgen correctamente. Esto muestra la configuracion de como se
representan los bloques. Busca la seccion default... y desplazate un poco hacia abajo. Aqui:
vemos los dos tipos de vista para los bloques de lista y de cuadricula. Como ya he
mencionado, resulta que en realidad ambos forman parte del mismo tipo de bloque llamado
list. Sélo son dos tipos de vista diferentes: uno llamado list y otro grid. Cuando cambias
el "tipo de vista" en el administrador de disefios, en realidad estas cambiando la plantilla que se

utiliza para mostrar ese bloque.

Definiciones de blogue

Ejecuta ese mismo comando, pero en lugar de view.block_views, marca

block_definitions:

php bin/console debug:config netgen_layouts block _definitions

Las definiciones de bloque es donde defines lo que son realmente los bloques. Asi, cada clave
raiz de esta configuracién representa un bloque diferente que podemos utilizar en el area de

administracion. Busca el que se llama list: aqui esta. Define cosas como qué campos de

formulario se muestran en el area de administracion y qué "tipos de vista" tiene. Tiene dos: lista
y cuadricula. Layouts lee esta configuracién para mostrar el elemento select de tipos de vista
en el area de administracion. Luego, una vez que seleccionamos el tipo de vista, utiliza la

configuracion deblock_views para saber qué plantilla debe mostrar.

Vale, basta de configuraciones profundas y teoria. Vamos a darnos una nueva forma de

representar listas creando un nuevo tipo de vista. Eso a continuacion.

Chapter 25: Vista de bloque personalizada

Este es el plan. Vamos a afiadir un nuevo "tipo de vista" a la definicién del bloque de lista.

Luego vamos a asignarlo a una plantilla a través de block_views.

Actualizar la "definicién de blogue

Para el paso 1, abre nuestro archivo netgen_layouts.yaml y, en cualquier lugar,
anadeblock _definitions. Esta configuracion puede utilizarse para crear bloques totalmente
nuevos o para cambiar opciones de bloques existentes, que es lo que queremos. Para ello,
tenemos que repetir la configuracion aqui: 1ist & view_types. Asi, 1list view_types y
luego afnadir el nuevo. Llamémoslo one_by two -esa clave puede ser cualquier cosa- y

démosle un nombre: 1x2 Featured Grid:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

T /... lines 2 - 12

13 block_definitions:

14 list:

15 view_types:

16 one_by two:

17 name: 1x2 Featured Grid
$ // ... lines 18 - 52

Solo con eso, si vamos y actualizamos el area de administracion... y hacemos clic abajo en la
cuadricula, jtenemos un nuevo tipo de vista! Si cambiamos a ella... no aparece nada en el area
de administracién. Y si pulsamos "Publicar y continuar editando”... en el frontend... tampoco se

muestra nada. |Si!

Haz clic en el enlace Disefos de la barra de herramientas web y... cerca de la parte inferior, ah.
Se esta mostrandoinvalid_block.html.twig. La definicién del bloque es list vy el tipo de
vista es 1x2 Featured Grid. El problema es que aun no hemos definido una "vista de bloque"

para esa combinacion. Asi que vuelve a "bloque no valido".

Anadir la vista de bloque Admin

Vale, en view, ya hemos creado varias "vistas de elemento". Ahora afiade block_viewpara
que podamos crear la primera de ellas. Vamos a registrar tanto una vista de administrador
como una vista de frontend. Porque... en el area de administracion, actualmente no se muestra
nada. Adade app para el admin y la siguiente clave no importa. Para la plantilla, como la vista
admin no es demasiado importante, vamos a reutilizar la plantilla "grid" del nucleo admin, que
puedes encontrar mediante el comando debug:config.

Es@NetgenLayoutsStandard/app/block/list/grid.html.twig.

Ahora anade match. Queremos utilizar esta plantilla si block\definition es listy
block\view_type es one_by_ two... asegurandonos de que coincide con la clave que hemos

utilizado antes en la definicién del bloque:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 18

19 view:

$ // ... lines 20 - 52

53 block view:

54 app:

55 list/one_by_two:

56 template:
'@NetgenLayoutsStandard/app/block/1list/grid.html.twig"'

57 match:

58 block\definition: list

59 block\view_type: one_by two

$ // ... lines 60 - 67

¢, Como sabia que debia utilizar block\definition y block\view_type ? jUtilizando nuestro

comando favoritodebug: config! Siempre es una buena guia a seguir.

En cualquier caso, esto deberia arreglar el area de administracion. Y... jlo hace!

Vista en bloque del frontend

Para la vista del frontend, duplica toda esa seccion... pero utiliza default. Esta clave esta
bien, no importa, y cambia la plantilla a, qué
tal,@nglayouts/block/list/one_by two list.html.twig.La seccion de coincidencia ya

es perfecta:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 18

19 view:

T // ... lines 20 - 52

53 block_view:

$ // ... Lines 54 - 60

61 default:

62 list/one_by_two:

63 template: '@nglayouts/block/list/one_by two_list.html.twig'
64 match:

65 block\definition: list

66 block\view_type: one_by two

Vale, jvamos a hacer esa plantilla! Ya
tenemostemplates/nglayouts/themes/standard/block/ ... asi que, crea el nuevo

subdirectorio 1isty luego el archivo: one_by_two_list.html.twig. Empieza diciendo 1x2:

templates/nglayouts/themes/standard/block/list/one_by two list.html.twig

1 1x2

iVamos a comprobarlo! En el frontend, actualiza y... jahi esta nuestro pequefo 1x2!

Personalizar la plantilla del frontend

iVamos a darle vida! Como esto representa un bloque "lista", nuestra plantilla probablemente
tenga acceso a alguna variable que represente los "elementos". Para hacer trampas, lo que
siempre es una buena opcién para los desarrolladores, echemos un vistazo a la plantilla de

rejilla principal: grid.html.twig del directorio themes/.

iVaya! Como muchas plantillas de nucleo, jaqui hay un monton de cosas! Puedes elegir lo que
quieres conservar o eliminar. Lo mas importante es esta variable collection_html: hacen un
bucle sobre collections[collection_identifier]... dondecollection_identifier es
en realidad sélo la palabra default. Asi que se repitecollections.default. Luego incluye
una plantilla. Esa variable templateName se establecera en algo como grid/ el numero de
columnas .html.twig. Por ejemplo, sila cuadricula esta configurada para utilizar 3 columnas,
utilizaria3_columns.html.twig. Esa plantilla afiade el div necesario para cada columna en
una configuracion de 3 columnas... y luego llama a nglayouts_render_result(). Eso

renderiza el "elemento".

De todos modos, si alejas el zoom, la plantilla basicamente hace un bucle sobre la variable

collectionsy llama a nglayouts render_result() en cada una de ellas.

De vuelta a nuestra plantilla, voy a pegar un cédigo que hace algo parecido:

templates/nglayouts/themes/standard/block/list/one by two list.html.twig

1 {% extends '@nglayouts/block/block.html.twig"' %}

2

3 {% block content %}

4 <div class="row">

5 {% for result in collections.default %}

6 <div class="col-sm-6 col-md-6 col-1g-4">

7 {{ nglayouts_render_result(result, null, block.itemviewType) }}
8 </div>

9 {% endfor %}

10 </div>

11 {% endblock %}

Si, ampliamos block.html.twig, igual que hace la plantilla principal, luego hacemos un bucle
sobre collections.default, afiadimos un div y mostramos cada elemento. Asi que esto es

efectivamente una versién mas simple de lo que hace una cuadricula.

¢ Y qué aspecto tiene? Actualiza y... jsi! jParece una cuadricula!

Pero recuerda el objetivo: una gran habilidad a la izquierda con dos habilidades mas pequeras
a la derecha. Para conseguirlo, pegaré la version 2 de mi plantilla. Aqui no hay nada especial.

En lugar de hacer un bucle, esto renderiza la tecla 0, luego las teclas 1y 2:

templates/nglayouts/themes/standard/block/list/one_by two_list.html.twig

1 {% extends '@nglayouts/block/block.html.twig"' %}

2
3 {% block content %}
4 <div class="row">
5 <div class="col-6">
6 {{ nglayouts_render_result(collections.default[@], null,
block.itemViewType) }}
7 </div>
<div class="col-6">
10 <div class="row">
11 <div class="col-6">
12 {{ nglayouts_render_result(collections.default[1], null,
block.itemViewType) }}
13 </div>
14 <div class="col-6">
15 {{ nglayouts render_result(collections.default[2], null,
block.itemViewType) }}
16 </div>
17 </div>
18 </div>
19 </div>

20 {% endblock %}
Y ahora... jsi! jEs exactamente lo que queria!

Sin embargo, te haré la misma advertencia que te hice antes cuando modificamos las plantillas
de los "elementos" principales. No estamos incluyendo todas las cosas personalizadas que hay
en la plantilla principal. Si necesitas soportar una opcién personalizada, asegurate de incluir

ese codigo.

Ocultar opciones de blogue para un tipo de vista de bloque

Y en realidad, una cosa de aqui -el numero de columnas- no es algo que necesitemos. Es algo
que podemos configurar para el bloque... pero no es relevante en absoluto cuando utilizamos

nuestro nuevo tipo de vista.

¢ Podriamos... ocultar esa opcidn al utilizar nuestro tipo de vista? |Si! Vuelve a tu terminal y

depura de nuevo la configuracion de block_definitions:

php ./bin/console debug:config netgen_layouts block_definitions

Busca one_by two. Podriamos configurar esta clave valid_parameters para eliminar una
opcion del bloque. El tipo de vista 1ist hace exactamente eso. No lo haré, pero asi es como

se hace.

Vale, vuelve al sitio y ve a la pagina "Todas las habilidades". Si... las cosas siguen sin estar
bien. En este disefio, utilizamos una cuadricula para representar los elementos. Y esa
cuadricula se ve bien en otras paginas, pero no aqui, donde se supone que las habilidades son
el contenido principal de la pagina. A continuacion, vamos a aprender como podemos

personalizar la representacion de estos elementos solo para esta cuadricula.

Chapter 26: Tipo de vista de elemento
personalizado

La cuadricula de habilidades de la pagina /skills tiene un aspecto terrible. Vamos a buscar el
disefio para eso: Disefo de lista de habilidades. Vale, esto es una cuadricula normal... y se
muestra como cualquier otra cuadricula del sitio. Quiero personalizarlo, pero no quiero que el
propio bloque de la cuadricula se muestre de forma diferente: tenerlo en mosaico asi esta muy
bien. Lo que realmente quiero es cambiar como se muestra cada elemento dentro de la

cuadricula... pero solo en esta situacion. ¢ Como podemos hacerlo?

Hola "Tipos de vista de elementos”

Ve a tu terminal y ejecuta nuestro comando favorito debug:config, esta vez en

block_definitions:

php ./bin/console debug:config netgen_layouts block definitions

Esta es, como hemos aprendido, la configuracién de todos los bloques de nuestro sistema. Y
imira esto! Una parte de la configuracion de la que aun no hemos hablado es
item_view_types. Para cada "tipo de vista de bloque", como one_by two, list, o grid,

existe tambiénitem_view_types. Hasta ahora, todas ellas tienen una sola llamada standard.

No es muy comun, pero para un determinado tipo de vista -como one_by two o list - puedes
especificar multiples formas de representar los elementos dentro de ese tipo de vista. Estas se
denominan item_view_types. Standard es la predeterminada, y significa que los elementos

se mostraran de la forma "normal".

Asi que éste es nuestro objetivo: para el tipo de vista grid existente, vamos a afiadir un nuevo
"tipo de vista de elementos". A grandes rasgos, esto nos permitira, al configurar una cuadricula,

elegir una forma diferente de mostrar los elementos.

Para empezar, en nuestra configuracion, busca block_definitions. Actualmente
tenemoslist, view_types,y one_by two.Ahora afiade grid para que podamos anular ese
tipo de vista existente. Aiade item_view_types con uno nuevo llamado, qué
tal,skill big view. Veras como utilizamos esa clave en un segundo. Dale también un

nombre legible por humanos:

config/prepends/netgen_layouts.yaml

1 netgen layouts:

T // ... lines 2 - 12

13 block_definitions:

14 list:

15 view types:

T // ... lines 16 - 17

18 grid:

19 item_view_types:

20 skill big view:

21 name: Skills Big View
$ // ... lines 22 - 77

¢ Qué ha hecho eso? Actualiza el area de administracion... haz clic abajo en la Cuadricula... y
asegurate de que estas en la pestaia "Disefio". Tenemos un nuevo "Tipo de vista de articulo"
seleccionado! Aparece "Estandar", que es la predeterminada, y luego nuestra nueva "Gran vista
de habilidades"!

Seleccionala y pulsa "Publicar y continuar editando". ; Qué cambiara esto en el frontend
cuando actualicemos? Absolutamente nada Eso es porque ahora necesitamos una nueva "vista

de elemento" que coincida con esto.

Anadiendo la "Vista de elemento"” para el nuevo "Tipo de vista
de elemento”.

De vuelta en nuestra configuracion, desplazate hasta item _views. Debajo de default, copia

la seccion contentful_entry/skill y pégala arriba.

Lo ponemos arriba porque el orden es importante: necesitamos que esta nueva vista de
elemento pueda coincidir antes que la otra. Observa. Llama a

estocontentful entry/skill big view y cambia la plantilla
a@nglayouts/item/contentful_entry/skill big view.html.twig. Seguimos queriendo

gue coincida cuando item\value_type sea contentful entry y

contentful\content_typesea skill... pero so6lo si el emparejador llamado

item\view_type esigual a la clave que creamos antes skill big view:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 22

23 view:

24 item_view:

$ // ... lines 25 - 31

32 # default = frontend

33 default:

T // ... lines 34 - 38

39 contentful_entry/skill_big view:

40 template:
'@nglayouts/item/contentful_entry/skill big view.html.twig'

41 match:

42 item\value type: 'contentful entry'

43 contentful\content_type: 'skill'

44 item\view_type: 'skill big view'

$ // ... lines 45 - 77

Gracias a esto, si el usuario selecciona este como su "Tipo de vista de elemento” para una
cuadricula de habilidades, entonces los tres coincidiran. Pero si el usuario elige el tipo de vista

de elemento por defecto Standard, no coincidiria con esto... pero si con lo de abajo.

Vamos a anadir la plantilla. Dentro de item/contentful_entry/, crea el nuevo

archivo:skill big view.html.twig. Dentro, digamos BIG VIEW:

templates/nglayouts/themes/standard/item/contentful_entry/skill _big view.html.twig

1 BIG VIEW

iVamos a probarlo! Asegurate de que la plantilla esta publicada... y luego en el frontend... jya lo
tenemos! jEl resto es facill Como ya hemos creado varias plantillas de vistas de articulos... Me

limitaré a pegar el resto. Aqui no hay nada nuevo.

Pero ahora... jsi! Este es el aspecto que queremos.

Cambiar la "vista de articulo" articulo por articulo

Por cierto, ahora que nuestra vista de bloque "Rejilla" tiene multiples "tipos de vista de
elemento" -esa es nuestra configuracion aqui arriba- tenemos el poder, elemento por elemento,

de controlarlo. 4 Ves este "Anular tipo de vista de ranura"? Esto basicamente dice;

“iYo Layouts! Quiero cambiar el primer elemento de esta lista para que utilice el tipo de vista

" 7

"Estandar".

Pulsaré "Publicar y continuar editando" y ahora... jpuedes ver que solo el primer elemento
utiliza el tipo de vista Estandar! Eso... obviamente no es lo que queremos en nuestro sitio, asi

que volveré atras y utilizaré "Sin anulaciones". Pero es un concepto muy potente.

Y... jguau! jSolo queda un capitulo! Un problema comun con los Disefios es trabajar con el
espaciado vertical: simplemente asegurarnos de que el espaciado es correcto entre todos
nuestros componentes. Podriamos controlarlo afiadiendo clases CSS a los bloques
individuales. Pero, ¢ no estaria bien que todos los bloques del sistema tuvieran un bonito
desplegable en el que pudiéramos seleccionar los margenes superior e inferior
automaticamente? ; Cémo podemos modificar un bloque existente, o incluso todos los bloques

de nuestra aplicacion? Ese es el trabajo de un plugin de bloques, y Eso a continuacion.

Chapter 27: Bloquear Plugins

iMiranos! Hemos llegado al ultimo tema del tutorial. Ya hemos transformado nuestro sitio
estatico en uno en el que podemos reordenar el disefio de cada pagina, mezclarlo con codigo
personalizado de plantillas Twig y afiadir contenido dinamico. Eso es... algo impresionante. Por
supuesto, no hemos cubierto todo lo que puedes hacer con los Disefos, pero ahora eres

realmente peligroso.

¢ Crear un blogue personalizado?

Un tema que no hemos tratado es como crear un bloque totalmente nuevo, pero esta
documentado y, a estas alturas, creo que no seria demasiado dificil. 4 Por qué deberias crear
un bloque personalizado? Supongamos que tienes algo superpersonalizado como nuestra area
"Héroe" o esta area "suscribirse al boletin", que en realidad esta potenciada por el paquete UX

Live Component de Symfony, que le da el elegante comportamiento Ajax.

En cualquier caso, si quieres algo asi en tu pagina, la forma mas sencilla de afiadirlo es... como
hice yo en este proyecto: poner la logica en Symfony, renderizar dentro de un bloque Twig, y

luego incluir ese bloque Twig dentro de Layouts.

¢ Pero qué pasa si queremos que el usuario administrador pueda anadir esto a varias paginas
cuando quiera? Entonces seria util crear un bloque personalizado. Los bloques personalizados
también pueden tener opciones, asi que incluso podrias permitirles personalizarlo de alguna

manera.

Plugins del Bloque Hola

De todos modos, hagamos un ultimo reto relacionado con los bloques: crear un plugin de
bloques. Ve a una pagina de demostracién de habilidades. Hmm, probablemente nos vendria
bien un poco mas de margen entre estos bloques. Y esa es una necesidad bastante comun.
Podriamos manejar esto afiadiendo una clase CSS que establezca el margen. Pero quiero

hacerlo aun mas facil.

Ve al administrador de Disefnos y edita el Disefio de habilidad individual. Bien, supongamos que
queremos anadir algo de margen aqui. Para ello, quiero que el usuario administrador pueda
hacer clic en cualquier bloque del sistema -por ejemplo, este bloque de columnas-y, en la
pestafa de disefo, seleccionar el margen superior o inferior que necesite de un nuevo campo

de formulario.

Es un objetivo bastante descabellado... jporque, para conseguirlo, necesitamos poder modificar
todos los bloques del sistema! Afortunadamente, ése es exactamente el objetivo de un plugin

de bloque: ampliar uno -o todos- los bloques.

Crear el complemento de blogue

Manos a la obra. En el directorio src/Layouts/, crea una nueva clase PHP llamada, qué tal,
VerticalWhitespacePlugin. Tiene que implementar PluginInterface. Pero en la practica,
extendemos una clase Plugin que implementa esa interfaz por nosotros. Ve a "Cédigo"-
>"Generar", o Command+N en un Mac, e implementa el unico método que necesitamos:

getExtendedHandlers():

src/Layouts/VerticalWhitespacePlugin.php

? /... lines 1 - 2

3 namespace App\Layouts;

4

5 use Netgen\Layouts\Block\BlockDefinition\Handler\Plugin;
6

7 class VerticalWhitespacePlugin extends Plugin

8 {

9 public static function getExtendedHandlers(): iterable
10 {
11 // TODO: Implement getExtendedHandlers() method.
12 }
13}

Vale, cada bloque del sistema -es decir, cada elemento de aqui del menu de la izquierda- tiene
una clase detras llamada manejador de bloques. Nuestro trabajo en getExtendedHandlers()
es devolver un iterable de todos los "manejadores" que queramos extender. Por ejemplo, si
so6lo quisieras extender el bloque del titulo, podriasyield TitleHandler::class. ;Como
sabia que debia utilizar esa clase? Bueno, la mayoria de las veces puedes adivinarlo: el bloque
de titulo tiene un TitleHandler. Pero si quieres mirar mas a fondo, puedes ver todos los

manejadores del sistema ejecutando:

php bin/console debug:container --tag=netgen_layouts.block_definition_handler

De todos modos, en nuestro caso, queremos anular cada bloque. Asi que
podemosyield BlockHandlerDefinitionInterface::class, porque cada manejador de

bloque debe implementar esa interfaz:

src/Layouts/VerticalWhitespacePlugin.php

$ // ... lines 1 - 4

5 use Netgen\Layouts\Block\BlockDefinition\BlockDefinitionHandlerInterface;
T // ... lines 6 - 7

8 class VerticallWhitespacePlugin extends Plugin

9 {
10 public static function getExtendedHandlers(): iterable
11 {
12 yield BlockDefinitionHandlerInterface::class;
13 }
14 }

Y si, acabo de olvidar por completo la palabra Definition. jUy! Arreglaré esta mala interfaz

en un minuto.

Anadir un parametro/campo de bloque personalizado

Para saber qué hacer a continuacion, vuelve al menu "Cdédigo"->"Generar", selecciona "Anular
meétodos" y elige buildParameters() . No necesitamos llamar al método padre porque esta

vacio:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 - 6

7 use Netgen\Layouts\Parameters\ParameterBuilderInterface;

T /7 ... Lines 8 - 9

10 class VerticalWhitespacePlugin extends Plugin

11 {

$ // ... lines 12 - 16
17 public function buildParameters(ParameterBuilderInterface $builder): void
18 {

T // ... lines 19 - 27
28 }

Parametro es la palabra que utiliza Layouts para las opciones del formulario que puedes
personalizar en la parte derecha de la pantalla para cada bloque. Gracias a nuestro método
getExtendedHandlers(), cuando Layouts construya esas opciones para cualquier bloque,

ahora llamara a este método y podremos afadir nuevos parametros.

También necesitamos una declaracion use para este espacio de nombresParameterType:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 - 7

8 use Netgen\Layouts\Parameters\ParameterType;

9

10 class VerticallWhitespacePlugin extends Plugin

11 {

T // ... lines 12 - 16

17 public function buildParameters(ParameterBuilderInterface $builder): void
18 {

19 $builder->add(

20 'vertical whitespace:enabled’,

21 ParameterType\Compound\BooleanType::class,

22 [

23 "default_value' => false,

24 "label' => 'Enable Vertical Whitespace?',
25 "groups' => [self::GROUP_DESIGN],

26 1,

27)

28 }

29 }

iGenial! Como puedes ver, Layouts viene con un monton de "tipos de campo" incorporados,
comoBooleanField, que se mostrara como una casilla de verificacién. Su valor
predeterminado es falso y tiene una etiqueta. Ah, ¢y este grupo? ; Recuerdas que hay dos
pestafas: "Disefno" y "Contenido"? Aqui es donde determinas dentro de cual debe vivir tu

parametro.

Y la primera clave - vertical_whitespace:enabled es el nombre interno de este campo.

Veras como lo utilizamos en un minuto.

Antes de que lo intentemos, el futuro Ryan acaba de informarme de que... jhe metido la pata!
Tipico, desplazate hacia arriba. jEstoy cediendo la clase equivocada! Rendimiento

BlockDefinitionHandlerInterface: :class:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 - 4

5 use Netgen\Layouts\Block\BlockDefinition\BlockDefinitionHandlerInterface;
T // ... Llines 6 - 9
10 class VerticallWhitespacePlugin extends Plugin
11 {
12 public static function getExtendedHandlers(): iterable
13 {
14 yield BlockDefinitionHandlerInterface::class;

T // ... lines 16 - 28
29 }

Asi esta mejor.

Ahora vamos a probar. Actualiza... haz clic en cualquier bloque... déjame encontrar mi bloque

Titulo... y... jahi esta! jEn cualquier bloque vemos el nuevo campo!

Anadir parametros/campos "hijos

Pero, la idea real es que, si el usuario lo activa, le mostramos dos campos mas donde puede

seleccionar el margen superior o inferior.

Para ello, después del primer campo, pegaré dos parametros mas:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 -9

10 class VerticallWhitespacePlugin extends Plugin

11 {

T // ... lines 12 - 16

17 public function buildParameters(ParameterBuilderInterface $builder): void
18 {

19 $builder->add(

20 'vertical_whitespace:enabled’,

$ // ... lines 21 - 26

27)5

28

29 $builder->get('vertical_whitespace:enabled')->add(
30 ‘vertical_whitespace:top’,

31 ParameterType\ChoiceType::class,

32 [

33 "default_value' => 'medium’,

34 "label’ => 'Top Spacing',

35 'options' => [

36 "None' => 'none’,

37 'Small’ => 'small’,

38 '"Medium' => 'medium’,

39 'Large' => 'large',

40 1,

41 ‘groups’ => [self::GROUP_DESIGN],
42 1,

43)

44

45 $builder->get('vertical_whitespace:enabled')->add(
46 ‘vertical_whitespace:bottom’,

47 ParameterType\ChoiceType::class,

48 [

49 "default_value' => 'medium’,

50 ‘label’ => 'Bottom Spacing’,

51 'options' => [

52 "None' => 'none’,

53 'Small’ => 'small’,

54 '"Medium' => 'medium’,

55 'Large' => 'large',

56 1

57 "groups' => [self::GROUP_DESIGN],
58 1,

59)5

60 }

61 }

Estos son basicamente como el primero. La gran diferencia es que, aqui arriba,
dijimos $builder->add() . Pero ahora tenemos
$builder->get('vertical_whitespace:enabled')y luego ->add() . Esto hace que estos

campos sean hijos del primero.

Esto esta muy bien. Actualiza y... vamos a buscar el bloque Columna. Haz clic en "Activar
espacio en blanco vertical". jGuau! jAparecen los otros dos campos! Hagamos un espaciado

superior "Medio" y un espaciado inferior "No". Publicalo.

Utilizar los parametros de la plantilla de bloque

Sin embargo, no deberia sorprenderte demasiado que cuando actualicemos la pagina... jno
ocurra absolutamente nada! Hemos afadido esas opciones... pero aun no las estamos

utilizando en ningun sitio. Para ello, necesitamos anular una plantilla.

Pensemos: queremos que este margen superior e inferior se aplique a todos los bloques del
sistema. Y, afortunadamente, todos los bloques del sistema acaban extendiéndose

ablock.html.twig: éste de aqui, en el directorio nglayouts/themes/ .

Copialo. Luego, anulalo a través del sistema tematico. Si seguimos la ruta... standard/block...
standard/block... el nuevo archivo deberia vivir aqui:block.html.twig. Pega el contenido

dentro.

Para asegurarte de que funciona, pon un poco de TEST:

templates/nglayouts/themes/standard/block/block.html.twig

O 00 N O U1 »h W N

10
11
12

13
14
15
16
17
18
19
20

iOk! Actualiza el frontend. jYupi! Si, definitivamente funciona. Vamos... quita eso.

En la parte superior de la plantilla, tenemos una variable llamada css_class, que esta

establecida en algunas clases principales. Y jeh! jLlama a block.parameter('css_class')!

Luego, utiliza |join(' ') para combinar todo esto en una cadena.

templates/nglayouts/themes/standard/block/block.html.twig

1

0

Estamos configurando las cosas para que podamos modificar facilmente esa variable. Aqui
abajo, justo antes de block_content, vuelve a crear esa variable css_class configurada

comocss_classes|join("'

{% set css_class

%
%

{% endif %}

Si, jeso es lo que lee el campo "Clase CSS" de las opciones del bloque!

Voy a eliminar ese join() ... y luego cambiaré el nombre de esta variable a css_classes:

{% set css _classes

A Ga

['ngl-block', 'ngl-' ~ block.definition.identifier,

~ block.viewType, css_class|default(block.parameter('css _class').value)]|join("
') %}

set css_id = css_id|default(block.parameter('css_id').value) %}

set set _container = block.parameter('set_container').value %}
if show_empty wrapper is not defined %}

{% set show_empty wrapper

set block_content = (block('content') is defined ? block('content') : '')|trim

if block_content is not empty or show_empty_wrapper %}
<div class="{{ css_class }}" {% if css_id is not empty %} id="{{ css_id }}"
endif %}>

{% if set container %}<div class="container">{% endif %}

{{ block_content|raw }}

{% if set _container %}</div>{% endif %}

['ngl-block', 'ngl-' ~ block.definition.identifier,
~ block.viewType, css_class|default(block.parameter('css_class').value)] %}

lines 2 - 21

templates/nglayouts/themes/standard/block/block.html.twig

$ // ... lines 1 - 8

9 {% set css_class = css_classes|join(' ') %}

10 {% set block content = (block('content') is defined ? block('content') : '')|trim
%}

$ // ... lines 11 - 21

Esta variable se utiliza en un montén de sitios diferentes y en plantillas hijo, asi que tenemos

que asegurarnos de que sigue establecida.

De todas formas, aqui arriba, ahora tenemos una matriz css_classes. jVamos a utilizarla! Voy

a pegar tres variables, cada una ajustada al valor de nuestros tres parametros:

templates/nglayouts/themes/standard/block/block.html.twig

T s/ ... lines 1 - 2

3 {% set set_container = block.parameter('set container').value %}

4

5 {% set use_whitespace = block.parameter('vertical_whitespace:enabled').value is

same as(true) %}

{% set whitespace_top = block.parameter('vertical whitespace:top').value %}

{% set whitespace_bottom = block.parameter('vertical whitespace:bottom').value %}
T // ... lines 8 - 29

Aqui es donde resulta util el nombre del parametro que utilizamos en la clase.

Ahora, muy sencillo, si use_whitespace, entonces anade algunas clases de margen. También

pegaré ese codigo:

templates/nglayouts/themes/standard/block/block.html.twig

T // ... lines 1 - 4

5 {% set use whitespace
same as(true) %}

block.parameter('vertical whitespace:enabled').value is

6 {% set whitespace_top = block.parameter('vertical whitespace:top').value %}

7 {% set whitespace bottom = block.parameter('vertical whitespace:bottom').value %}

8 {% if use_whitespace %}

9 {% set css_classes = css_classes|merge(['whitespace-top-' ~ whitespace top])
%}

10 {% set css_classes = css_classes|merge(['whitespace-bottom-' ~

whitespace_bottom]) %}
11 {% endif %}
$ // ... lines 12 - 29

Asi, para el margen superior, afadiremos un nuevo whitespace-top- seguido de

none,small, medium o large. Y lo mismo para el inferior.

Estas nuevas clases son totalmente inventadas: no forman parte del CSS de Bootstrap ni de
nada, pero podrias hacer esto mas inteligente para reutilizarlas. Pero para nosotros, si abres

assets/styles/app.css... cerca de la parte superior, jalla vamos!

assets/styles/app.css

T /... lines 1 - 12
13 .whitespace-top-small {

14 padding-top: 2rem;

15 }

16 .whitespace-top-medium {
17 padding-top: 4rem;

18 }

19 .whitespace-top-large {

20 padding-top: 8rem;

21 }

22 .whitespace-bottom-small {
23 padding-bottom: 2rem;
24}

25 .whitespace-bottom-medium {
26 padding-bottom: 4rem;
27 }

28 .whitespace-bottom-large {
29 padding-bottom: 8rem;
30}

T // ... lines 31 - 108

Antes del tutorial, ya he preparado esas clases.

Asi que... jdeberia funcionar! Muévete y actualiza. jYa esta! Nuestro bloque tiene un pequefno

espacio en blanco superior extra... que proviene de nuestra nueva clase.

Y... jlisto!, jWoo! jGran trabajo, equipo! jAhora eres un campedn de Layouts! Hacednos saber
qué cosas chulas estais construyendo con él. Y si tienes alguna pregunta, como siempre,

estamos a tu disposicidn en la seccidn de comentarios.

Muy bien, gracias y hasta la proxima.

With <3 from SymfonyCasts

