Codificacion cdésmica con
Symfony 7

Chapter 1: Configurando nuestra App Symfony

iBienvenido al primer tutorial de Symfony 7! Me llamo Ryan - vivo aqui en el mundo de fantasia
de Symfonycasts y... Estoy mas que emocionado de ser tu guia a través de esta serie sobre
Symfony, desarrollo web... chistes malos... animaciones espaciales, y lo mas importante,
construir cosas reales de las que podamos estar orgullosos. Para mi, es como si fuera la
persona afortunada que consigue darte un tour personal por el Enterprise... o por cualquier

cosa friki que te emocione mas.

Y eso es porque me encantan estas cosas. Crear bases de datos, construir bonitas interfaces
de usuario, escribir cddigo de alta calidad... es lo que me levanta de la cama por las mafanas.
Y Symfony es la mejor herramienta para hacer todo esto... y convertirme en un mejor

desarrollador por el camino.

Y ese es realmente mi objetivo: quiero que disfrutes de todo esto tanto como yo... y que te

sientas capacitado para construir todas las cosas increibles que tienes flotando en tu mente.

Lo que hace especial a Symfony

Ahora, una de mis cosas favoritas sobre la ensefianza de Symfony es que nuestro proyecto va
a empezar diminuto. Eso hace que sea facil de aprender. Pero luego, escalara
automaticamente a medida que necesitemos mas herramientas mediante un sistema de
recetas unico. Symfony es en realidad una coleccién de mas de 200 pequefias librerias PHP.

Asi que son un montén de herramientas... pero podemos elegir lo que necesitamos.

Porque, puedes estar construyendo una API pura... 0 una aplicacion web completa, que es en
lo que nos centraremos en este tutorial. Aunque, si estas construyendo una API, sigue los

primeros tutoriales de esta serie, y luego pasa a nuestros tutoriales sobre la API Platform. API
Platform es un sistema alucinantemente divertido y potente para crear APIs, construido sobre

Symfony.

Symfony también es rapidisimo, tiene versiones de soporte a largo plazo y se esfuerza mucho

en crear una experiencia agradable para el desarrollador, al tiempo que mantiene las mejores

practicas de programacion. Esto significa que podemos escribir codigo de alta calidad y hacer

nuestro trabajo rapidamente.

Vale, ya esta bien de hablar maravillas de Symfony. ¢ Listo para empezar a trabajar? Pues sube

a bordo.

Instalar el binario de Symfony

Dirigete a https://symfony.com/download. Esta pagina tiene instrucciones sobre como

descargar un binario independiente llamado symfony. Ahora bien, esto no es Symfony
propiamente dicho... es s6lo una pequena herramienta que nos ayudara a hacer cosas, como
iniciar nuevos proyectos Symfony, ejecutar un servidor web local o incluso desplegar nuestra

aplicacién en produccion.

Una vez que lo hayas descargado e instalado, abre un terminal y entra en cualquier directorio.

Comprueba que el binario symfony esta listo para funcionar ejecutandolo:

symfony --help

Tiene un montdn de comandos, pero solo necesitaremos unos pocos. Antes de iniciar un

proyecto, ejecuta también

symfony check:req

que significa comprobar requisitos. Esto asegura que tenemos todo lo necesario en nuestro

sistema para ejecutar Symfony, como PHP en la version correcta y algunas extensiones PHP.

Una vez que esto esté contento, jpodemos empezar un nuevo proyecto! Hazlo con
symfony new y luego un nombre de directorio. Yo llamaré al mio starshop. Mas adelante

hablaremos de ello.

symfony new starshop

https://symfony.com/download

Esto nos dara un proyecto pequefiito con solo las cosas base instaladas. Luego, iremos
afiadiendo mas cosas poco a poco por el camino. Pero mas adelante, cuando te sientas
comodo con Symfony, si quieres empezar mas rapidamente, puedes ejecutar el mismo

comando, pero con --webapp para obtener un proyecto con muchas mas cosas preinstaladas.

De todos modos, entra en el directorio - cd starshop -y luego escribiré 1s para comprobar
las cosas. jGenial! Conoceremos estos archivos en el proximo capitulo, pero este es nuestro

proyecto... jy ya esta funcionando!

Iniciando el Servidor Web symfony

Para verlo funcionando en un navegador, necesitamos iniciar un servidor web. Puedes utilizar
el servidor web que quieras: Apache, Nginx, Caddy, lo que sea. Pero para el desarrollo local,

recomiendo encarecidamente utilizar el binario symfony que acabamos de instalar. Ejecuta:

symfony serve

La primera vez que lo hagas, puede que te pida que ejecutes otro comando para configurar un

certificado SSL, lo cual esta bien porque asi el servidor admite https.

Y... jpam! Tenemos un nuevo servidor web para nuestro proyecto ejecutandose en

https://127.0.0.1:8000. Copia eso, gira a tu navegador mas favorito, pega y... jbienvenido a

Symfony 7! jEso es lo que iba a decir!

A continuacién, sentémonos, pidamos un té Earl Grey y hagamonos amigos de todos los

archivos de nuestra nueva aplicacion... que no son muchos.

https://127.0.0.1:8000/

Chapter 2: Conociendo nuestro pequefo proyecto

Vuelve a tu centro de comandos (también conocido como terminal). Esta primera pestafia esta

ejecutando el servidor web. Si necesitas detenerlo, pulsa Ctrl-C... y reinicialo con:

symfony serve

@ Tip

Puedes utilizar symfony serve -d para ejecutar el comando en "segundo plano" y poder

seguir utilizando esta pestafa del terminal.

Lo dejaremos asi y dejaremos que haga lo suyo.

Los 15 archivos de nuestro proyecto

Abre una segunda pestafia de terminal en el mismo directorio. Cuando ejecutamos el comando
symfony new, descargd un pequefio proyecto e inicializd un repositorio Git con una
confirmacion inicial. jEso estuvo muy bien! Para ver nuestros archivos, voy a abrir este

directorio en mi editor favorito: PhpStorm. Mas sobre este editor en unos minutos.

Ahora quiero que te des cuenta de lo pequeino que es nuestro proyecto Para ver la lista

completa de archivos confirmados, vuelve a tu terminal y ejecuta:

git 1s-files

Si, eso es. Solo hay unos 15 archivos confirmados en git

¢ Doénde esta Symfony?

Entonces... ;donde demonios esta Symfony? Uno de nuestros 15 archivos es especialmente

importante: composer. json.

composer.json

1A

T // ... lines 2 - 5

6 "require": {

7 "php": ">=8.2",

8 "ext-ctype": "*",

9 "ext-iconv": "*",

10 "symfony/console": "7.0.*",
11 "symfony/dotenv": "7.0.*",
12 "symfony/flex": "~2",

13 "symfony/framework-bundle": "7.0.*",
14 "symfony/runtime": "7.0.*",
15 "symfony/yaml": "7.0.*"

16 }s

T /7 ... lines 17 - 70

71 }

Composer es el gestor de paquetes de PHP. Su trabajo es sencillo: leer los nombres de los
paquetes bajo esta clave require y descargarlos. Cuando ejecutamos el
comando symfony new, descargd estos 15 archivos y también ejecutd composer install.

Eso descargd todos estos paquetes en el directorio vendor/ .

¢ Donde esta Symfony? Esta en vendor/symfony/ ... jy ya estamos utilizando unos 20 de sus

paquetes!

Ejecuta Composer

El directorio vendor/ no esta registrado en git. Se ignora gracias a otro archivo con el que

empezamos: .gitignore.

###> symfony/framework-bundle ###

/.env.local

/.env.local.php

/.env.*.local
/config/secrets/prod/prod.decrypt.private.php
/public/bundles/

/var/

/vendor/

##t#< symfony/framework-bundle ###

O 00 N O U1 h W N BB

Jany
[

Esto significa que si un comparero de equipo clona nuestro proyecto, no tendra este directorio.

iY no pasa nada! Siempre podemos repoblarlo ejecutando composer install.
Observa: Haré clic con el boton derecho y borraré todo el directorio vendor/. Y jhuy!

Si probamos ahora nuestra aplicacion, se estropeara. jMal rollo! Para arreglarlo y salvar el dia,

en tu terminal, ejecuta:

composer install

Y... jlisto! El directorio vuelve a y por aqui, el sitio vuelve a funcionar.

Los 2 directorios que te importan

Si volvemos a mirar nuestros archivos, solo hay dos directorios en los que tengamos que
pensar. El primero es config/: contiene... jconfiguracion! Aprenderemos lo que hacen estos

archivos por el camino.

El segundo es src/. Aqui es donde vivira todo tu cédigo PHP.

iY eso es todo! el 99% del tiempo estas configurando algo o escribiendo cédigo PHP. Eso

ocurre en config/ y src/.

¢ Qué pasa con los otros 4 directorios? bin/ contiene un unico archivo ejecutable console

que probaremos pronto. Pero nunca vamos a mirar o modificar ese archivo. El directorio

public/ se conoce como la raiz de tu documento. Cualquier cosa que pongas aqui -como una

imagen- sera accesible publicamente. También contiene index.php.

public/index.php

1 <?php
use App\Kernel;
require_once dirname(__DIR_).'/vendor/autoload runtime.php';

return function (array $context) {
return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);

O 00 N OO U1 b W N

1

Esto se conoce como tu "controlador frontal": es el archivo PHP principal que tu servidor web
ejecuta al inicio de cada peticion. Y aunque es superimportante... nunca editaras ni pensaras en

este archivo.

El siguiente es var/. Esto también se ignora desde git: es donde Symfony almacena los
archivos de registro y los archivos de caché que necesita internamente. Asi que muy
importante... pero no algo en lo que tengamos que pensar. Y ya hemos hablado de vendor/ .

iEso es todo!

Preparando PhpStorm

Ahora, antes de ponernos a codificar, he mencionado que yo utilizo PhpStorm. Eres libre de
utilizar el editor que quieras. Sin embargo, PhpStorm es increible. Y una gran razén es el
incomparable plugin Symfony. Si vas a PhpStorm -> Configuracion y buscas "Symfony", aqui
abajo bajo Plugins y luego Marketplace, podras encontrarlo. Descarga e instala el plugin si aun
no lo tienes. Después de la instalacion, reinicia PhpStorm. Luego hay un paso mas. Vuelve a la
configuracion y busca Symfony de nuevo. Esta vez tendras una seccion Symfony. Asegurate de
activar el plugin para cada proyecto Symfony en el que trabajes... de lo contrario no veras la

misma magia que Yyo.

iDe acuerdo! Empecemos a codificar y construyamos nuestra primera pagina en Symfony a

continuacion.

Chapter 3: Rutas, controladores y respuestas

Bien, ésta es la primicia. Wesley Crusher -el alférez favorito de todos en Star Trek- se ha

retirado de la Flota Estelar y colabora con nosotros para poner en marcha un nuevo negocio:
La Tienda Estelar de Wesley. Alguien tiene que romper el monopolio ferengi en el negocio de
reparacion de naves estelares de la galaxia, y nos ha contratado para construir el sitio que lo

haga. jEstamos a punto de darles a los ferengis una carrera por su latinio!

Creacion del controlador

Y todo empieza con la creacion de nuestra primera pagina. La idea detras de cada pagina es
siempre la misma. Primer paso: dale una URL chula. Eso se llama la ruta. Paso dos, escribir
una funcion PHP que genere la pagina. Eso se conoce como el controlador. Y esa pagina
puede ser HTML, JSON, arte ASCII, cualquier cosa.

En Symfony, el controlador es siempre un método dentro de una clase PHP. Asi que,
jnecesitamos crear nuestro primer codigo PHP! ; Donde vive el codigo PHP en nuestra

aplicacion? Exacto, en el directoriosrc/ .

Dentro de este directorio src/Controller/, crea un nuevo archivo. Normalmente
seleccionaria nueva "clase PHP", pero para esta primera vez, crea un archivo vacio. Haremos
cada parte a mano. LIdmalo MainController.php, pero puedes ponerle el nombre que

quieras.

Dentro, afiade la etiqueta open PHP, y luego di class MainController. Encima de esto,

afiade un espacio de nombres de App\Controller.

src/Controller/MainController.php

T // ... lines 1 - 2
namespace App\Controller;

{

3
4
5 class MainController
6
7}

Espacios de nombres y directorios

Bien, algunas cosas sobre esto. Primero, el hecho de que ponga esta clase dentro de un
directorio llamado Controller es opcional. Es s6lo una convencién. Podrias cambiarle el
nombre por cualquiera que sea la palabra klingon para Controller y todo seguiria igual... jy

probablemente seria mas interesante!

Sin embargo, hay algunas reglas sobre las clases PHP en general. La primera es que cada
clase debe tener un espacio de nombres y ese espacio de nombres tiene que coincidir con tu
estructura de directorios. Siempre sera App\ y luego el directorio en el que estés. Sin entrar en

demasiados detalles, es una regla que encontraras en todos los proyectos PHP.

La segunda regla es que el nombre de tu clase debe coincidir con el nombre de tu archivo
.php. Si te equivocas en cualquiera de estas dos cosas, recibiras un error de PHP diciendo

que no puede encontrar tu clase. Los Ferengi nunca cometen este error.

Crear el método controlador y la ruta

De todos modos, nuestro objetivo es crear un controlador, que es un método en una clase que
construye la pagina. Afade una nueva funcion publica y llamala homepage . Pero, de nuevo, el

nombre no importa. Y... jsi! Aun no esta hecho, jpero éste es nuestro controlador!

src/Controller/MainController.php

T // ... lines 1 - 4
class MainController

5
6 {

7 public function homepage()
8

9

{

Pero recuerda, una pagina es la combinacion de un controlador y una ruta, que define la URL
de la pagina. ¢ Donde ponemos la ruta? Justo encima del método controlador, utilizando una
funcidon de PHP llamada atributo. Escribe #[] y luego empieza a escribirRoute con mayuscula

R. jFijate en el autocompletado!

Cualquiera de las opciones funcionara, pero utiliza la de Attribute -que es mas nueva-y

luego pulsa tabulador. Cuando hice eso, ocurrié algo superimportante: mi editor afiadié una

declaraciénuse al principio de la clase. Siempre que utilices un atributo PHP, debes tener una

declaracion use correspondiente para €l en el mismo archivo.

Estos atributos funcionan casi como las funciones PHP: puedes pasar un monton de

argumentos. El primero es la ruta. Establécelaen /.

src/Controller/MainController.php

T // ... lines 1 - 4

5 use Symfony\Component\Routing\Attribute\Route;
6

7 class MainController

8 {

9 #[Route('/")]
10 public function homepage()
11 {
12
13 }
14 }

Gracias a esto, cuando alguien vaya a la pagina de inicio - / - jSymfony llamara a este método

controlador para construir la pagina!l

Controladores y respuestas

¢ Qué... deberia devolver nuestro método? Sélo el HTML que queremos, ¢ verdad? ;0O el JSON

si estamos construyendo una API?

Casi. La web funciona con un sistema bien conocido. Primero, un usuario solicita una pagina.

Dice:

“Oye, quiero ver /products... o quiero ver /users.json.”

Lo que les devolvemos, si, contiene HTML o JSON. Pero es mas que eso. También les
comunicamos un codigo de estado -que dice si la respuesta era correcta o tenia un error-, asi
como estas cosas llamadas cabeceras, que comunican un poco mas de informacion, como el

formato de lo que estamos devolviendo.

Todo este hermoso paquete se llama respuesta. Asi que si, la mayoria de las veces, solo
pensaremos en devolver HTML o JSON. Pero lo que realmente estamos enviando es esta cosa

mas grande vy friki lamada respuesta.

Asi que todo nuestro trabajo como desarrolladores web -independientemente del lenguaje en el
que programemos- consiste en comprender la peticion del usuario y, a continuacion, creary

devolver la respuesta.

Y esto nos lleva de nuevo a algo que me encanta de Symfony. ; Qué devuelve nuestro
controlador? jUn nuevo objeto Response de Symfony! Y de nuevo, PhpStorm quiere
autocompletar esto, sugiriendo unas cuantas clases diferentes de Response. Nosotros
queremos la del componente HttpFoundation de Symfony. Esa es la libreria de Symfony que

contiene todo lo relacionado con peticiones y respuestas.

Pulsa tabulador. Una vez mas, cuando hicimos eso, PhpStorm afiadié una declaracion use en
la parte superior del archivo. Voy a utilizar este truco constantemente. Cada vez que hagas
referencia a un nombre de clase, debes tener una declaraciéon use correspondiente, de lo

contrario PHP te dara un error diciendo que no puede encontrar la clase Response.

Dentro de esto, el primer argumento es el contenido que queremos devolver. Empieza con una

cadena codificada.

src/Controller/MainController.php

T // ... lines 1 - 4

5 use Symfony\Component\HttpFoundation\Response;
T // ... lines 6 - 7

8 class MainController

9 {

10 #[Route('/")]
11 public function homepage()
12 {
13 return new Response('Starshop: your monopoly-busting

option for Starship parts!');

14 }
15 }

Ruta, jcomprobado! Controlador que devuelve una Respuesta, jcomprobado! Probemos esto.
En el navegador, esta pagina era solo una demo que muestra antes de que tengamos una

pagina de inicio real. Ahora que la tenemos, al actualizar... jahi esta!

Sé que aun no es mucho, pero acabamos de aprender la primera parte fundamental de
Symfony: que cada pagina es una ruta y un controlador... y que cada controlador devuelve una

respuesta.

Ah, y es opcional, pero como nuestro controlador siempre devuelve un Response, podemos
afadir un tipo de retorno Response. Eso no cambia el funcionamiento de nuestro cédigo, pero
lo hace mas descriptivo de leer. Y si alguna vez hiciéramos una tonteria y devolviéramos algo

que no fuera una respuesta, PHP nos lo recordaria claramente.

src/Controller/MainController.php

$ // ... lines 1 -7

8 class MainController

9 {

10 #[Route('/")]

11 public function homepage(): Response

12 {

13 return new Response('Starshop: your monopoly-busting
option for Starship parts!');

14 }

15 }

A continuacién: para potenciar nuestro desarrollo, instalemos nuestro primer paquete de

terceros y conozcamos el increible sistema de recetas de Symfony.

Chapter 4: Recetas Flex Magicas

Tengo un secreto. Cuando se cred nuestro proyecto, no eran 15 archivos. Era... un solo
archivo. Si miraras dentro del cédigo del comando symfony new, descubririas que es un atajo
para solo dos cosas. Primero, clona un repositorio llamado symfony/skeleton... que es solo

un archivo si ignoras la licencia. Y en segundo lugar, ejecuta composer install.

Y ya esta Pero espera, si ese es el caso, ¢ de donde han salido todos esos otros archivos?
¢, Como las cosas de bin/, config/ y src/? La respuesta empieza con un paquete especial
dentro de nuestro archivo composer.json llamadosymfony/flex. Flex es un complemento de

Composer que anade dos superpoderes a Composer: alias y recetas.

composer.json

1 {
1 // ... lines 2 - 5
6 "require”: {
T // ... lines 7 - 11
12 "symfony/flex": "~2",
1 // ... lines 13 - 15
16 %
$ // ... lines 17 - 70
71 }
Alias Flex

Los alias son sencillos. Para afiadir un nuevo paquete a tu aplicacion -lo que haremos en un
minuto- ejecutas composer require y luego el nombre del paquete, como
symfony/http-client. Flex da a los paquetes mas importantes del ecosistema Symfony un
nombre mas corto, llamado alias. Por ejemplo, symfony/http-client tiene un alias
llamadohttp-client. Si, podriamos ejecutar composer require http-client y Flexlo

traduciria al nombre final del paquete. Es s6lo un atajo a la hora de anadir paquetes.

Si quieres ver todos los alias disponibles, ve a un repositorio llamado symfony/recetas... y luego

haz clic en el enlace a RECIPES.md. A la derecha, jahi estan!

https://github.com/symfony/recipes

El sistema de recetas

El segundo superpoder que Symfony Flex afilade a Composer son las recetas. Son fascinantes.
Cuando afiades un nuevo paquete, puede tener una receta, que es basicamente un conjunto
de archivos que se anadiran a tu proyecto. Y resulta que todos los archivos con los que
empezamos -en bin/, config/, public/ - proceden de las recetas de los paquetes que se

instalaron originalmente.

Por ejemplo, symfony/framework-bundle es el paquete "core" del Framework Symfony.
Puedes comprobar su receta yendo al repositorio symfony/recipes y navegando a symfony,
framework-bundle, y luego a la ultima version. Echa un vistazo a config/packages/: jla

mayoria de las cosas con las que empezamos proceden de esta receta!

Otra forma de ver las recetas es en tu linea de comandos. Ejecuta:

composer recipes

Aparentemente se instalaron las recetas de cuatro paquetes diferentes. Y podiamos obtener

informacion sobre cualquiera de ellos afiadiendo su nombre al final del comando.

De todos modos, las recetas son increibles porque podemos instalar un paquete y obtener al
instante cualquier archivo que necesitemos. En lugar de complicarnos con la configuracion, nos

ponemos manos a la obra.

Instalar PHP CS Fixer

Vamos a probar esto: afladamos un nuevo paquete llamado PHP-CS-Fixer que nos
proporcionara un archivo ejecutable para arreglar el estilo de nuestro cddigo. Por ejemplo,
ensrc/Controller/MainController.php, si sigues las normas de codificacion de PHP, la
llave debe estar en la linea siguiente a una funcién. Si hiciéramos algo asi, nuestro archivo
violaria ahora esas normas. Eso no dafaria nada, pero ya sabes, queremos que nuestro cédigo

tenga un aspecto limpio. Y PHP-CS-Fixer puede ayudarnos a hacerlo.

Para instalarlo, ejecuta:

composer require cs-fixer-shim

Y si, se trata de un alias. Encima, el paquete verdadero es php-cs-fixer/shim.

¢ Este paquete venia con una receta? jPues si! El Configuring php-cs-fixer/shimnos lo

indica. Pero, también podemos verlo ejecutando:

git status

El hecho de que composer.json y composer.lock estén modificados es un comportamiento
100% normal de Composer. Puedes ver que composer.json tiene la nueva biblioteca bajo la

clave require.

composer.json

1

T // ... lines 2 - 5

6 "require”: {

$ // ... lines 7 - 9

10 "php-cs-fixer/shim": "~3.46",
T // ... lines 11 - 16
17 Ts

$ // ... lines 18 - 69
70 }

Pero todos los demas archivos modificados o nuevos lo son gracias a la receta del paquete.

Investigando |a receta

iVamos a investigar esto! Abre .gitignore. jGenial! En la parte inferior, ha anadido dos

nuevas entradas para dos archivos comunes que querras ignorar cuando utilices PHP CS fixer.

.gitignore

T // ... lines 1 - 11

12 ###> php-cs-fixer/shim ###
13 /.php-cs-fixer.php

14 /.php-cs-fixer.cache
15 #i##< php-cs-fixer/shim ###

La receta también afnadioé un nuevo archivo .php-cs-fixer.dist.php. Este es el archivo de

configuracion de CS Fixer. jY compruébalo!

.php-cs-fixer.dist.php

1 <?php

2

3 $finder = (new PhpCsFixer\Finder())
4 ->in(__DIR_)

5 ->exclude('var')

6 ;

7

8 return (new PhpCsFixer\Config())
9 ->setRules([

10 '@Symfony' => true,

11 1

12 ->setFinder($finder)

13

Esta predisefiado para funcionar con nuestra aplicacion Symfony. Le dice que arregle todos los
archivos del directorio actual, pero que ignore el directorio var/ porque es donde Symfony
almacena sus archivos de caché. También le dice que utilice un conjunto de reglas llamado
Symfony. Eso significa que queremos que el estilo de nuestro cédigo coincida con el estilo de
Symfony. La cuestidn es en lugar de perder el tiempo buscando esta configuracion por

defecto... jsimplemente la cogemos!

El ultimo archivo modificado es symfony.lock. Esto mantiene un registro de qué recetas
tenemos instaladas y en qué version. Y si, vamos a enviar todos estos archivos a nuestro

repositorio.

Utilizar PHP-CS-Fixer

Ahora que hemos instalado el paquete, vamos a utilizarlo. Para ello, ejecuta:

./vendor/bin/php-cs-fixer

Eso mostrara todos los comandos disponibles. El que queremos se llama fix. Pruébalo:

./vendor/bin/php-cs-fixer fix

Y... jsi! jHa encontrado la infraccion en MainController.php! Cuando vamos a ese archivo...

isi' Movié mi llave rizada desde el final de la linea hasta la linea siguiente. Es fantastico.

A continuacion, vamos a conocer e instalar una de mis bibliotecas favoritas de todo PHP: el

motor de plantillas Twig.

Chapter 5: Twig y plantillas

Quiero devolver HTML para esta pagina. Podriamos poner ese HTML dentro del controlador...
pero eso se va a poner feo rapidamente. Afortunadamente, hay una forma mejor: utilizar una

biblioteca de plantillas llamada Twig.

Instalacion de Twig

En tu terminal, asegurate de haber confirmado tus cambios, porque quiero ver qué anade la

receta de este nuevo paquete a nuestro proyecto. Ya lo he hecho. Instalalo con

composer require twig

Composer "Paquetes”

Probablemente reconozcas que twig es un alias... esta vez de un paquete
llamado symfony/twig-pack. Y la palabra "paquete" es importante en Symfony. Un paquete

es... una especie de paquete falso que ayuda a instalar varios paquetes a la vez.

Observa: abre composer.json. En lugar de un nuevo paquete aqui
llamado symfony/twig-pack, tenemos tres nuevos paquetes... jy twig-pack ni siquiera es

uno de ellos!

composer.json

1 {

$ // ... lines 2 - 5

6 "require”: {

T // ... lines 7 - 15

16 "symfony/twig-bundle": "7.0.*",
$ // ... line 17

18 "twig/extra-bundle": "~2.12|~3.0",
19 "twig/twig": "~2.12]|”3.0"

20 1,

$ // ... lines 21 - 72

73 }

Los tres paquetes nos dan todo lo que necesitamos para una configuracion Twig completa y
robusta. Asi que cuando veas la palabra "paquete”, no es gran cosa: so6lo un atajo para instalar

varios paquetes a la vez.

Paquetes Symfony

Vale, jvamos a ver qué ha hecho la receta! Ejecuta:

git status

Vemos los habituales composer.json, composer.lock y symfony.lock. Pero, por primera
vez, también vemos una modificacion de config/bundles.php. Un bundle es un paquete PHP
que se integra con Symfony... es basicamente un plugin de Symfony. Siempre que instales un
bundle, tienes que activarlo en este archivo bundles.php. Pero sinceramente, el sistema de
recetas siempre lo hara por nosotros... asi que es bueno darse cuenta, pero nunca editaremos

este archivo a mano.

config/bundles.php

1 <?php

return [
Symfony\Bundle\FrameworkBundle\FrameworkBundle::class => ['all' => true],
Symfony\Bundle\TwigBundle\TwigBundle::class => ['all' => true],
Twig\Extra\TwigExtraBundle\TwigExtraBundle::class => ['all' => true],

N oo v b woN

15

La receta Twig

Lo segundo que hizo la receta fue crear un archivo config/packages/twig.yaml. El

propoésito de cada archivo en config/packages/ es configurar un bundle.

config/packages/twig.yaml

1 twig:

2 default path: '%kernel.project dir%/templates’
3

4 when@test:

5 twig:

6 strict_variables: true

Por ejemplo, twig.yaml controla el comportamiento de TwigBundle. Esta linea de aqui le dice

a Twig:
“iOye! Todos mis archivos de plantilla terminaran en .twig.”

Hay muchas mas cosas que podriamos configurar, pero no hace falta. Y profundizaremos en

estos archivos de configuracion en el proximo tutorial.

Lo ultimo que hizo la receta fue afiadir un directorio templates/, que.... jlo has adivinado! Es
donde viviran nuestros archivos de plantilla Incluso nos inicié con un archivo

base.html.twigdel que hablaremos en unos minutos.

Renderizar una plantilla

Asi que jvamos a renderizar nuestra primera plantilla! Para ello, haz que tu controlador
extienda una clase base llamada AbstractController. Asegurate de pulsar el tabulador para
gue se anada la sentencia useen la parte superior. Extender esta clase base es opcional, pero

nos proporciona un montén de métodos abreviados.

src/Controller/MainController.php

T // ... lines 1 - 4

5 wuse Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
T // ... lines 6 - 8

9 <class MainController extends AbstractController
10 {

T // ... lines 11 - 15

16 }

Por ejemplo, copia la cadena y luego, para renderizar una plantilla
escribereturn $this->render() y pasa un nombre de archivo a una plantilla.

Utiliza:main/homepage.html.twig.

src/Controller/MainController.php

T // ... lines 1 - 8

9 class MainController extends AbstractController

10 {

11 #[Route('/")]

12 public function homepage(): Response

13 {

14 return $this->render('main/homepage.html.twig');
15 }

16 }

El nombre de archivo de tu plantilla puede ser el que quieras, pero lo estandar es tener un
directorio que coincida con el nombre de tu controlador y un nombre de archivo que coincida

con el nombre de tu método.

iVamos a crearlo! En templates/, afnade un nuevo directorio llamado main. Y dentro de él, un

archivo llamado homepage.html.twig. Luego afiade un hl y ponlo alrededor de todo.

templates/main/homepage.html. twig

1 <hl>
2 Starshop: your monopoly-busting option for Starship parts!
3 </hl>

jHagamos esto! Actualiza. jYa esta!

Y por cierto, ¢, qué devuelve nuestro controlador? Sigue siendo un objeto Response! Lo sé
porque tenemos un tipo de retorno Response ... y nuestro cédigo no esta explotando. render ()
es solo un atajo para renderizar esta plantilla, coger esa cadena de HTML y ponerla en un
objeto Response. Asi que, aunque estemos renderizando una plantilla, seguimos volviendo a la

idea de que un controlador devuelve una respuesta.

Pasar datos a una plantilla

¢ Qué hay de pasar datos a la plantilla? Quiza consultemos la base de datos y le pasemos el

numero total de naves estelares. Aun no tenemos una base de datos en nuestra aplicacion, asi

que vamos a fingirlo diciendo que $starshipCount es igual a... No sé... 457. Parece un

numero falso creible.

src/Controller/MainController.php

T // ... lines 1 - 8

9 <class MainController extends AbstractController
10 {

11 #[Route('/")]

12 public function homepage(): Response

13 {

14 $starshipCount = 457;

$ // ... Llines 15 - 18

19 }

20 }

Para pasar variables a la plantilla, afade un segundo argumento a render() : una matriz. Pasa
numberOfStarships ajustado a $starshipCount. La clave se convertira en el nombre de la

variable dentro de la plantilla Twig.

src/Controller/MainController.php

T // ... lines 1 - 8

9 class MainController extends AbstractController
10 {

11 #[Route('/")]

12 public function homepage(): Response

13 {

14 $starshipCount = 457;

15

16 return $this->render('main/homepage.html.twig', [
17 "numberOfStarships' => $starshipCount,
18 1)

19 }

20 }

Renderizar variables

En la plantilla, afiadiré un div y algo de texto. Para imprimir el numero, escribe {{, el nombre

de la variable, cierra }}.

templates/main/homepage.html. twig

$ // ... lines 1 - 4

5 <div>

6 Browse through {{ numberOfStarships }} starships!
7 </div>

iVale! Muévete y pruébalo. jYa estal Y acabamos de ver nuestro primer codigo Twig!

Twig es su propio lenguaje, pero es superamigable. Solo tiene tres sintaxis diferentes. La
primera es {{ y yo la llamo la sintaxis "decir algo". Si estas imprimiendo algo, utilizaras {{.

Dentro de los rizos, estamos escribiendo Twig, que es muy similar a JavaScript.

Etiquetas Twig_y la sintaxis "hacer algo

Por ejemplo, podriamos imprimir la cadena 'numberOfStarships' ... o la variable

numberOfStarships... o incluso numberOfStarships veces 10.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 <div>

6 Browse through {{ numberOfStarships * 10 }} starships!
7 </div>

La segunda sintaxis de las tres empieza por {%. Yo la llamo la sintaxis "hacer algo". Esto no
imprime nada. En su lugar, se utiliza para construcciones del lenguaje como las sentencias if,

los bucles for o establecer una variable.

Para hacer una sentencia if, di if numberOfStarships > 400, y ciérrala con{% endif %}.

Dentro, afadiré un comentario.

templates/main/homepage.html.twig

T // ... lines 1 - 4

5 <div>

6 Browse through {{ numberOfStarships * 10 }} starships!
7

8 {% if numberOfStarships > 400 %}

9 <p>
10 That's a shiploads of ships!
11 </p>
12 {% endif %}

13 </div>

jPruébalo! jEso también funciona!

Twig es su propia biblioteca, pero esta mantenida por Symfony... asi que sus documentos estan

en https://twig.symfony.com. Haz clic en el enlace "Docs" y desplazate hacia abajo. ¢ Ves las

"etiquetas"? Resulta que hay un numero finito de cosas que puedes utilizar con la sintaxis
"hacer algo": son estas etiquetas. Por ejemplo, no puedes decir {% applesauce...
simplemente no funcionara. Sélo puedes usar {% y luego una de estas etiquetas. La lista es

bastante corta... y probablemente solo utilice 5 de ellas a diario.

La tercera y ultima sintaxis de Twig ni siquiera es una sintaxis: es para los comentarios. {# para

escribir un comentario.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 <div>

6 Browse through {{ numberOfStarships * 10 }} starships!

7

8 {% if numberOfStarships > 400 %}

9 <p>

10 {# Do you think "shiploads" will pass the legal team? #}
11 That's a shiploads of ships!

12 </p>

13 {% endif %}

14 </div>

Representacion de una matriz asociativa

Asi que estamos pasando un simple numero a Twig e imprimiéndolo. Pero Twig puede manejar
cualquier dato complejo que le pases. Por ejemplo, en el controlador, crea una nueva variable
$myShip, configurada como una matriz asociativa. Luego pasala a la plantilla como una nueva

variable: myShip.

https://twig.symfony.com/

src/Controller/MainController.php

T // ... lines 1 - 8

9 class MainController extends AbstractController

10 {

11 #[Route('/")]

12 public function homepage(): Response

13 {

14 $starshipCount = 457;

15 $myShip = [

16 ‘name' => 'USS LeafyCruiser (NCC-0001)',
17 ‘class' => 'Garden',

18 "captain' => 'Jean-Luc Pickles’,

19 'status' => 'under construction',

20 1;

21

22 return $this->render('main/homepage.html.twig', [
23 ‘numberOfStarships' => $starshipCount,
24 ‘myShip"' => $myShip,

25 1)

26 }

27}

En la plantilla, afiade otro div ... algo de texto y una tabla para imprimir los datos. En el <td>,
no podemos simplemente imprimir myShip... porque imprimir una matriz asociativa no tiene
sentido en PHP... y por tanto no tiene sentido en Twig. Obtendras el famoso error sobre la

conversion de array a cadena.

Lo que queremos es imprimir la clave name de esa matriz. La forma de hacerlo es exactamente

igual que en JavaScript: myShip.name.

Ya esta Y... funciona. Voy a pegar el resto de nuestra plantilla, que imprime las demas claves de

la matriz. Tiene buena pinta.

templates/main/homepage.html. twig

T // ... lines 1 - 15

16 <div>

17 <h2>My Ship</h2>

18

19 <table>

20 <tr>

21 <th>Name</th>

22 <td>{{ myShip.name }}</td>
23 </tr>

24 <tr>

25 <th>Class</th>

26 <td>{{ myShip.class }}</td>
27 </tr>

28 <tr>

29 <th>Captain</th>

30 <td>{{ myShip.captain }}</td>
31 </tr>

32 <tr>

33 <th>Status</th>

34 <td>{{ myShip.status }}</td>
35 </tr>

36 </table>

37 </div>

Funciones y filtros Twig

Twig tiene algunos trucos mas en la manga, pero nada complejo. Tiene funciones... que
funcionan como las funciones de cualquier lenguaje. También tiene algo llamado pruebas, que
son un poco exclusivas de Twig, pero bastante sencillas de entender. Mi concepto favorito son
probablemente los filtros, que son basicamente funciones con una sintaxis mas fresca y

moderna.

Por ejemplo, hay un filtro lamado upper para enviar una cadena a mayusculas. Para utilizar un

filtro, busca la cadena que quieres convertir a mayusculas y afiade | y upper.

templates/main/homepage.html. twig

T // ... lines 1 - 15

16 <div>

17 <h2>My Ship</h2>

18

19 <table>

$ // ... lines 20 - 27

28 <tr>

29 <th>Captain</th>
30 <td>{{ myShip.captain|upper }}</td>
31 </tr>

$ // ... lines 32 - 35

36 </table>

37 «</div>

El valor de la izquierda se pasa a través del filtro, muy parecido a utilizar una tuberia en la linea
de comandos. Funciona de maravilla.... y puedes volverte loco con los filtros: pasar a upper,

luego a lower y después a title mayusculas soélo para confundir a tus companeros.

templates/main/homepage.html. twig

T // ... lines 1 - 15

16 <div>

17 <h2>My Ship</h2>

18

19 <table>

$ // ... lines 20 - 27

28 <tr>

29 <th>Captain</th>
30 <td>{{ myShip.captain|upper|lower|title }}</td>
31 </tr>

$ // ... lines 32 - 35

36 </table>

37 «</div>

Vale, acabamos de aprender practicamente todo Twig en una sesion, excepto una cosa: la

herencia de plantillas. Eso a continuacion.

Chapter 6: Herencia de plantillas Twig

¢ Qué tal si anadimos un disefio a nuestra pagina, como una cabecera y un pie de pagina?
Echa un vistazo al HTML de la pagina: es solo el HTML de la plantilla. No hay nada especial en
Twig para que un disefio base con un encabezado y un pie de pagina se envuelva
automaticamente alrededor de nuestro contenido. Lo que tengas en tu plantilla es lo que

obtendras en la pagina.

Sin embargo, la receta Twig afiadié un archivo de disefio base llamado base.html.twig.

templates/base.html. twig

1 <!IDOCTYPE html>

2 <html>

3 <head>

4 <meta charset="UTF-8">

5 <title>{% block title %}Welcome!{% endblock %}</title>

6 <link rel="icon" href="data:image/svg+xml,<svg
xmlns=%22http://www.w3.0rg/2000/svg%22 viewBox=%220 © 128 128%22><text
y=%221.2em%22 font-size=%2296%22>@</text></svg>">

7 {% block stylesheets %}

8 {% endblock %}

10 {% block javascripts %}

11 {% endblock %}

12 </head>

13 <body>

14 {% block body %}{% endblock %}
15 </body>

16 </html>

Ahora es muy sencillo, pero aqui es donde afadiremos nuestra navegacién superior, el pie de
pagina y cualquier otra cosa que deba aparecer en cada pagina. La pregunta es: ;como

podemos hacer que nuestra plantilla utilice esto?

Ampliando el diseno base

Con una funcion genial llamada herencia de plantillas. En homepage.html.twig, en la parte

superior, escribe {% extends y luego el nombre de la plantilla base: base.html.twig.Y

fijate: esta es la etiqueta hacer algo. No estamos imprimiendo esta plantilla, le estamos

diciendo a Twig que queremos ampliarla.

templates/main/homepage.html. twig

1 {% extends 'base.html.twig' %}

2

3 <hl>

4 Starshop: your monopoly-busting option for Starship parts!
5 </h1>

T // ... lines 6 - 40

Si no hacemos nada mas y actualizamos, obtendremos un error:
“una plantilla que extiende otra no puede incluir contenido fuera de los bloques Twig.”

Hmmm. Cuando extiendes una plantilla, le dices a Twig que quieres renderizar tu plantilla
dentro de ese disefio base. Pero... Twig no tiene ni idea de donde debe ir nuestro contenido.
¢ Deberia coger el HTML de nuestra pagina de inicio y ponerlo aqui abajo? O aqui arriba? ;0O

justo ahi? No lo sabe Asi que lanza ese error.

La forma de decirselo es mediante estos bloques. Los bloques son huecos en los que una
plantilla hija puede poner contenido. Y te habras fijado en un bloque llamado body ... que es
exactamente donde queremos que vaya nuestro contenido. Para ponerlo ahi, rodea todo el

contenido con un {% block body %} ...y en la parte inferior, {% endblock %}.

templates/main/homepage.html. twig

1 {% extends 'base.html.twig' %}

{% block body %}
<h1>

Starshop: your monopoly-busting option for Starship parts!
</h1l>

<div>
// ... lines 9 - 16
</div>

© 00 N OO L1 M W N

[S =Y
O 0 N

<div>

// ... Lines 20 - 39
</div>

{% endblock %}

LR
R o &

Y ahora... jesta vivo! No parece muy diferente, pero estamos dentro del disefio base.

Esto se llama herencia de plantillas porque funciona exactamente igual que la herencia de
clases PHP. Imagina que tienes una clase Homepage que extiende a una clase Base. Esa
claseBase tiene un método body(), y nosotros anulamos ese método body() en la

clase Homepage . Es el mismo concepto en Twig.

Reemplazar el titulo de la pagina

Y estos nombres de bloques -como javascripts, stylesheets y body - no son nombres
especiales... y no estan registrados en ninguna parte. Siéntete libre de crear nuevos bloques
como quieras y cuando quieras. Por ejemplo, supongamos que queremos cambiar el title de
la pagina desde una plantilla hija. En este caso, la receta ya nos ha proporcionado un bloque
llamadotitle para hacerlo. Y este bloque tiene contenido por defecto... por eso ya vemos

Welcome en la pestafia del navegador. Anulemos esto en nuestra plantilla.

templates/base.html. twig

T // ... line 1

2 <html>

3 <head>

$ // ... Line 4

5 <title>{% block title %}Welcome!{% endblock %}</title>
$ // ... lines 6 - 11
12 </head>

T // ... lines 13 - 15
16 </html>

En cualquier lugar fuera del bloque body, di {% block title %}, escribe algo, y
luego{% endblock %}.

templates/main/homepage.html. twig

1 {% extends 'base.html.twig' %}
{% block title %}Starshop: Beam up some parts!{% endblock %}
{% block body %}

// ... Lines 6 - 42
43 {% endblock %}

v b owoN

Sustituir frente a afadir el bloque padre

Y ahora, jya esta! jNuevo titulo! Y fijate en que cuando anulamos un bloque, lo anulamos por
completo. Ya no vemos la palabra Welcome. Ocasionalmente, puede que quieras afadir al

bloque padre en lugar de sustituirlo. Puedes hacerlo diciendo {{ parent() }}.

iEsto esta muy bien! La funcion parent() coge el contenido del bloque title de la plantilla
padre. Luego utilizamos {{ para imprimirlo. Esta vez vemos la bienvenida y luego nuestro

titulo.

Pero como en realidad no queremos eso, lo eliminaré.

Comprobacién de estado: estamos devolviendo HTML y tenemos un disefio base. Si, nuestro

sitio sigue siendo horriblemente feo, pero lo arreglaremos dentro de un rato.

A continuacién, vamos a ejecutar un comando y acceder al instante a algunas de las

herramientas de depuracion mas potentes de la web.

Chapter 7: Depurando con el Asombroso Perfilador

Symfony presume de tener algunas de las herramientas de depuracion mas épicas de todo
Internet. Pero como las aplicaciones Symfony empiezan tan pequefas, aun no las tenemos
instaladas. Es hora de arreglarlo. Dirigete a tu terminal y, como antes, confirma todos tus

cambios para que podamos comprobar lo que haran las recetas. Ya lo he hecho.

Instalar las herramientas de depuracion

Ejecuta:

composer require debug

iSi! Es otro alias de Flex. E... instala un paquete. Esto instala cuatro paquetes diferentes que
afiaden una variedad de bondades de depuracion a nuestro proyecto. Gira y abre

composer.json.

composer.json

1 {

T // ... lines 2 - 5

6 "require": {

T // ... lines 7 - 14

15 "symfony/monolog-bundle": "~3.0",
T // ... lines 16 - 20

21 s

T // ... lines 22 - 78

79 }

Vale, el paquete ha afiadido una nueva linea bajo la clave require para monolog-bundle.

Monolog es una biblioteca de registro.

Luego, al final, ha anadido tres paquetes a la seccidén require-dev.

composer.json

1 {

T // ... lines 2 - 73

74 "require-dev": {

75 "symfony/debug-bundle": "7.0.*",

76 "symfony/stopwatch": "7.0.*",

77 "symfony/web-profiler-bundle": "7.0.*"
78 }

79 }

Se conocen como dependencias de desarrollo... lo que significa que no se descargaran cuando
los despliegues en produccién. Por lo demas, funcionan igual que los paquetes de la clave
require. Los tres ayudan a impulsar algo llamado perfilador, que veremos dentro de un

minuto.

Antes de hacerlo, vuelve a tu terminal y ejecuta

git status

para que podamos ver lo que hicieron las recetas. Vale: actualizé los archivos normales, habilitd
unos cuantos bundles nuevos y nos dio tres archivos de configuracion nuevos para esos

bundles.

¢ Cual es el resultado final de todo esto nuevo? Bueno, en primer lugar, ahora tenemos una
biblioteca de registros. Asi que, como por arte de magia, los registros empezaran a aparecer en

un directorio var/log/.

Hola barra de herramientas de depuracion web y perfilador

Pero el momento alucinante ocurre cuando actualizamos la pagina. jWoh! Una nueva y

hermosa barra negra en la parte inferior llamada barra de herramientas de depuracién web.

Esta repleta de informacién. Aqui podemos ver la ruta y el controlador de esta pagina. Eso
facilita ir a cualquier pagina de tu sitio -quiza una que ni siquiera hayas construido- y encontrar
rapidamente el codigo que hay detras. También podemos ver cuanto tardé en cargarse esta

pagina, cuanta memoria utilizd, e incluso la plantilla Twig que se renderizé y cuanto tardo.

Pero |la verdadera magia de la barra de herramientas de depuracion web ocurre cuando haces
clic en cualquiera de estos enlaces: saltas al perfilador. Este tiene diez veces mas informacién:
detalles sobre la peticion y la respuesta, registros que se produjeron mientras se cargaba la
pagina, detalles de enrutamiento e incluso estadisticas sobre las plantillas Twig que se
procesaron. Aparentemente, se estaban renderizando seis plantillas: la principal, el disefio base
y algunas otras que alimentan la barra de herramientas de depuracion web, que, por cierto, no
se renderizaran ni se mostraran cuando pasemos a produccion. Pero de eso hablaremos en el

préximo tutorial.

Luego esta probablemente mi seccion favorita: Rendimiento. Aqui se divide todo el tiempo de
carga de nuestra pagina en diferentes partes. Esto me encanta. A medida que aprendas mas
sobre Symfony, te iras familiarizando con lo que son estas diferentes piezas. Esta seccién es
util para saber qué parte de tu codigo puede estar ralentizando la pagina... pero también es una

forma fantastica de profundizar en Symfony y entender todas sus piezas méviles.

Vamos a utilizar el perfilador a lo largo de esta serie, pero pasemos a otra herramienta de

depuracion: juna que ha estado instalada en nuestra aplicacion todo este tiempo!

iHola bin/console!

Dirigete a la linea de comandos y ejecuta:

php bin/console

O, en la mayoria de las maquinas, puedes decir simplemente ./bin/console. Esta es la
consola de Symfony, y esta repleta de comandos que pueden hacer todo tipo de cosas
Aprenderemos sobre ellos a lo largo del camino. También puedes anadir tus propios comandos,

cosa que haremos al final del tutorial.

Fijate en que muchos de ellos empiezan por debug, como debug:router. Pruébalo:

php bin/console debug:router

iGenial! Esto nos muestra todas las rutas de nuestra aplicacion: la ruta de la pagina de inicio en
la parte inferior y un montén de rutas afiadidas por Symfony en el entorno dev que alimentan la

barra de herramientas de depuracion web y el perfilador.

Otro comando es debug:twig:

php bin/console debug:twig

Nos indica todas las funciones, filtros u otros elementos de Twig que existen en nuestra
aplicaciéon. Es como la documentacion de Twig... salvo que también incluye funciones y filtros

adicionales anadidos a Twig por los bundles que hemos instalado. Genial.
Estos comandos de debug son superdutiles, y seguiremos probando mas de ellos por el camino.

A continuacién, vamos a crear nuestra primera ruta APl y a conocer el potente componente

serializador de Symfony.

Chapter 8: Creacion de rutas APl JSON

Si quieres crear una API, puedes hacerlo absolutamente con Symfony. De hecho, es una
opcion fantastica, en parte gracias a AP| Platform. Se trata de un marco para crear APIs
construido sobre Symfony que agiliza la construccion de tu APl y crea una API mas robusta de

lo que puedas imaginar.

Pero también es bastante sencillo devolver JSON desde un controlador. Veamos si podemos

devolver algunos datos del barco como JSON.

Creacién de la nueva Ruta y Controlador

Esta sera nuestra segunda pagina. Bueno, en realidad es un "punto final", pero sera nuestra
segunda combinacion de ruta y controlador. En MainController, podriamos afadir otro
meétodo aqui. Pero para organizarnos, vamos a crear una clase de controlador totalmente

nueva. Iré a Nuevo -> Clase PHP y la llamaré StarshipApiController.

Como he ido a Nuevo -> Clase PHP, me ha creado la clase y el espacio de nombres jSuper
bien! Ademas, en adelante, cada vez que cree un controlador, extenderé inmediatamente

AbstractController... porque esos atajos son agradables y no hay inconveniente.

src/Controller/StarshipApiController.php

T // ... lines 1 - 2
namespace App\Controller;

3
4
5 use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
0
9

// ... lines 6 - 8

class StarshipApiController extends AbstractController
10 {
$ // ... lines 11 - 36
37 }

Anade un public function getCollection() porque esto devolvera informacion sobre una
coleccidon de naves estelares. Y, como siempre, puedes anadir el tipo de retorno Response u
omitirlo. Encima de esto, afiade la ruta con #[Route()]. Selecciona la deAttribute y pulsa

tabulador.

Asi que acabo de utilizar el autocompletado para anadir las declaraciones use para
AbstractController,Route, y Response. Asegurate de que las tienes todas. Para la URL,

$qué tal /api/starships.

En su interior, pegaré una variable $starships que se establecera en una matriz de tres

matrices asociativas de datos de naves estelares.

Devolver JSON

Probablemente puedas imaginar qué aspecto tendra esto como JSON. ; Como lo convertimos
en JSON? Bueno, puede ser asi de sencillo: return new Response

conjson_encode($starships).

jPero podemos hacerlo mejor! En lugar de eso, devuelve $this->json($starships).

src/Controller/StarshipApiController.php

T // ... lines 1 - 2

3 namespace App\Controller;

4

5 wuse Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
6 use Symfony\Component\HttpFoundation\Response;

7 use Symfony\Component\Routing\Attribute\Route;

8

9 <class StarshipApiController extends AbstractController

10 {

11 #[Route('/api/starships')]

12 public function getCollection(): Response

13 {

14 $starships = [

15 [

16 "name’ => 'USS LeafyCruiser (NCC-0001)',
17 ‘class' => 'Garden',

18 ‘captain’' => 'Jean-Luc Pickles’,

19 "status' => 'taken over by Q',

20 1,

21 [

22 ‘name' => 'USS Espresso (NCC-1234-C)',
23 'class' => 'Latte',

24 'captain' => 'James T. Quick!",

25 'status' => 'repaired’,

26 1,

27 [

28 "name’ => 'USS Wanderlust (NCC-2024-W)',
29 ‘class' => 'Delta Tourist',

30 "captain’' => 'Kathryn Journeyway',

31 'status' => 'under construction’,

32 1,

33 1;

34

35 return $this->json($starships);

36 }

37 }

iVamos a probarlo! Busca tu navegador y dirigete a /api/starships. Vaya, ha sido facil. Si te
preguntas por qué el JSON esta estilizado y tiene un aspecto chulo, no es cosa de Symfony.

Tengo instalada una extension de Chrome llamada JSONVue.

Anadir una clase modelo

Ahora, en el mundo real, cuando empecemos a consultar la base de datos, vamos a trabajar
con objetos, no con matrices asociativas. No afiadiremos una base de datos en este tutorial,
pero podemos empezar a utilizar objetos para nuestros datos para hacer las cosas mas

realistas. En el directoriosrc/, crea un nuevo subdirectorio llamado Model.

Vale, algo importante: lo que vamos a hacer no tiene absolutamente nada que ver con Symfony.

Simplemente estoy mirando este array y pensando:

“.Sabes qué? En lugar de pasar por este array asociativo con name, class, captain, y

status claves, prefiero tener una clase Starship y pasar objetos.”

Asi que, por mi cuenta, independientemente de Symfony, he decidido crear un directorio
Model -que podria llamarse cualquier cosa- y dentro una nueva clase llamada Starship. Y
como esta clase es solo para ayudarnos, podemos darle el aspecto que queramos, y no

necesita extender ninguna clase base.

src/Model/Starship.php

T // ... lines 1 - 2
namespace App\Model;

{
// ... Llines 7 - 39

40 }

3
4
5 «class Starship
6
()

Crea un public function __construct() con cinco propiedades: una private int $id,y
luego cuatro propiedades mas para cada una de las cuatro claves que tenemos en la
matriz: private string $name, private string $class, private string $captain

yprivate string $status.

src/Model/Starship.php

// ... lines 1 - 2
namespace App\Model;

0
3
4
5
6
7
8
9

10
11
12
13
14

0

40

class Starship

{

public function _ construct(

private
private
private
private

private

// ... Lines 15
}

int $id,

string $name,
string $class,
string $captain,
string $status,

Ah, y mi editor esta resaltando este archivo porque hemos instalado PHP-CS-Fixer y ha

encontrado una violacion del estilo del codigo. Puedo hacer clic aqui para corregirlo o ir aqui y

pulsar Alt+Enter para corregirlo alli. jSuper bonito!

De todas formas, si no estas familiarizado con la sintaxis de este constructor, esto crea un

constructor con cinco argumentos y, al mismo tiempo, crea cinco propiedades que se

estableceran a lo que pasemos a estos argumentos.

Pero, como he decidido que estas propiedades sean privadas, si instanciaramos un nuevo

objeto Starship... jno podriamos leer ninguno de los datos! Para permitirlo, podemos crear

métodos getter. Pero, no voy a hacer esto a mano. En su lugar, ve a la opciéon de menu Caodigo

-> Generar -o Cmd + N en Mac-, selecciona getters y genera un getter para cada propiedad.

src/Model/Starship.php

T // ... lines 1 - 2
3 namespace App\Model;
4
5 class Starship
6 {
7 public function _ construct(
8 private int $id,
9 private string $name,
10 private string $class,
11 private string $captain,
12 private string $status,
13) {
14 }
15
16 public function getId(): int
17 {
18 return $this->id;
19 }
20
21 public function getName(): string
22 {
23 return $this->name;
24 }
25
26 public function getClass(): string
27 {
28 return $this->class;
29 }
30
31 public function getCaptain(): string
32 {
33 return $this->captain;
34 }
35
36 public function getStatus(): string
37 {
38 return $this->status;
39 }
40 }

iQué bien! Cinco nuevos y brillantes métodos getter publicos.

Crear los objetos modelo

Vale, de vuelta en nuestro controlador, convirtamos estas matrices en objetos:
new Starship() - pulsa tabulador, para que afiada la declaracién use - luego dale un id de,

que tal, 1... y transfiere los otros valores para name, class, captain, y finalmente status.

Y asi de facil, jya tenemos nuestro primer objeto! Resaltaré las otras dos matrices y pegaré los

dos objetos para ahorrar tiempo.

src/Controller/StarshipApiController.php

T // ... lines 1 - 4

5 use App\Model\Starship;

T // ... lines 6 - 9

10 class StarshipApiController extends AbstractController
11 {

$ // ... line 12

13 public function getCollection(): Response
14 {

15 $starships = [

16 new Starship(

17 1,

18 'USS LeafyCruiser (NCC-0001)',
19 'Garden’,

20 'Jean-Luc Pickles',

21 "taken over by Q'

22),

23 new Starship(

24 2,

25 '"USS Espresso (NCC-1234-C)',
26 'Latte’,

27 'James T. Quick!"',

28 'repaired’,

29),

30 new Starship(

31 3,

32 'USS Wanderlust (NCC-2024-W)',
33 'Delta Tourist',

34 'Kathryn Journeyway',

35 "under construction’,

36)>

37 15

T // ... Llines 38 - 39
40 }
41 }

Ahora tenemos una matriz de 3 objetos Starship... que queda mas bonita. Y los pasamos a

$this->json(). ¢ Seguira funcionando? Por supuesto que no jObtenemos una matriz de tres

objetos vacios!

Eso es porque, internamente, $this->json() utiliza la funcion PHP json_encode() ... y esa
funcién no puede manejar propiedades privadas. Lo que necesitamos es algo mas inteligente:
algo que pueda reconocer que, aunque la propiedad name es privada, tenemos un método

publico getName() al que se puede llamar para leer el valor de esa propiedad.

Hola Serializador Symfony

¢ Existe alguna herramienta que haga eso? Bueno, ¢ recuerdas que Symfony es un enorme
conjunto de componentes que resuelven problemas individuales? Un componente se llama
serializador, y su trabajo consiste en tomar objetos y serializarlos a JSON... o tomar JSON y
deserializarlo de nuevo a objetos. Y puede manejar totalmente situaciones en las que tienes

propiedades privadas con métodos getter publicos.

Asi que ja instalarlo!

composer require serializer

Y una vez mas, amigos, si, esto es un alias... y es un alias de un paquete. Este paquete instala
el paquete symfony/serializer, asi como algunos otros que lo hacen funcionar de forma

realmente robusta.
Ahora, sin hacer nada mas, vuelve atras, actualiza, ¢y funciona? ;Cémo?

Resulta que el método $this->json() es inteligente. Para verlo, mantén pulsado Comando
en un Mac o Ctrl en otras maquinas y haz clic en el nombre del método para saltar al archivo

principal de Symfony donde se encuentra.

jAh! El codigo aqui aun no tendra todo el sentido, pero detecta si el sistema serializador esta

disponible.... y, si lo esta, lo utiliza para transformar el objeto a JSON.

Pero, ¢,qué quiero decir exactamente con "sistema serializador"? ;Y cual es la clave
serializer... dentro de esta cosa del contenedor? O, ;qué pasaria si necesitaramos

transformar un objeto a JSON en otro lugar que no fuera nuestro controlador... donde no

tuvieramos acceso al acceso directo ->json() ? ; Codmo podriamos acceder al sistema

serializador desde alli?

Amigos, es hora de conocer el concepto mas importante de Symfony: los servicios.

Chapter 9: Los Servicios: La columna vertebral de
todo

Hablemos de los servicios. Son el concepto mas importante en Symfony. Y una vez que los

entiendas, sinceramente, seras capaz de hacer cualquier cosa.

¢ Qué es un Servicio?

En primer lugar, un servicio es un objeto que hace un trabajo. Eso es todo. Por ejempilo, si
instancias un objeto Logger que tiene un método log(), jeso es un servicio! Funciona:
jregistra cosas! O si creaste un objeto de conexién a la base de datos que hace consultas a la

base de datos, entonces... jsi! Eso también es un servicio.

Entonces... si un servicio es soélo un objeto que funciona... ¢ qué objetos perezosos no son
servicios? Nuestra clase Starship es un ejemplo perfecto de no-servicio. Su funcién principal
no es hacer trabajo: es guardar datos. Claro, tiene unos cuantos métodos publicos... e incluso
podrias poner algo de légica dentro de estos métodos para hacer algo. Pero en ultima

instancia, no es un trabajador, es un poseedor de datos.

&Y las clases controladoras? Si, también son servicios. Su trabajo consiste en crear objetos de

respuesta.

De todas formas, todo el trabajo que se hace en Symfony lo hace en realidad un servicio.

¢ Escribir mensajes de registro en este archivo? Si, hay un servicio para eso. ¢ Descubrir qué
ruta coincide con la URL actual? jEse es el servicio router! ;Y la representacién de una
plantilla Twig? Si, resulta que el método render() es un atajo para encontrar el objeto de

servicio correcto y llamar a un método en él.

El contenedor y debug:container

A veces también oiras que estos servicios estan organizados en un gran objeto llamado

"contenedor de servicios". Puedes pensar en el contenedor como en una gigantesca matriz

asociativa de objetos de servicio, cada uno con un identificador unico. ¢ Quieres ver una lista de

todos los servicios de nuestra aplicacién ahora mismo? Yo también

Busca tu terminal y ejecuta:

bin/console debug:container

iSon muchos servicios! Déjame hacerlo mas pequefio para que cada uno quepa en su propia

linea... mejor.

A la izquierda, vemos el ID de cada servicio. Y a la derecha, la clase del objeto al que

corresponde el ID. Genial, ¢, verdad?

Vuelve a nuestro controlador y mantén pulsado control o comando para abrir de nuevo el
meétodo json() . jAhora tiene mas sentido! Esta comprobando si el contenedor tiene un
servicio cuyo ID es serializer. Sies asi, coge ese servicio del contenedor y llama al método

serialize() sobre él.

Cuando trabajemos con servicios, no sera exactamente asi. Pero lo superimportante es que

ahora entendemos lo que esta pasando.

Los bundles proporcionan servicios

Mi siguiente pregunta es: ;de dénde vienen estos servicios? Por ejemplo, ¢ quién dice que hay
un servicio cuyo ID es twig... y que cuando se lo pedimos al contenedor, éste debe devolver
un objeto Twig Environment ? La respuesta es: totalmente de bundles. De hecho, ése es el

objetivo principal de instalar un nuevo bundle. Los bundles nos proporcionan servicios.

¢ Recuerdas cuando instalamos twig? AAadié un bundle a nuestra aplicacion. ¢Y adivinas qué
hizo ese bundle? Si: nos proporciond nuevos servicios, incluido el serviciotwig. Los bundles

nos dan servicios... y los servicios son herramientas.

Autocableado

Y aunque hay muchos servicios en esta lista, la gran mayoria son objetos de servicio de bajo
nivel que nunca utilizaremos ni nos interesaran. Tampoco nos importara el ID de los servicios la

mayoria de las veces.

En su lugar, ejecuta un comando relacionado llamado:

php bin/console debug:autowiring

Esto nos muestra todos los servicios que son autocableables, que es la técnica que
utilizaremos para obtener servicios. Basicamente, es una lista curada de los servicios que es

mas probable que necesitemos.

Autoconexion del servicio Logger

Hagamos un reto: registremos algo desde nuestro controlador. He aqui un vistazo a cémo

enfoco este problema en mi cerebro:

“Vale, jnecesito registrar algo! Y... registrar es trabajo. Y... jlos servicios funcionan! Por tanto,

itiene que haber un servicio de registro que pueda utilizar! jQuod erat demonstrandum!”

Perdonadme, frikis del latin. La cuestion es: si queremos registrar algo, sélo tenemos que
encontrar el servicio que hace ese trabajo. jDe acuerdo! Vuelve a ejecutar el comando pero

busca log:

php bin/console debug:autowiring log

iBoom! Ha encontrado unos 10 servicios, todos ellos empiezan por
Psr\Log\LoggerInterface. Hablaremos de cuéles son esos otros servicios en el proximo
tutorial. Por ahora, céntrate en el principal. Esto me dice que hay un servicio en el contenedor

para un registrador. Y para obtenerlo, podemos autoconectarlo utilizando esta interfaz.

¢ Qué significa esto? En el método del controlador donde queremos el logger, afiade un

argumento de tipo LoggerInterface - pulsa tabulador - y luego di $logger.

src/Controller/StarshipApiController.php

T // ... lines 1 - 5

6 use Psr\Log\LoggerInterface;

$ // ... lines 7 - 10

11 class StarshipApiController extends AbstractController
12 {

T // ... line 13
14 public function getCollection(LoggerInterface $logger): Response
15 {

T // ... lines 16 - 41
42 }
43 }

En este caso, el nombre del argumento no es importante: podria ser cualquier cosa. Lo que
importa es que el LoggerInterface -que corresponde a esta declaracién use - coincida con

el Psr\Log\LoggerInterface de debug:autowiring.

iAsi de sencillo! Symfony vera esta sugerencia de tipo y dira:

“1Oh! Como ese type-hint coincide con el tipo de autocableado de este servicio, deben

querer que les pase ese objeto de servicio.”

No sé por qué Symfony suena como una rana en mi cabeza. En fin, veamos si esto funciona.

Anade dd($logger): dd() significa "volcar y morir" y viene de Symfony.

src/Controller/StarshipApiController.php

T // ... lines 1 - 5

6 use Psr\Log\LoggerInterface;

$ // ... lines 7 - 10

11 class StarshipApiController extends AbstractController
12 {

T // ... line 13

14 public function getCollection(LoggerInterface $logger): Response
15 {

16 dd($logger);

$ // ... lines 17 - 41
42 }
43 }

jActualiza! jSi! Imprimio el objeto maravillosamente y luego detuvo la ejecucién. jFunciona!

Symfony nos pasa un objeto Monolog\Logger, que implementa ese LoggerInterface.

El truco que acabamos de hacer -llamado autocableado- funciona exactamente en dos lugares:
los métodos de nuestro controlador y el método __ construct() de cualquier servicio.

Veremos esta segunda situacion en el préximo capitulo.

Controlar el comportamiento de los servicios

Y si te estas preguntando de donde salid este servicio Logger en primer lugar... jya sabemos
la respuesta! De un bundle. En este caso, MonologBundle. Y... ;como podriamos configurar
ese servicio... para que, no sé, se registre en un archivo diferente? La respuesta es:

config/packages/monolog.yaml.

Esta configuracion -incluida esta linea- configura MonologBundle ... lo que en realidad significa
que configura cémo funcionan los servicios que nos proporciona MonologBundle.
Aprenderemos sobre esta sintaxis porcentual en el proximo tutorial, pero esto le dice al servicio

Logger que registre en este archivo dev.log.

Utilizar el Logger

Bien, ahora que tenemos el servicio Logger, jvamos a utilizarlo! ; Cémo? Bueno, por supuesto,
puedes leer la documentacion. Pero gracias a la sugerencia de tipo, jnuestro editor nos

ayudara! LoggerInterface tiene un monton de métodos. Utilicemos ->info() y digamos

src/Controller/StarshipApiController.php

T /77 ... lines 1 - 5

6 use Psr\Log\LoggerInterface;

1 // ... lines 7 - 10

11 class StarshipApiController extends AbstractController
12 {

$ // ... Lline 13

14 public function getCollection(LoggerInterface $logger): Response
15 {

16 $logger->info('Starship collection retrieved');
$ // ... lines 17 - 41
42 }
43 }

“Coleccion de naves recuperada.”

Pruébalo: actualizar. La pagina funciondé... ¢ pero registré algo? Podriamos comprobar el

archivo dev.log. O podemos utilizar la seccidén Registro del perfilador para esta peticion.

Ver el Perfilador de una peticion API

Pero... jespera! Esto es una peticion API... jasi que no tenemos esa genial barra de
herramientas de depuracién web en la parte inferior! Es cierto... jpero Symfony sigue
recopilando toda esa informacion! Para acceder al perfilador de esta peticién, cambia la URL a
/_profiler. Esto muestra las peticiones mas recientes a nuestra aplicacion, con la mas
reciente en la parte superior. ¢ Ves ésta? jEs nuestra peticion a la API de hace un minuto! Si
haces clic en este token... jpbum! Estamos viendo el perfilador de esa llamada a la API en todo

su esplendor... incluyendo una seccion de Registro... con nuestro mensaje.

Bien, ahora que hemos visto como utilizar un servicio, jvamos a crear nuestro propio servicio!

Somos imparables!

Chapter 10: Crear tu propio Servicio

Sabemos que los servicios funcionan, y sabemos que Symfony esta lleno de servicios que

podemos utilizar. Si Ejecutas:

php bin/console debug:autowiring

Obtenemos el menu de servicios, en el que puedes pedir cualquiera de ellos afiadiendo un

argumento de tipo con la clase o interfaz correspondiente.

Por supuesto, también hacemos trabajo en nuestro cédigo... con suerte. Ahora mismo, todo ese
trabajo se realiza dentro de nuestro controlador, como la creacion de los datos de la Nave
Estelar. Claro, esto esta codificado ahora mismo, pero imagina que fuera trabajo real: como una
consulta compleja a una base de datos. Poner la l6gica dentro de un controlador esta "bien"...
pero ¢y si quisieramos reutilizar este codigo en otro sitio? ¢ Y si, en nuestra pagina de inicio,
quisiéramos obtener un recuento dinamico de las naves estelares tomando estos mismos

datos?

Crear la clase de servicio

Para ello, tenemos que trasladar este "trabajo" a un servicio propio que puedan utilizar ambos
controladores. En el directorio src/, crea un nuevo directorio Repository y una nueva clase

PHP en su interior llamada StarshipRepository.

src/Repository/StarshipRepository.php

T // ... lines 1 - 2

namespace App\Repository;

{

3
4
5 <class StarshipRepository
6
7}

Al igual que cuando creamos nuestra clase Starship, esta nueva clase no tiene

absolutamente nada que ver con Symfony. Es s6lo una clase que hemos decidido crear para

organizar nuestro trabajo. Por lo tanto, a Symfony no le importa cémo se llama, dénde vive o
qué aspecto tiene. Yo la llamé StarshipRepository y la puse en un directorio Repository
porque es un nombre de programacion comun para una clase cuyo "trabajo" es obtener un tipo

de datos, como los datos de la nave estelar.

Autocableado del nuevo servicio

Vale, antes de hacer nada aqui, vamos a ver si podemos utilizar esto dentro de un controlador.
Y, jbuenas noticias! Soélo con crear esta clase, ya esta disponible para autocableado. Ahade un
argumento StarshipRepository $repository y, para asegurarte de que funciona,

dd($repository).

src/Controller/StarshipApiController.php

T // ... lines 1 - 5

6 use App\Repository\StarshipRepository;

T // ... lines 7 - 11

12 class StarshipApiController extends AbstractController
13 {

T // ... line 14

15 public function getCollection(LoggerInterface $logger, StarshipRepository

$repository): Response

16 {

17 $logger->info('Starship collection retrieved');
18 dd($repository);

T // ... lines 19 - 43
44 }
45 '}

Muy bien, gira, vuelve a hacer clic en nuestra ruta, y... ya esta. Qué guay! Symfony ha visto la
sugerencia de tipo StarshipRepository, ha instanciado ese objeto y nos lo ha pasado. Borra
el dd() ... y movamos los datos de la nave estelar dentro. Copialo... y crea una nueva funcion

publica llamada, qué tal, findAl1() . Dentro, return, y pégala.

src/Repository/StarshipRepository.php

T // ... lines 1 - 4
use App\Model\Starship;

5
6
7 class StarshipRepository
8
9

{

public function findAll(): array
10 {
11 return [
12 new Starship(
13 1,
14 'USS LeafyCruiser (NCC-0001)',
15 'Garden’,
16 'Jean-Luc Pickles',
17 ‘taken over by Q'
18),
19 new Starship(
20 2,
21 'USS Espresso (NCC-1234-C)°',
22 'Latte’,
23 'James T. Quick!"',
24 'repaired’,
25)>
26 new Starship(
27 3,
28 'USS Wanderlust (NCC-2024-W)',
29 'Delta Tourist',
30 'Kathryn Journeyway',
31 "under construction’,
32)
33 1;
34 }
35 }

De vuelta en StarshipApiController, borra eso... y queda maravillosamente

sencillo: $starships = $repository->findAll().

src/Controller/StarshipApiController.php

15
16
17

0
20
21

// ... lines 1 - 4
use App\Repository\StarshipRepository;
// ... lines 6 - 10
class StarshipApiController extends AbstractController
{
#[Route('/api/starships')]
public function getCollection(LoggerInterface $logger, StarshipRepository
$repository): Response

{
$logger->info('Starship collection retrieved');
$starships = $repository->findAll();
// ... lines 18 - 19
}

jListo! Cuando lo probamos, sigue funcionando... y ahora el cédigo para obtener naves

estelares esta bien organizado en su propia clase y es reutilizable en toda nuestra aplicacion.

Autocableado del Constructor

Con esta victoria en nuestro haber, vamos a hacer algo mas dificil. ; Qué pasaria si, desde

dentro de StarshipRepository, necesitaramos acceder a otro servicio que nos ayudara a

hacer nuestro trabajo? jNo hay problema! jPodemos utilizar el autocableado! Intentemos

autocablear de nuevo el servicio logger.

La unica diferencia esta vez es que no vamos a afiadir el argumento a findAl1l() . Te explicaré

por qué en un minuto. En lugar de eso, afiade un nuevo public function __ construct()y

realiza el autocableado alli: private LoggerInterface $logger.

src/Repository/StarshipRepository.php

// ... lLines 1 - 5
use Psr\Log\LoggerInterface;

class StarshipRepository

{
public function __ construct(private LoggerInterface $logger)
{
}

// ... lines 13 - 41

}

A continuacion, para utilizarlo, copia el cdédigo de nuestro controlador, borralo, pégalo aqui y

actualizalo a $this->logger.

src/Repository/StarshipRepository.php

$ // ... lines 1 - 5

6 use Psr\Log\LoggerInterface;

7

8 «class StarshipRepository

9 {

10 public function _ construct(private LoggerInterface $logger)
11 {

12 }

13

14 public function findAll(): array

15 {

16 $this->logger->info('Starship collection retrieved');
$ // ... lines 17 - 40
41 }
42 3

iGenial! En el controlador, podemos eliminar ese argumento porque ya no lo vamos a utilizar.

jHora de probar! jActualiza! No hay error: buena sefal. Para ver si se ha registrado algo, ve a

/_profiler, haz clic en la peticion superior, Registros, y... jahi esta!

Te explicaré por qué hemos afadido el argumento de servicio al constructor. Si queremos
obtener un servicio -como el registrador, una conexién a una base de datos, lo que sea-, ésta
es la forma correcta de utilizar el autocableado: afiadir un método ___construct dentro de otro
servicio. El truco que vimos antes -en el que afiadimos el argumento a un método normal- si,
eso es especial y sélo funciona para los métodos del controlador. Es una comodidad adicional
que se anadi6 al sistema. Es una gran caracteristica, pero la forma del constructor... asi es

como funciona realmente el autocableado.

Y esta forma "normal", funciona incluso en un controlador. Podrias anadir un método

__construct() con un argumento autocableable y funcionaria perfectamente.

La cuestion es: si estas en un método controlador, claro, afiade el argumento al método, jesta
bien! Sélo recuerda que es algo especial que soélo funciona aqui. En cualquier otra parte,

autowire a través del constructor.

Utilizar el Servicio en otra Pagina

Celebremos nuestro nuevo servicio utilizandolo en la pagina principal. AbreMainController.
Este $starshipCount codificado es tan de hace 30 minutos.
AutocableaStarshipRepository $starshipRepository, luego

di$ships = $starshipRepository->findAll() y cuéntalos con count().

src/Controller/MainController.php

T // ... lines 1 - 4

5 use App\Repository\StarshipRepository;

$ // ... lines 6 - 9
10 class MainController extends AbstractController
11 {
12 #[Route('/")]
13 public function homepage(StarshipRepository $starshipRepository): Response
14 {
15 $ships = $starshipRepository->findAll();
16 $starshipCount = count($ships);

$ // ... lines 17 - 22
23 }
24}

Ya que estamos aqui, en lugar de esta matriz $myShip codificada, vamos a coger un objeto

Starship al azar. Podemos hacerlo diciendo $myShip igual a$ships[array_rand($ships)]

src/Controller/MainController.php

$ // ... lines 1 - 4

5 use App\Repository\StarshipRepository;

T // ... lines 6 - 9
10 class MainController extends AbstractController
11 {
12 #[Route('/")]
13 public function homepage(StarshipRepository $starshipRepository): Response
14 {
15 $ships = $starshipRepository->findAll();
16 $starshipCount = count($ships);
17 $myShip = $ships[array_rand($ships)];

$ // ... lines 18 - 22
23 }
24}

iVamos a probarlo! Busca en tu navegador y dirigete a la pagina de inicio. jYa esta! Vemos el
barco que cambia aleatoriamente aqui abajo, y el nUmero de barco correcto aqui arriba...

porque lo estamos multiplicando por 10 en la plantilla.

Imprimiendo objetos en Twig

iY acaba de ocurrir algo alucinante! Hace un momento, myShip era una matriz asociativa. Pero
lo hemos cambiado para que sea un objeto Starship. Y aun asi, el codigo de nuestra pagina
siguié funcionando. Acabamos de ver accidentalmente un superpoder de Twig. Ve
atemplates/main/homepage.html.twig y desplazate hasta el final. Cuando
dicesmyShip.name, Twig es realmente inteligente. Si myShip es una matriz asociativa, cogera
la clave name. Si myShip es un objeto, como lo es ahora, cogera la propiedad name. Pero aun
mas, si miras Starship, la propiedad name es privada, por lo que no podemos acceder a ella
directamente. Twig se da cuenta de ello. Mira la propiedad name, ve que es privada, pero

también ve que hay unagetName() publica. Asi que llama a esa.

Todo lo que tenemos que decir es myShip.name... y Twig se encarga de los detalles de como

obtenerlo, lo cual me encanta.

Vale, un ultimo pequeno ajuste. En lugar de pasar el starshipCount a nuestra plantilla,
podemos hacer el recuento dentro de Twig. Elimina esta variable y, en su lugar, pasa una

variable ships.

src/Controller/MainController.php

T // ... lines 1 - 9

10 class MainController extends AbstractController

11 {

$ // ... Lline 12

13 public function homepage(StarshipRepository $starshipRepository): Response
14 {

15 $ships = $starshipRepository->findAll();

16 $myShip = $ships[array_rand($ships)];

$ // ... line 17

18 return $this->render('main/homepage.html.twig', [
19 ‘myShip' => $myShip,

20 ‘ships' => $ships,

21 1)

22 }

23 }

En la plantilla, ahi lo tenemos, para el recuento, podemos decir ships, que es una matriz, y

luego utilizar un filtro Twig: |length.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 {% block body %}

T /7 ... lines 6 - 9
10 <«div>
11 Browse through {{ ships|length * 1@ }} starships!
12
13 {% if ships|length > 2 %}
T // ... lines 14 - 17
18 {% endif %}
19 </div>

$ // ... lines 20 - 42
43 {% endblock %}

Asi queda bien. Hagamos lo mismo aqui abajo... y cambiémoslo a mayor que 2. Pruébalo.

iNuestro sitio sigue funcionando!

Lo siguiente: creemos mas paginas y aprendamos a hacer rutas aun mas inteligentes.

Chapter 11: Rutas mas sofisticadas: Requisitos,
comodines y mas

Con toda la nueva organizacion del cédigo, celebrémoslo creando otra ruta APl para obtener un
unico starship. Empieza como siempre: crea un public function llamado, qué tal, get().

Incluiré el tipo de retorno opcional Response. Encima de éste afiade el #[Route] con una URL
de /api/starships/... hmm. Esta vez, la ultima parte de la URL tiene que ser dinamica: debe
coincidir con /api/starships/5 o /api/starships/25. ; Como podemos hacerlo? ;Cémo

podemos hacer que una ruta coincida con un comodin?
La respuesta es afiadiendo {, un nombre, el }.

El nombre dentro de esto puede ser cualquier cosa. No importa lo que sea, ahora esta ruta
coincidira con /api/starships/*. Pero sea cual sea el nombre que le pongas, ahora puedes

tener un argumento con un nombre que coincida: $id.

A continuacion, vuelca esto para asegurarte de que funciona.

src/Controller/StarshipApiController.php

$ // ... lines 1 - 9

10 class StarshipApiController extends AbstractController
11 |

T /7 ... lines 12 - 19

20 #[Route('/api/starships/{id}"')]

21 public function get($id): Response

22 {

23 dd($id);

24 }

25 }

Restringir el comodin a un numero

iVale! Acércate a /api/starships/2 y... jfunciona!

En nuestra app, el ID sera un numero entero. Si pruebo con algo que no sea un numero entero

-como /wharf - la ruta sigue coincidiendo y llama a nuestro controlador. Y eso casi siempre

esta bien. En una aplicacion real, si consultaramos la base de datos conWHERE ID = ‘wharf',
no se produciria un error: jsimplemente no encontraria un barco coincidente! Y entonces

podriamos lanzar una pagina 404, que pronto te ensefiaré como hacer.

Pero a veces podemos querer restringir estos valores. Puede que queramos decir

“Sélo coincide con esta ruta si el comodin es un niumero entero.”

Para ello, dentro de la llave, después del nombre, afnade un <, > y dentro, una expresion

regular \d+.

src/Controller/StarshipApiController.php

T // ... lines 1 - 9

10 class StarshipApiController extends AbstractController
11 {

1 // ... lines 12 - 19

20 #[Route('/api/starships/{id<\d+>}")]

21 public function get(int $id): Response

22 {

23 dd($id);

24 }

25 }

Esto significa: coincide con un digito de cualquier longitud. Con esta configuracion, si
actualizamos la URL wharf, obtenemos un error 404. Sencillamente, nuestra ruta no coincidié -
ninguna ruta coincidio-, por lo que nunca se llamé a nuestro controlador. Pero si volvemos a

/2, sigue funcionando.

Y como ventaja afiadida, ahora que esto sélo coincide con digitos, podemos anadir un tipo int
al argumento. Ahora, en lugar de la cadena 2, obtenemos el integer 2. Estos detalles no son

superimportantes, pero quiero que sepas qué opciones tienes.

Restringir el método HTTP de la ruta

Algo habitual en las API es hacer que las rutas soélo coincidan con un determinado método
HTTP, como GET o POST. Por ejemplo, si quieres obtener todas las naves estelares, los
usuarios deben hacer una peticién a GET ... lo mismo si quieres obtener una sola nave. Si

siguiéramos construyendo nuestra APl y crearamos una ruta que pudiera utilizarse para crear

un nuevo Starship, la forma estandar de hacerlo seria utilizar la misma URL.:

/api/starships pero con una peticion a POST.

Ahora mismo, esto no funcionaria. Cada vez que el usuario solicitara /api/starships -no

importa si utiliza una peticion GET o POST, coincidiria con esta primera ruta.

Por eso, es habitual en una API afiadir una opcion methods establecida en una matriz, con

GET o POST. Haré lo mismo aqui abajo: methods: ['GET'].

src/Controller/StarshipApiController.php

T // ... lines 1 - 9

10 class StarshipApiController extends AbstractController

11 {

12 #[Route('/api/starships', methods: ['GET'])]

13 public function getCollection(StarshipRepository $repository): Response
T // ... lines 14 - 19

20 #[Route('/api/starships/{id<\d+>}"', methods: ['GET'])]

21 public function get(int $id): Response

$ /7 ... lines 22 - 24

25 }

No puedo probarlo facilmente en un navegador, pero si hiciéramos una peticion POST

a/api/starships/2, no coincidiria con nuestra ruta.

Pero podemos ver el cambio en nuestro terminal. Ejecuta:

php bin/console debug:router

jPerfecto! La mayoria de las rutas coinciden con cualquier método... pero nuestras dos rutas

API sdlo coinciden si se realiza una peticion GET a esa URL.

Poner un prefijo a cada URL de ruta

Vale, tengo otro truco de enrutamiento que ensefarte... jy es divertido! Todas las rutas de este
controlador empiezan con la misma URL: /api/starships. Tener la URL completa en cada
ruta esta bien. Pero si queremos, podemos prefijar automaticamente la URL de cada ruta.

Encima de la clase, afiade un atributo #[Route] con /api/starships.

A diferencia de cuando lo ponemos encima de un método, esto no crea una ruta. Sélo dice:
cada ruta de esta clase debe ir prefijada con esta URL. Asi que para la primera ruta, elimina la

ruta por completo. Y para la segunda, sélo necesitamos la parte del comodin.

src/Controller/StarshipApiController.php

T // ... lines 1 - 9
10 #[Route('/api/starships')]
11 class StarshipApiController extends AbstractController

12 {

13 #[Route('', methods: ['GET'])]

14 public function getCollection(StarshipRepository $repository): Response
$ // ... lines 15 - 20

21 #[Route('/{id<\d+>}"', methods: ['GET'])]

22 public function get(int $id): Response

$ // ... lines 23 - 25

26 }

Prueba de nuevo con debug:router... y observa estas URL:

php bin/console debug:router

iNo cambian!

Finalizando la nueva ruta API

Muy bien. Vamos a terminar nuestra ruta. Tenemos que encontrar el barco que coincida con
este ID. Normalmente consultariamos la base de datos: select * from ship where id =
este ID. Nuestras naves estan codificadas ahora mismo, pero aun podemos hacer algo que se

parecera mas o menos a lo que sera, una vez que tengamos una base de datos.

Ya tenemos un servicio - StarshipRepository - cuyo trabajo consiste en obtener datos sobre
naves estelares. Démosle un nuevo superpoder: la capacidad de obtener un UnicoStarship
para un id. Afade public function find() con un argumento int $id que devolvera un

Starship anulable. Por tanto, un Starship si encontramos uno para este id, sino null.

Ahora mismo, la forma mas facil de escribir esta I6gica es hacer un bucle sobre
$this->findAll() como $starship... luego si $starship->getId() === $id, devolver

$starship. Cambiaré mi uf por if. Mucho mejor.

Y si no encontramos nada, al final, return null.

src/Repository/StarshipRepository.php

T /... lines 1 - 7

8 «class StarshipRepository

9 {

T // ... lines 10 - 42
43 public function find(int $id): ?Starship
44 {
45 foreach ($this->findAll() as $starship) {
46 if ($starship->getlId() === $id) {
47 return $starship;
48 }
49 }

50

51 return null;

52 }

53 }

Gracias a esto, nuestro controlador es muy sencillo. Primero, autocablea el repositorio
anadiendo un argumento: StarshipRepository y llamalo $repository. Por cierto, el orden

de los argumentos en un controlador no importa.

Después $starship = $repository->find($id). Termina al final

conreturn $this->json($starship).

src/Controller/StarshipApiController.php

T // ... lines 1 - 10

11 class StarshipApiController extends AbstractController
12 {

$ // ... lines 13 - 21

22 public function get(int $id, StarshipRepository $repository): Response
23 {

24 $starship = $repository->find($id);

25

26 return $this->json($starship);

27 }

28 }

Creo que ya estamos listos Actualiza. jPerfecto!

Activar una pagina 404

Pero prueba con un id que no exista en nuestra base de datos falsa - como /200. La palabra
null no es... lo que queremos. En esta situacidon, deberiamos devolver una respuesta con un

cédigo de estado 404.

Para ello, vamos a seguir un patron comun: consulta un objeto y comprueba si devuelve algo.
Si no devuelve nada, lanza un 404. Hazlo con throw $this->createNotFoundException().

Le pasaré un mensaje.

src/Controller/StarshipApiController.php

T // ... lines 1 - 10

11 class StarshipApiController extends AbstractController

12 {

$ // ... lines 13 - 21

22 public function get(int $id, StarshipRepository $repository): Response
23 {

24 $starship = $repository->find($id);

25

26 if (!$starship) {

27 throw $this->createNotFoundException('Starship not found');
28 }

29

30 return $this->json($starship);

31 }

32}

Fijate en la palabra clave throw: estamos lanzando una excepcion especial que desencadena
un 404. Eso esta bien porque, en cuanto llegue a esta linea, no se ejecutara nada de lo que

venga despueés.

iPruébalo! jSi! jUna respuesta 404! EI mensaje - "Nave no encontrada"- sélo se muestra a los
desarrolladores en modo dev. En produccion, se devolveria una pagina -o JSON- totalmente
diferente. Puedes consultar la documentacién para obtener mas informacién sobre las paginas

de error de produccién.

A continuacién: vamos a construir la version HTML de esta pagina, una pagina que muestra
detalles sobre una unica nave estelar. Luego aprenderemos a enlazar entre paginas utilizando

el nombre de la ruta.

Chapter 12: Generar URLs

Vamos a crear una "pagina de presentacion" de barcos: una pagina que muestre los detalles de
un solo barco. La pagina de inicio vive en MainController. Y asi podriamos afiadir otra ruta y
meétodo aqui. Pero a medida que mi sitio crezca, probablemente tendré varias paginas
relacionadas con naves estelares: quiza para editarlas y eliminarlas. Asi que, en lugar de eso,
en el directorio Controller/, crea una nueva clase. Llamala StarshipController, y, como

de costumbre, extiende AbstractController.

Crear la pagina Mostrar

Dentro, jmanos a la obra! Afiade un public function llamado show(), yo afadiré el tipo de
retorno Response, luego la ruta, con /starships/ y un comodin llamado {id}.Y de nuevo,
es opcional, pero seré extravagante y anadiré el \d+ para que el comodin sélo coincida con un

ndmero.

Ahora, como tenemos un comodin {id}, se nos permite tener un argumento $id aqui abajo.

dd($id) para ver como vamos hasta ahora.

src/Controller/StarshipController.php

T /... lines 1 - 2

3 namespace App\Controller;

4

5 wuse Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
6 use Symfony\Component\HttpFoundation\Response;

7 use Symfony\Component\Routing\Attribute\Route;

8
9

class StarshipController extends AbstractController

10 {

11 #[Route('/starships/{id<\d+>}")]

12 public function show(int $id): Response
13 {

14 dd($id);

15 }

16 }

Pruébalo. Dirigete a /starships/2. jEstupendo!

Ahora vamos a hacer algo familiar: tomar este $id y consultar nuestra base de datos
imaginaria en busca del Starship coincidente. La clave para hacerlo es nuestro servicio

StarshipRepositoryy su util método find().

En el controlador, afnade un argumento StarshipRepository $repository...yluego di
que $ship esigual a $repository->find($id).Y sino es $ship, activa una pagina 404 con

los lanzamientos $this->createNotFoundException() y starship not found.

iGenial! En |la parte inferior, en lugar de devolver JSON, renderiza una plantilla:
devuelve $this->render() y sigue la convencion de nomenclatura estandar para

plantillas: starship/show.html.twig. Pasa esta variable: $ship.

src/Controller/StarshipController.php

T // ... lines 1 - 4

5 use App\Repository\StarshipRepository;

1 // ... lines 6 - 9
10 class StarshipController extends AbstractController
11 {
12 #[Route('/starships/{id<\d+>}")]
13 public function show(int $id, StarshipRepository $repository): Response
14 {
15 $ship = $repository->find($id);
16 if (!$ship) {
17 throw $this->createNotFoundException('Starship not found');
18 }
19
20 return $this->render('starship/show.html.twig"', [
21 ‘ship' => $ship,
22 1)
23 }
24}

Crear la plantilla

Controlador, jcomprobado! A continuacién, en el directorio templates/, podriamos crear un
directoriostarship/ y show.html.twig dentro. Pero quiero mostrarte un atajo del plugin
Symfony PhpStorm. Haz clic en el nombre de la plantilla, pulsa Alt+Enter y... jfijate! En la parte
superior pone "Twig: Crear plantilla". Confirma la ruta y jpboom! jYa tenemos nuestra nueva

plantilla! Esta... escondida por aqui. Ahi esta: starship/show.html. twig.

Practicamente todas las plantillas empiezan igual: {% extend 'base.html.twig' %}... jluego
anula algunos bloques! Anula title... y esta vez, utiliza la variable ship: ship.name. Termina

con endblock.

Y para el contenido principal, anade el bloque body ... endblock y pon un hldentro. Vuelve a

imprimir ship.name y... Pegaré una tabla con algo de informacion.

src/Controller/StarshipController.php

$ // ... lines 1 - 4

5 use App\Repository\StarshipRepository;

$ // ... lines 6 - 9
10 class StarshipController extends AbstractController
11 {
12 #[Route('/starships/{id<\d+>}")]
13 public function show(int $id, StarshipRepository $repository): Response
14 {
15 $ship = $repository->find($id);
16 if (!$ship) {
17 throw $this->createNotFoundException('Starship not found');
18 }
19
20 return $this->render('starship/show.html.twig', [
21 "ship' => $ship,
22 1)
23 }
24}

Aqui no hay nada especial: solo estamos imprimiendo datos basicos del barco.

Cuando probamos la pagina... jesta viva!

Enlazar entre paginas

Siguiente pregunta: desde la pagina de inicio, ,como podriamos afadir un enlace a la nueva
pagina de presentacion de barcos? La opcién mas obvia es codificar la URL, como
/starships/ y luego el id. Pero hay una forma mejor. En lugar de eso, vamos a decirle a

Symfony:

“Oye, quiero generar una URL para esta ruta.”

La ventaja es que si mas adelante decidimos cambiar la URL de esta ruta, todos los enlaces a

ella se actualizaran automaticamente.

Déjame que te lo muestre. Busca tu terminal y ejecuta:

php bin/console debug:router

Aun no lo he mencionado, pero cada ruta tiene un nombre interno. Ahora mismo, estan siendo
autogeneradas por Symfony, lo cual esta bien. Pero en cuanto quieras generar una URL a una

ruta, debemos tomar el control de ese nombre para asegurarnos de que nunca cambie.

Busca la ruta show page y anade una clave name. Yo utilizaré app_starship_show.

src/Controller/StarshipController.php

T // ... lines 1 - 9

10 class StarshipController extends AbstractController

11 {

12 #[Route('/starships/{id<\d+>}"', name: 'app_starship_show")]

13 public function show(int $id, StarshipRepository $repository): Response
T // ... lines 14 - 23

24}

El nombre podria ser cualquier cosa, pero ésta es la convencion que yo sigo: app porque es
una ruta que estoy creando en mi aplicacion, y luego el nombre de la clase del controlador y el

nombre del método.

Nombrar una ruta no cambia su funcionamiento. Pero si nos permite generar una URL hacia
ella. Abre templates/main/homepage.html.twig. Aqui abajo, convierte el nombre de la ruta

en un enlace. Lo pondré en varias lineas y anadiré una etiqueta a conhref="". Para generar

la URL, diré {{ path() }} y le pasaré el nombre de la ruta. Pondré la etiqueta de cierre en el

otro lado.

Si nos detenemos ahora, esto no funcionara del todo. En la pagina de inicio:

“Faltan algunos parametros obligatorios - id - para generar una URL para la ruta

app_starship_show.”

iEso tiene sentido! Le estamos diciendo a Symfony:

“iHola! Quiero generar una URL para esta ruta.”
Symfony entonces responde:

“Genial... excepto que esta ruta tiene un comodin. Asi que... ;qué quieres quieres que

ponga en la URL para la parte id ?”

Cuando hay un comodin en la ruta, tenemos que afadir un segundo argumento a path() con
{} . Esta es la sintaxis de matriz asociativa de Twig. Es exactamente igual que JavaScript: es

una lista de pares clave-valor. Pasa id ajustado a myShip.id.

templates/main/homepage.html. twig

$ // ... lines 1 - 4

5 {% block body %}

T // ... lines 6 - 20
21 <div>

$ // ... lines 22 - 23
24 <table>
25 <tr>
26 <th>Name</th>
27 <td>
28 <a href="{{ path('app_starship_show', {
29 id: myShip.id
30 }) }}">{{ myShip.name }}
31 </td>
32 </tr>

T // ... lines 33 - 44
45 </table>
46 </div>

47 {% endblock %}

Y ahora... jya esta! Mira esa URL: /starships/3.

Muy bien, nuestro sitio sigue siendo feo. Es hora de empezar a arreglarlo incorporando Tailwind

CSS y aprendiendo sobre el componente AssetMapper de Symfony.

Chapter 13: CSS y JavaScript con Asset Mapper

¢ Qué pasa con las imagenes, CSS y JavaScript? ; Como funciona eso en Symfony?

Las cosas publicas son... Publico

En primer lugar, el directorio public/ se conoce como la raiz de tu documento. Cualquier cosa
dentro de public/ es accesible para tu usuario final. Todo lo que no esté en public/ no es
accesible, jlo cual es genial! Ninguno de nuestros archivos fuente de alto secreto puede ser

descargado por nuestros usuarios.

Asi que si quieres crear un archivo CSS o un archivo de imagen o cualquier otra cosa, la vida
puede ser tan simple como ponerlo en public/. Ahora puedo ira /foo.txt... y vemos el

archivo.

Hola Mapeador de Activos

Sin embargo, Symfony tiene un gran componente llamado Asset Mapper que nos permite hacer
efectivamente lo mismo... pero con algunas caracteristicas importantes y extra. Tenemos unos
cuantos tutoriales que profundizan en este tema: uno sobre el Mapeador de Activos
especificamente y otro sobre cdmo construir cosas con el Mapeador de Activos llamado LAST

Stack. Echales un vistazo para profundizar.

jPero vamos a sumergirnos en las amistosas aguas del Mapeador de Activos! Confirma todos

tus cambios -yo ya lo he hecho- e instalalo con:

composer require symfony/asset-mapper

Esta receta hace varios cambios... y recorreremos cada uno poco a poco, ya que son

importantes.

https://symfonycasts.com/screencast/last-stack
https://symfonycasts.com/screencast/last-stack

Pero ya, si nos desplazamos y actualizamos, jnuestro fondo es azul! Inspecciona Element en tu

navegador y ve a la consola. jTambién tenemos un registro de consola!
“Este log viene de assets/app.js. Bienvenido al mapeador de activos.”

iMuchas gracias!

Los 2 superpoderes de Asset Mapper

Asset Mapper tiene dos grandes superpoderes. El primero es que nos ayuda a cargar CSS y
JavaScript. La receta nos ha proporcionado un nuevo directorio assets/ con un archivo

app.js yotro styles/app.css. Como hemos visto, el registro de la consola procede de

app.js.

assets/app.js

1 /*
* Welcome to your app's main JavaScript file!
*

2

3

4 * This file will be included onto the page via the importmap() Twig function,
5 * which should already be in your base.html.twig.

6 */

7 ‘
8

9

import './styles/app.css';
console.log('This log comes from assets/app.js - welcome to AssetMapper! &');

Asi que este archivo se esta cargando. Al parecer, también esta incluyendo app.css, que es lo

que nos da ese fondo azul.

assets/styles/app.css

1 body {
2 background-color: skyblue;
3}

Mas adelante hablaremos mas sobre cémo se cargan estos archivos y cdmo funciona todo

esto. Pero por ahora, basta con saber que app.js y app.css estan incluidos en la pagina.

El segundo gran superpoder de Asset Mapper es un poco mas sencillo. La receta ha creado un

archivo config/packages/asset_mapper.yaml. No hay mucho aqui:

config/packages/asset_mapper.yaml

1 framework:

2 asset_mapper:

3 # The paths to make available to the asset mapper.
4 paths:

5 - assets/

s6lo paths apuntando a nuestro directorio assets/. Pero gracias a esta linea, cualquier
archivo que pongamos en el directorio assets/ estara disponible publicamente. Es como si el
directorio assets/ viviera fisicamente dentro de public/. Esto es util porque, sobre la
marcha, Asset Mapper afiade el versionado de activos: un importante concepto de frontend que

veremos dentro de un minuto.

Listado de activos y ruta Iogica

Pero antes, dirigete a tu terminal y ejecuta otro nuevo comando debug:

php bin/console debug:asset

Esto muestra todos los activos expuestos publicamente a través del Mapeador de Activos.

Ahora mismo son solo dos: app.css y app.js.

Si descargas el codigo del curso de esta pagina y lo descomprimes, encontraras un directorio

tutorial/ con un subdirectorio images/. Cortaré esto... y luego lo pegaré enassets/.

Asi que ahora tenemos un directorio assets/images/ con 5 archivos dentro. Y, por cierto,

puedes organizar el directorio assets/ como quieras.

Pero ahora, vuelve atras y ejecuta de nuevo debug:asset:

php bin/console debug:asset

jLos nuevos archivos estan ahi!

Representacion de una imagen

Ala izquierda, ¢ ves esta "ruta logica"? Es la ruta que utilizaremos para hacer referencia a ese

archivo en Asset Mapper.

Te lo mostraré: vamos a renderizar una etiqueta img en el logotipo. Copia la ruta logica
starshop-logo.png. Luego dirigete a templates/base.html.twig. Justo encima del bloque
del cuerpo -para que no quede anulado por el contenido de nuestra pagina- afiade una etiqueta
 consrc="". En lugar de intentar codificar una ruta, di {{ y utiliza una nueva funcién

Twig llamada asset (). Pasale la ruta légica.

Ya esta Vale, afnadiré un atributo alt... para ser un buen ciudadano de la web.

templates/base.html.twig

T /7 ... line 1

2 <html>

$ // ... lines 3 - 13

14 <body>

15
16 {% block body %}{% endblock %}

17 </body>

18 </html>

Probemos esto. Actualiza y... jestalla!

“¢Has olvidado ejecutar composer require symfony/asset. Funcion desconocida

n

"activo".

Recuerda: nuestra aplicacion empieza siendo pequeina. Y luego, a medida que necesitamos
mas funciones, instalamos mas componentes Symfony. Y a menudo, si intentas utilizar una
funcién de un componente que no esta instalado, te lo dira. La funcion Twigasset() proviene
de otro componente diminuto llamado symfony/asset. Todo lo que tenemos que hacer es

seguir el consejo. Copia el comando composer require, pasa a tu terminal y ejecutalo:

composer require symfony/asset

Cuando termine, muévete y actualiza. jAhi esta nuestro logotipo!

Versionado automatico de activos

¢La parte mas interesante? Ver el cédigo fuente de la pagina y comprobar la

URL: /assets/images/starshop-logo- y luego una larga cadena de letras y numeros, .png.
Esta cadena se llama hash de la version y se genera en funcion del contenido del archivo. Eso
significa que si mas adelante actualizamos nuestro logotipo, este hash cambiara

automaticamente.

Esto es superimportante. A los navegadores les gusta almacenar en caché las imagenes, el
JavaScript y los archivos CSS, lo que esta muy bien: ayuda al rendimiento. Pero cuando
cambiamos esos archivos, queremos que nuestros usuarios descarguen la nueva version: no

que sigan utilizando la version obsoleta, almacenada en caché.

Pero como el nombre del archivo cambiara cuando actualicemos la imagen, jel navegador va a

utilizar automaticamente el nuevo! Esto es asi:

El usuario va a nuestro sitio y descarga logo-abc123.png. Su navegador lo almacena en

caché.

En la siguiente visita, su navegador ve la etiqueta img para logo-abc123.png, encuentra

el archivo en su caché y lo utiliza.
Entonces llegamos nosotros, actualizamos ese archivo y lo desplegamos.

La proxima vez que el usuario visite nuestro sitio, la etiqueta img apuntara a un nombre de
archivo diferente: logo-def456.png. Y como el navegador no tiene ese archivo en su

caché, lo descarga nuevo.

Se trata de un pequeno detalle, pero también es increiblemente importante para asegurarnos
de que nuestros usuarios utilizan siempre los archivos mas recientes. ;Y lo mejor?

Simplemente funciona. Ahora que te lo he explicado, no tendras que volver a pensar en esto.

Ok equipo, vamos a instalar y empezar a usar Tailwind CSS a continuacion.

Chapter 14: Tailwind CSS

¢, Qué pasa con el CSS? Eres libre de afiadir el CSS que quieras a app/styles/app.css. Ese

archivo ya esta cargado en la pagina.

¢ Quieres utilizar CSS de Bootstrap? Consulta la documentacion de Asset Mapper sobre como

hacerlo. O, si quieres usar Sass, hay un symfonycasts/sass-bundle que te lo pone facil. No

obstante, te recomiendo que no te lances a usar Sass demasiado rapido, ya que muchas de las
funciones por las que Sass es famoso pueden hacerse ahora en CSS nativo, como las

variables CSS e incluso el anidamiento CSS.

Hola Tailwind

¢, Cual es mi eleccion personal para un framework CSS? Tailwind. Y parte de la razén es que
Tailwind es increiblemente popular. Asi que si buscas recursos o componentes preconstruidos,

vas a tener mucha suerte si utilizas Tailwind.

Pero Tailwind es un poco extrafio en un sentido: no es simplemente un gran archivo CSS que
pones en tu pagina. En su lugar, tiene un proceso de construccion que escanea tu codigo en
busca de todas las clases Tailwind que estés utilizando. Luego vuelca un archivo CSS final que

so6lo contiene el codigo que necesitas.

En el mundo Symfony, si quieres utilizar Tailwind, hay un bundle que lo hace realmente facil.
Gira tu terminal e instala un nuevo paquete: composer require symfonycasts - hey los

conozco - tailwind-bundle:

composer require symfonycasts/tailwind-bundle

Para este paquete, la receta no hace nada mas que activar el nuevo bundle. Para poner en

marcha Tailwind, una vez en tu proyecto, ejecuta:

https://github.com/symfonycasts/sass-bundle

php bin/console tailwind:init

Esto hace tres cosas. En primer lugar, descarga un binario de Tailwind en segundo plano, algo
en lo que nunca tendras que pensar. En segundo lugar, crea un archivo
tailwind.config.jsen laraiz de nuestro proyecto. Esto indica a Tailwind donde tiene que
buscar en nuestro proyecto las clases CSS de Tailwind. Y tercero, actualiza nuestro app.css
para afiadir estas tres lineas. Estas seran sustituidas por el cédigo real de Tailwind en segundo

plano por el binario.

Ejecutar Tailwind

Por ultimo, hay que compilar Tailwind, asi que tenemos que ejecutar un comando para hacerlo:

php bin/console tailwind:build -w

Esto escanea nuestras plantillas y genera el archivo CSS final en segundo plano. El -w lo pone
en modo "vigilar": en lugar de construir una vez y salir, vigila nuestras plantillas en busca de
cambios. Cuando detecte alguna actualizacién, reconstruira automaticamente el archivo CSS.

Lo veremos en un minuto.

Pero ya deberiamos ver una diferencia. Vamos a la pagina de inicio. ¢ Lo has visto? El codigo

base de Tailwind ha hecho un reinicio. Por ejemplo, jnuestro hl es ahora diminuto!

Ver Tailwind en accion

Probemos esto de verdad. Abre templates/main/homepage.html.twig. Encima de h1l,

hazlo mas grande anadiendo una clase: text-2x1.

templates/main/homepage.html. twig

T 7/ ... lines 1 - 4

5 {% block body %}

6 <hl class="text-2x1">

7 Starshop: your monopoly-busting option for Starship parts!
8 </hl>

T // ... lines 9 - 46

47 {% endblock %}

En cuanto guardemos eso, podras ver que tailwind se dio cuenta de nuestro cambio y

reconstruyo el CSS. Y cuando actualizamos, jse hizo mas grande!

Nuestro archivo fuente app.css sigue siendo super sencillo: sélo esas pocas lineas que vimos
antes. Pero mira el codigo fuente de la pagina y abre el app.css que se esta enviando a
nuestros usuarios. jEs la version construida de Tailwind! Entre bastidores, existe cierta magia

que sustituye esas tres lineas de Tailwind por el cédigo CSS real de Tailwind.

Ejecutar automaticamente Tailwind con el binario symfony

Y... jeso es todo! Simplemente funciona. Aunque hay una forma mas facil y automatica de
ejecutar Tailwind. Pulsa Ctrl+C en el comando Tailwind para detenerlo. A continuacion, en la
raiz de nuestro proyecto, crea un archivo llamado .symfony.local.yaml. Se trata de un
archivo de configuracion para el servidor web binario symfony que estamos utilizando. Dentro,
afiade workers, tailwind, y luego cmd configurados en una matriz con cada parte de un

comando: symfony, console, tailwind, build, --watch, o podrias utilizar -w: es lo mismo.

Aun no he hablado de ello, pero en lugar de ejecutar php bin/console, también podemos
ejecutar symfony console seguido de cualquier comando para obtener el mismo resultado.
Hablaremos de por qué te conviene hacerlo en un futuro tutorial. Pero por ahora, considera que

bin/console y symfony console son lo mismo.

Ademas, al anadir esta clave workers, significa que en lugar de que tengamos que ejecutar el
comando manualmente, cuando iniciemos el servidor web symfony, éste lo ejecutara por

nosotros en segundo plano.

Observa. En tu primera pestana, pulsa Ctrl+C para detener el servidor web... luego vuelve a

ejecutar

symfony serve

para que vea el nuevo archivo de configuracion. Mira: jahi esta! jEsta ejecutando el comando

tailwind en segundo plano!

Podemos aprovecharnos de esto inmediatamente. En homepage.html.twig, cambia esto
atext-4x1, giray... jfunciona! Ya ni siquiera tenemos que pensar en el

comandotailwind:build.

templates/main/homepage.html. twig

T // ... lines 1 - 4
{% block body %}
<hl class="text-4x1">
Starshop: your monopoly-busting option for Starship parts!
</h1>
// ... Lines 9 - 46
47 {% endblock %}

© 00 N o U

Y como estilizaremos con Tailwind, elimina el fondo azul.

Copiar en plantillas estilizadas

Vale, este tutorial no trata sobre Tailwind ni sobre cdmo disefar un sitio web. Créeme, no
quieres que Ryan dirija la carga del disefio web. Pero si quiero tener un sitio bonito... y también

es importante pasar por el proceso de trabajar con un disefador.

Asi que imaginemos que otra persona ha creado un disefio para nuestro sitio. E incluso nos
han dado algo de HTML con clases de Tailwind para ese disefio. Si descargas el cédigo del
curso, en un directorio de tutorial/templates/, tenemos 3 plantillas. Uno a uno, voy a
copiar cada archivo y pegarlo sobre el original. No te preocupes, veremos lo que ocurre en

cada uno de estos archivos.

templates/base.html. twig
1

<!DOCTYPE html>

2 <html>
3 <head>
4 <meta charset="UTF-8">
5 <title>{% block title %}Welcome!{% endblock %}</title>
6 <link rel="icon" href="data:image/svg+xml,<svg
xmlns=%22http://www.w3.0rg/2000/svg%22 viewBox=%220 © 128 128%22><text
y=%221.2em%22 font-size=%2296%22>@</text></svg>">
{% block stylesheets %}
{% endblock %}
10 {% block javascripts %}
11 {% block importmap %}{{ importmap('app') }}{% endblock %}
12 {% endblock %}
13 </head>
14 <body class="text-white" style="background: radial-gradient(102.21% 102.21%
at 50% 28.75%, #00121C 42.62%, #013954 100%);">
15 <div class="flex flex-col justify-between min-h-screen relative">
16 <div>
17 <header class="h-[114px] shrink-@ flex flex-col sm:flex-row
items-center sm:justify-between py-4 sm:py-0 px-6 border-b border-white/20
shadow-md" >
18
19 <img class="h-[42px]" src="{{ asset('images/starshop-
logo.png') }}" alt="starshop logo">
20
21 <nav class="flex space-x-4 font-semibold">
22
23 Home
24
25
26 About
27
28
29 Contact
30
31 <a class="rounded-[60px] py-2 px-5 bg-white/10 hover:bg-
white/20" href="#">
32 Get Started
33
34 </nav>
35 </header>
36 {% block body %}{% endblock %}
37 </div>
38 <div class="p-5 bg-white/5 mt-3 text-center">
39 Made with @ by <a class="text-[#0086C4]"

href="https://symfonycasts.com">SymfonyCasts

40 </div>

41 </div>
42 </body>
43 </html>

Haz homepage.html.twig...

templates/main/homepage.html. twig

1 {% extends 'base.html.twig' %}

2
3 {% block title %}Starshop: Beam up some parts!{% endblock %}
4
5 {% block body %}
6 <main class="flex flex-col 1lg:flex-row">
7 <aside
8 class="pb-8 1g:pb-0 1lg:w-[411lpx] shrink-@ 1lg:block lg:min-h-screen
text-white transition-all overflow-hidden px-8 border-b lg:border-b-0 lg:border-r
border-white/20"
9 >
10 <div class="flex justify-between mt-11 mb-7">
11 <h2 class="text-[32px] font-semibold">My Ship Status</h2>
12 <button>
13 <svg xmlns="http://www.w3.0rg/2000/svg" width="20"

height="20" viewBox="© © 448 512"><!--!Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96c0-17.7
14.3-32 32-32s32 14.3 32 32V416¢0 17.7-14.3 32-32 32s-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 ©-45.31128-128c12.5-12.5 32.8-12.5 45.3 ©0s12.5 32.8 @
45.3L109.3 224 288 224c17.7 © 32 14.3 32 32s-14.3 32-32 321-178.7 © 73.4
73.4c12.5 12.5 12.5 32.8 0 45.3s5-32.8 12.5-45.3 01-128-128z"/></svg>

14 </button>

15 </div>

16

17 <div>

18 <div class="flex flex-col space-y-1.5">

19 <div class="rounded-2x1 py-1 px-3 flex justify-center w-32
items-center" style="background: rgba(255, 184, 0, .1);">

20 <div class="rounded-full h-2 w-2 bg-amber-400 blur-[1px]
mr-2"></div>

21 <p class="uppercase text-xs">in progress</p>

22 </div>

23 <h3 class="tracking-tight text-[22px] font-semibold">

24 <a class="hover:underline" href="{{
path('app_starship_show', {

25 id: myShip.id

26 1) }3">{{ myShip.name }}

27 </h3>

28 </div>

29 <div class="flex mt-4">

30 <div class="border-r border-white/20 pr-8">

31 <p class="text-slate-400 text-xs">Captain</p>

32 <p class="text-x1">{{ myShip.captain }}</p>

33 </div>

34

35 <div class="pl-8">

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52

53
54

55

56

57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76

<p class="text-slate-400 text-xs">Class</p>
<p class="text-x1">{{ myShip.class }}</p>
</div>
</div>
</div>
</aside>

<div class="px-12 pt-10 w-full">
<hl class="text-4x1 font-semibold mb-8">
Ship Repair Queue
</h1>

<div class="space-y-5">
<l-- start ship item -->
<div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
<div class="flex justify-center min-[1174px]:justify-
start">
<img class="h-[83px] w-[84px]" src="/images/status-
in-progress.png" alt="Status: in progress">
<div class="ml-5">
<div class="rounded-2x1 py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">
<div class="rounded-full h-2 w-2 bg-amber-400
blur-[1px] mr-2"></div>

<p class="uppercase text-xs text-nowrap">in
progress</p>
</div>
<h4 class="text-[22px] pt-1 font-semibold">
<a
class="hover:text-slate-200"
href="4#"
>USS LeafyCruiser
</h4>
</div>
</div>
<div class="flex justify-center min-[1174px]:justify-

start mt-2 min-[1174px]:mt-@ shrink-0">
<div class="border-r border-white/20 pr-8">
<p class="text-slate-400 text-xs">Captain</p>
<p class="text-x1">Jean-Luc Pickles</p>
</div>

<div class="pl-8 w-[100px]">
<p class="text-slate-400 text-xs">Class</p>
<p class="text-x1">Garden</p>
</div>
</div>

77 </div>

78 <!-- end ship item -->

79 </div>

80

81 <p class="text-1lg mt-5 text-center md:text-left">

82 Looking for your next galactic ride?

83 Browse the {{
ships|length * 1@ }} starships for salel

84 </p>

85 </div>

86 </main>

87 {% endblock %}

y finalmente show.html.twig.

templates/starship/show.html. twig
1

{% extends 'base.html.twig' %}
{% block title %}{{ ship.name }}{% endblock %}
{% block body %}

<div class="my-4 px-8">

00 N o v b~ wWwN

<svg class="inline text-black" xmlns="http://www.w3.org/2000/svg"

height="16" width="14" viewBox="0 @ 448 512"><!--1Font Awesome Free 6.5.1 by

@fontawesome - https://fontawesome.com License -

https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path

fill="#000" d="M9.4 233.4c-12.5 12.5-12.5 32.8 © 45.31160 160c12.5 12.5 32.8 12.5

45.3 0s12.5-32.8 0-45.3L109.2 288 416 288c17.7 © 32-14.3 32-32s-14.3-32-32-321-

306.7 0L214.6 118.6c12.5-12.5 12.5-32.8 0-45.35-32.8-12.5-45.3 01-160 160z"/>

</svg>

9 Back

10

11 </div>

12 <«div class="md:flex justify-center space-x-3 mt-5 px-4 1lg:px-8">

13 <div class="flex justify-center">

14 <img class="max-h-[300px] md:max-h-[500px]" src="{{ asset('images/purple-
rocket.png') }}" alt="purple ship launching">

15 </div>

16 <div class="space-y-5">

17 <div class="mt-8 max-w-x1 mx-auto">

18 <div class="px-8 pt-8">

19 <div class="rounded-2x1 py-1 px-3 flex justify-center w-32 items-
center bg-amber-400/10">

20 <div class="rounded-full h-2 w-2 bg-amber-400 blur-[1px] mr-
2"></div>

21 <p class="uppercase text-xs">{{ ship.status }}</p>

22 </div>

23

24 <hl class="text-[32px] font-semibold border-b border-white/10 pb-
5 mb-5">

25 {{ ship.name }}

26 </h1>

27 <h4 class="text-xs text-slate-300 font-semibold mt-2
uppercase">Spaceship Captain</h4>

28 <p class="text-[22px] font-semibold">{{ ship.captain }}</p>

29

30 <h4 class="text-xs text-slate-300 font-semibold mt-2
uppercase">Class</h4>

31 <p class="text-[22px] font-semibold">{{ ship.class }}</p>

32

33 <h4 class="text-xs text-slate-300 font-semibold mt-2

uppercase">Ship Status</h4>

34 <p class="text-[22px] font-semibold">30,000 lys to next
service</p>

35 </div>

36 </div>

37 </div>

38 </div>

39 {% endblock %}

@ Tip

Si copias los archivos (en lugar del contenido de los archivos), puede que el sistema de

caché de Symfony no note el cambio y no veas el nuevo disefio. Si eso ocurre, borra la

caché ejecutando php bin/console cache:clear.

Voy a borrar por completo el directorio tutorial/ para no confundirme y editar las plantillas

equivocadas.

Vale, jvamos a ver qué ha hecho esto! Actualizar. jTiene un aspecto precioso! Me encanta

trabajar dentro de un disefio bonito. Pero... algunas partes estan rotas. En

homepage.html. twig, ésta es nuestra cola de reparacion de barcos... que queda muy bien...

ipero no hay codigo Twig! El estado esta codificado, el nombre esta codificado y no hay bucle.

templates/main/homepage.html. twig

T // ... lines 1 - 4
5 {% block body %}
6 <main class="flex flex-col 1lg:flex-row">

T // ... lines 7 - 42

43 <div class="px-12 pt-10 w-full">

44 <hl class="text-4x1 font-semibold mb-8">

45 Ship Repair Queue

46 </h1l>

47

48 <div class="space-y-5">

49 <l-- start ship item -->

50 <div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">

51 <div class="flex justify-center min-[1174px]:justify-
start">

52 <img class="h-[83px] w-[84px]" src="/images/status-
in-progress.png" alt="Status: in progress">

53 <div class="ml-5">

54 <div class="rounded-2x1 py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">

55 <div class="rounded-full h-2 w-2 bg-amber-400
blur-[1px] mr-2"></div>

56 <p class="uppercase text-xs text-nowrap">in
progress</p>

57 </div>

58 <h4 class="text-[22px] pt-1 font-semibold">

59 <a

60 class="hover:text-slate-200"

61 href="4#"

62 >USS LeafyCruiser

63 </h4>

64 </div>

65 </div>

66 <div class="flex justify-center min-[1174px]:justify-
start mt-2 min-[1174px]:mt-0@ shrink-0">

67 <div class="border-r border-white/20 pr-8">

68 <p class="text-slate-400 text-xs">Captain</p>

69 <p class="text-x1">Jean-Luc Pickles</p>

70 </div>

71

72 <div class="pl-8 w-[100px]">

73 <p class="text-slate-400 text-xs">Class</p>

74 <p class="text-x1">Garden</p>

75 </div>

76 </div>

77 </div>

78 <!-- end ship item -->

79 </div>

T // ... lines 80 - 84
85 </div>
86 </main>

87 {% endblock %}

A continuacién: tomemos nuestro nuevo disefio y hagamoslo dinamico. También aprenderemos
a organizar las cosas en parciales de plantilla e introduciremos un enum PHP, que son

divertidos.

Chapter 15: Twig Parciales y para bucles

Acabamos de renovar el disefio de nuestro sitio... lo que significa que hemos actualizado
nuestras plantillas para incluir elementos HTML con un montén de clases de Tailwind. ¢ El

resultado? Un sitio agradable a la vista.

En algunas partes de las plantillas, las cosas siguen siendo dinamicas: tenemos cédigo Twig
para imprimir el capitan y la clase. Pero en otras partes, todo esta codificado. Y... esto es
bastante tipico: un desarrollador frontend puede codificar el sitio en HTML y Tailwind... pero

dejarte a ti que lo hagas dinamico y le des vida.

Organizar en una Plantilla Parcial

En la parte superior de homepage.html.twig, este largo elemento <aside> es la barra lateral.
Esta bien que este cddigo viva en homepage.html.twig... jpero ocupa mucho espacio! Y si

queremos reutilizar esta barra lateral en otra pagina?

Una gran caracteristica de Twig es la posibilidad de tomar "trozos" de HTML y aislarlos en sus
propias plantillas para que puedas reutilizarlos. Se llaman parciales de plantilla... ya que

contienen el cédigo de sblo una parte de la pagina.

Copia este cddigo, y en el directorio main/ -aunque esto puede ir en cualquier sitio- afade un

nuevo archivo llamado _shipStatusAside.html.twig. Pega dentro.

templates/main/_shipStatusAside.html.twig

N oo v bhow

10
11
12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

<aside
class="pb-8 1lg:pb-0 1lg:w-[411px] shrink-0 lg:block lg:min-h-screen text-white
transition-all overflow-hidden px-8 border-b lg:border-b-0 lg:border-r border-
white/20"
>
<div class="flex justify-between mt-11 mb-7">
<h2 class="text-[32px] font-semibold">My Ship Status</h2>
<button>
<svg xmlns="http://www.w3.0rg/2000/svg" width="20" height="20"
viewBox="0 @ 448 512"><!--1Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96¢c0-17.7
14.3-32 32-32s32 14.3 32 32V416¢0 17.7-14.3 32-32 32s5-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 0-45.31128-128c12.5-12.5 32.8-12.5 45.3 ©0s12.5 32.8 ©
45.3L109.3 224 288 224cl17.7 © 32 14.3 32 32s-14.3 32-32 321-178.7 © 73.4
73.4c12.5 12.5 12.5 32.8 © 45.3s5-32.8 12.5-45.3 01-128-128z"/></svg>

</button>
</div>

<div>
<div class="flex flex-col space-y-1.5">
<div class="rounded-2x1 py-1 px-3 flex justify-center w-32 items-
center" style="background: rgba(255, 184, @, .1);">
<div class="rounded-full h-2 w-2 bg-amber-400 blur-[1px] mr-2">
</div>
<p class="uppercase text-xs">in progress</p>
</div>
<h3 class="tracking-tight text-[22px] font-semibold">
<a class="hover:underline" href="{{ path('app_starship_show', {
id: myShip.id
1) }}">{{ myShip.name }}
</h3>
</div>
<div class="flex mt-4">
<div class="border-r border-white/20 pr-8">
<p class="text-slate-400 text-xs">Captain</p>
<p class="text-x1">{{ myShip.captain }}</p>
</div>

<div class="pl-8">
<p class="text-slate-400 text-xs">Class</p>
<p class="text-x1">{{ myShip.class }}</p>
</div>
</div>
</div>
</aside>

De vuelta en homepage.html.twig, borra eso, y luego incluyelo con {{ - para que diga algo

de sintaxis - include() y el nombre de la plantilla:main/_shipStatusAside.html.twig.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 {% block body %}

6 <main class="flex flex-col 1lg:flex-row">

7 {{ include('main/_shipStatusAside.html.twig') }}
T // ... lines 8 - 51

52 </main>

53 {% endblock %}

iPruébalo! Y... jno hay cambios! La declaracién include() es sencilla:

“Renderiza esta plantilla y dale las mismas variables que yo tengo”

Si te preguntas por qué he antepuesto un guién bajo a la plantilla... jno hay motivo! Es s6lo una

convencion que me ayuda a saber que esta plantilla contiene sélo una parte de la pagina.

Haciendo un bucle sobre las naves en Twig

En la plantilla de la pagina de inicio, podemos centrarnos en la lista de naves de abajo, que es
esta zona. Ahora mismo, solo hay una nave... y esta codificada. Nuestra intencion es listar
todas las naves que estamos reparando actualmente. Y ya tenemos una variable ships que

estamos utilizando en la parte inferior: es una matriz de objetos Starship.

Asi que, por primera vez en Twig, jtenemos que hacer un bucle sobre una matriz! Para ello,
eliminaré este comentario, y diré {% -asi que la etiqueta hacer algo- y

luegofor ship in ships. ships es la variable de matriz que ya tenemos y ship es el nuevo
nombre de la variable en el bucle que representa un unico objetoStarship. En la parte inferior,
afade {% endfor %}.

templates/main/homepage.html. twig

T // ... lines 1 - 4
5 {% block body %}

6 <main class="flex flex-col 1lg:flex-row">
T // ... lines 7 - 8

9 <div class="px-12 pt-10 w-full">
$ // ... lines 10 - 13

14 <div class="space-y-5">

15 {% for ship in ships %}
T // ... lines 16 - 43
44 {% endfor %}
45 </div>

$ // ... lines 46 - 50

51 </div>

52 </main>

53 {% endblock %}
Y ya... cuando lo probamos, jobtenemos tres naves codificadas! jEso es una mejora!

A continuacién: es hora de un giro argumental que nos llevara a crear un enum PHP.

Chapter 16: Enums PHP

Dentro del bucle, hacer que las cosas sean dinamicas no es nada nuevo... jlo cual es genial!
Por ejemplo, {{ ship.status }}. Cuando actualizamos, jse imprime! Aunque, jay! Los

estados se estan quedando sin espacio. jNuestros datos no coinciden con el disefo!

templates/main/homepage.html.twig

T // ... lines 1 - 4

5 {% block body %}

6 <main class="flex flex-col 1lg:flex-row">
T /7 ... Llines 7 - 8

9 <div class="px-12 pt-10 w-full">
$ // ... lines 10 - 13

14 <div class="space-y-5">

15 {% for ship in ships %}
T // ... lines 16 - 43
44 {% endfor %}
45 </div>

T // ... lines 46 - 50

51 </div>

52 </main>

53 {% endblock %}

iGiro argumental! Alguien cambid los requisitos del proyecto... jjusto en medio! jEso "nunca"
ocurre! El nuevo plan es éste: cada nave debe tener un estado dein progress, waiting, o
completed. Ensrc/Repository/StarshipRepository.php, nuestras naves si tienen un

status -es este argumento-, pero es una cadena que puede establecerse con cualquier valor.

Crear un Enum

Asi que tenemos que hacer algunas refactorizaciones para adaptarnos al nuevo plan.
Pensemos: hay exactamente tres estados validos. Este es un caso de uso perfecto para una
enum PHP.

Si no estas familiarizado con los enums, son encantadores y una forma estupenda de organizar
un conjunto de estados -como publicado, no publicado y borrador- o tamafos -pequefio,

mediano o grande- o cualquier cosa similar.

En el directorio Model/ -aunque esto podria vivir en cualquier sitio... estamos creando el enum
para nuestra propia organizacion- crea una nueva clase y llamala StarshipStatusEnum. En
cuanto escribi la palabra enum, PhpStorm cambié la plantilla de class a unaenum. Asi que no

estamos creando una clase, como puedes ver, creamos una enum

src/Model/StarshipStatusEnum.php

T // ... lines 1 - 2
namespace App\Model;

{
// ... lines 7 - 9

10 }

3
4
5 enum StarshipStatusEnum: string
6
0

Anade un : string al enum para hacer lo que se llama un "enum respaldado por cadena". No
profundizaremos demasiado, pero esto nos permite definir cada estado -como WAITING y
asignarlo a una cadena, lo que sera util en un minuto. Aflade un estado para IN_PROGRESSy

finalmente uno para COMPLETED.

src/Model/StarshipStatusEnum.php

T // ... lines 1 - 2

3 namespace App\Model;

4

5 enum StarshipStatusEnum: string

6 {

7 case WAITING = 'waiting’;

8 case IN_PROGRESS = 'in progress';
9 case COMPLETED = 'completed';

10 }

Y ya esta Eso es todo lo que es un enum: un conjunto de "estados" que se centralizan en un

solo lugar.

A continuacién: abre la clase Starship. El ultimo argumento es actualmente un estado
string. Cambialo para que sea un StarshipStatusEnum. Y en la parte inferior, el método

getStatus devolvera ahora un StarshipStatusEnum.

src/Model/StarshipStatusEnum.php

T // ... lines 1 - 2

3 namespace App\Model;

4

5 enum StarshipStatusEnum: string

6 {

7 case WAITING = 'waiting’;

8 case IN _PROGRESS = 'in progress';
9 case COMPLETED = 'completed';

10 }

Por ultimo, en StarshipRepository donde creamos cada Starship, mi editor esta enfadado.

Dice:

“iEh! jEste argumento acepta un StarshipStatusEnum, pero estas pasando una cadena!”

Vamos a calmarlo. Cambia esto a StarshipStatusEnum: : ... jy autocompleta las opciones!
Hagamos que la primera sea IN_PROGRESS. Y eso afiadio la declaracion use para el enum al

principio de la clase. Para la siguiente, que sea COMPLETED... y para la ultima, WAITING.

src/Repository/StarshipRepository.php

T // ... lines 1 - 5

6 use App\Model\StarshipStatusEnum;

T // ... lines 7 - 8

9 class StarshipRepository

10 {

$ // ... lines 11 - 14

15 public function findAll(): array

16 {

T // ... lines 17 - 18

19 return [

20 new Starship(

T // ... lines 21 - 24

25 StarshipStatusEnum: :IN_PROGRESS
26)

27 new Starship(

T // ... lines 28 - 31

32 StarshipStatusEnum: :COMPLETED
33)>

34 new Starship(

$ // ... Llines 35 - 38

39 StarshipStatusEnum: :WAITING
a0)
41 15
42 }

$ // ... lines 43 - 53

54 }

jRefactorizacion realizada! Bueno... tal vez. Cuando actualizamos, jarruinado! Dice

“el objeto de clase StarshipStatusEnum no se ha podido convertir a cadena”

Y viene de la llamada a Twig de ship.status.

Tiene sentido: ship.status es ahora un enum... que no puede imprimirse directamente como

cadena. La solucion mas facil, en homepage.html.twig, es anadir .value.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 {% block body %}

6 <main class="flex flex-col 1lg:flex-row">

T // ... lines 7 - 8

9 <div class="px-12 pt-10 w-full">

$ // ... lines 10 - 13

14 <div class="space-y-5">

15 {% for ship in ships %}

16 <div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">

17 <div class="flex justify-center min-[1174px]:justify-
start">

T /7 ... line 18

19 <div class="ml-5">

20 <div class="rounded-2x1 py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">

T // ... line 21

22 <p class="uppercase text-xs text-nowrap">{{
ship.status.value }}</p>

23 </div>

T // ... lines 24 - 29

30 </div>

31 </div>

T // ... lines 32 - 42

43 </div>

44 {% endfor %}

45 </div>

$ // ... Llines 46 - 50

51 </div>

52 </main>

53 {% endblock %}

Como hemos hecho que nuestro enum esté respaldado por una cadena, tiene una propiedad
value, que sera la cadena que asignamos al estado actual. Pruébalo ahora. jTiene una pinta

estupenda! En curso, completado, esperando.

A continuacién: vamos a aprender como podemos hacer este ultimo cambio un poco mas
elegante creando métodos mas inteligentes en nuestra clase Starship. Luego daremos los

toques finales a nuestro disefo.

Chapter 17: Métodos del modelo inteligente y
dinamizacion del disefo

Anadir el .value al final del enum para imprimirlo funciona a las mil maravillas. Pero quiero

mostrar otra solucion mas elegante.

Anadir métodos de modelo inteligentes

En Starship, probablemente sera habitual que queramos obtener el estado de la cadena de
un Starship. Para facilitarlo, ¢ por qué no anadir aqui un método abreviado
llamado getStatusString() ? Este devolvera un string, y dentro, devolvera

$this->status->value.

src/Model/Starship.php

T // ... lines 1 - 4

5 «class Starship

6 {

T // ... lines 7 - 40
41 public function getStatusString(): string
42 {
43 return $this->status->value;
44 }
45 }

Gracias a esto, en la plantilla, podemos acortar a ship.statusString.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 {% block body %}

6 <main class="flex flex-col 1lg:flex-row">

T // ... lines 7 - 8

9 <div class="px-12 pt-10 w-full">

$ // ... lines 10 - 13

14 <div class="space-y-5">

15 {% for ship in ships %}

16 <div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">

17 <div class="flex justify-center min-[1174px]:justify-
start">

T /7 ... line 18

19 <div class="ml-5">

20 <div class="rounded-2x1 py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">

T // ... line 21

22 <p class="uppercase text-xs text-nowrap">{{
ship.statusString }}</p>

23 </div>

T // ... lines 24 - 29

30 </div>

31 </div>

T // ... lines 32 - 42

43 </div>

44 {% endfor %}

45 </div>

$ // ... Llines 46 - 50

51 </div>

52 </main>

53 {% endblock %}

Ah, jy esto es mas inteligencia Twig! jNo hay ninguna propiedad llamada statusStringen

Starship! Pero a Twig no le importa. Ve que hay un método getStatusString()y lo llama.

Observa: cuando actualizamos, la pagina sigue funcionando. Me gusta mucho esta solucion,

asi que la copiaré... y la repetiré aqui arriba para el atributo alt.

templates/main/homepage.html. twig

0

& OV & o un

14
15
16

17
18

19
20

0

22

23

0
30
31

0
43
44
45

0
51
52
53

// ... lines 1 - 4
{% block body %}
<main class="flex flex-col 1lg:flex-row">

// ... lines 7 - 8
<div class="px-12 pt-10 w-full">
// ... lines 10 - 13

<div class="space-y-5">
{% for ship in ships %}
<div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
<div class="flex justify-center min-[1174px]:justify-
start">
<img class="h-[83px] w-[84px]" src="/images/status-
in-progress.png" alt="Status: {{ ship.statusString }}">
<div class="ml-5">
<div class="rounded-2x1 py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">
// ... line 21
<p class="uppercase text-xs text-nowrap">{{
ship.statusString }}</p>

</div>
// ... Llines 24 - 29
</div>
</div>
// ... lines 32 - 42
</div>
{% endfor %}
</div>
// ... lines 46 - 50
</div>
</main>

{% endblock %}

Y mientras arreglamos esto, en show.html.twig, imprimiremos el estado alli también. Asi que

haré ese mismo cambio... y luego cerraré esto.

templates/starship/show.html. twig

T // ... lines 1 - 4
5 {% block body %}
$ // ... lines 6 - 11

12 <«div class="md:flex justify-center space-x-3 mt-5 px-4 1lg:px-8">
$ // ... lines 13 - 15

16 <div class="space-y-5">

17 <div class="mt-8 max-w-x1 mx-auto">

18 <div class="px-8 pt-8">

19 <div class="rounded-2x1 py-1 px-3 flex justify-center w-32 items-
center bg-amber-400/10">

T // ... line 20

21 <p class="uppercase text-xs">{{ ship.statusString }}</p>

22 </div>

T // ... lines 23 - 34

35 </div>

36 </div>

37 </div>

38 </div>

39 {% endblock %}

Terminando nuestra Plantilla Dinamica

Bien: vamos a terminar de hacer dinamica nuestra plantilla de pagina de inicio: a partir de aqui
todo es coser y cantar. Para el nombre del barco, {{ ship.name }}, para el capitan,

{{ ship.captain }}.Y aqui abajo para la clase, {{ ship.class }}.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 {% block body %}
6 <main class="flex flex-col 1lg:flex-row">
T // ... lines 7 - 8
9 <div class="px-12 pt-10 w-full">
$ // ... lines 10 - 13
14 <div class="space-y-5">
15 {% for ship in ships %}
16 <div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
17 <div class="flex justify-center min-[1174px]:justify-
start">
T /7 ... line 18
19 <div class="ml-5">
T // ... Llines 20 - 23
24 <h4 class="text-[22px] pt-1 font-semibold">
25 <a
T // ... lines 26 - 27
28 >{{ ship.name }}
29 </h4>
30 </div>
31 </div>
32 <div class="flex justify-center min-[1174px]:justify-
start mt-2 min-[1174px]:mt-@ shrink-0">
33 <div class="border-r border-white/20 pr-8">
34 <p class="text-slate-400 text-xs">Captain</p>
35 <p class="text-x1">{{ ship.captain }}</p>
36 </div>
37
38 <div class="pl-8 w-[100px]">
39 <p class="text-slate-400 text-xs">Class</p>
40 <p class="text-x1">{{ ship.class }}</p>
41 </div>
42 </div>
43 </div>
44 {% endfor %}
45 </div>
T // ... lines 46 - 50
51 </div>
52 </main>

53 {% endblock %}

Ah, y rellenemos el enlace: {{ path() }} yluego el nombre de la ruta. Estamos enlazando
con la pagina del espectaculo del barco, asi que la ruta es app_starship_show. Y como esto

tiene un comodin id, pasa id a ship.id.

templates/main/homepage.html. twig

0

& OV & o un

14
15
16

17

0

19

0
24
25
26
27

28
29
30
31

0
43
44
45

0
51
52
53

// ... lines 1 - 4
{% block body %}
<main class="flex flex-col lg:flex-row">

// ... lLines 7 - 8
<div class="px-12 pt-10 w-full">
// ... lines 16 - 13

<div class="space-y-5">
{% for ship in ships %}
<div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
<div class="flex justify-center min-[1174px]:justify-

start">
// ... Lline 18

<div class="ml-5">
// ... lines 206 - 23

<h4 class="text-[22px] pt-1 font-semibold">
<a
class="hover:text-slate-200"
href="{{ path('app_starship_show', { id:
ship.id }) }}"
>{{ ship.name }}

</h4>
</div>
</div>
// ... Lines 32 - 42
</div>
{% endfor %}
</div>
// ... Lines 46 - 50
</div>
</main>

{% endblock %}

Y ahora, jmucho mejor! Se ve bien y podemos hacer clic en estos enlaces.

Rutas de imagen dinamicas

Pero... la imagen sigue rota. Antes, cuando copiamos las imagenes en nuestro

directorioassets/, inclui tres archivos para los tres estados. Aqui arriba, estamos apuntando

"mas o menos" al estado en curso... pero ésta no es la forma correcta de referenciar imagenes

en el directorio assets/. Ensulugar, di {{ asset() }} y pasa la ruta relativa al directorio

assets/, llamada ruta "l6gica".

Si lo intentamos ahora... estamos mas cerca. Pero la parte "en curso" tiene que ser dinamica
en funcion del estado. Algo que podriamos intentar es la concatenacion Twig: afiadir

ship.status ala cadena. Eso es posible, aunque es un poco feo.

En lugar de eso, volvamos a la solucién que utilizamos hace un momento: hacer que todos los

datos sobre nuestro Starship sean facilmente accesibles... desde la clase Starship.

Esto es lo que quiero decir: anade un public function getStatusImageFilename() que

devuelva una cadena.

src/Model/Starship.php

T // ... lines 1 - 4

5 «class Starship

6 {

$ // ... lines 7 - 45
46 public function getStatusImageFilename(): string
47 {

$ // ... lines 48 - 52
53 }
54 }

Vamos a hacer toda la l6gica para crear el nombre de archivo aqui mismo. Pondré una funcion

match.

Esto dice: comprueba $this->status y si esigual a WAITING, devuelve esta cadena. Si es

igual a IN_PROGRESS devuelve esta cadena y asi sucesivamente.

src/Model/Starship.php

T /7 ... lines 1 - 4

5 class Starship

6 {

$ // ... lines 7 - 45
46 public function getStatusImageFilename(): string
47 {
48 return match ($this->status) {
49 StarshipStatusEnum: :WAITING => 'images/status-waiting.png',

50 StarshipStatusEnum: :IN_PROGRESS => 'images/status-in-progress.png',
51 StarshipStatusEnum: :COMPLETED => 'images/status-complete.png’,
52 s
53 }

54}

Y exactamente igual que antes, como tenemos un método getStatusImageFilename(),

podemos, en Twig, hacer como si tuviéramos una propiedad statusImageFilename.

templates/main/homepage.html. twig

T // ... lines 1 - 4

5 {% block body %}

6 <main class="flex flex-col 1lg:flex-row">

T // ... lines 7 - 8

9 <div class="px-12 pt-10 w-full">

T // ... lines 10 - 13

14 <div class="space-y-5">

15 {% for ship in ships %}

16 <div class="bg-[#16202A] rounded-2x1 pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">

17 <div class="flex justify-center min-[1174px]:justify-
start">

T // ... line 18

19 <div class="ml-5">

$ // ... lines 20 - 23

24 <h4 class="text-[22px] pt-1 font-semibold">

25 <a

26 class="hover:text-slate-200"

27 href="{{ path('app_starship show', { id:
ship.id }) }}"

28 >{{ ship.name }}

29 </h4>

30 </div>

31 </div>

T // ... lines 32 - 42

43 </div>

44 {% endfor %}

45 </div>

T // ... lines 46 - 50

51 </div>

52 </main>

53 {% endblock %}

Y ahora, jya lo tenemos!

Ultimos detalles para dinamizar el disefio

iUltimos detalles! Rellenemos algunos enlaces que faltan, como este logotipo que deberia ir a

la pagina de inicio. Ahora mismo... no va a ninguna parte.

Recuerda que cuando queremos enlazar a una pagina, tenemos que asegurarnos de que esa
ruta tiene un nombre. En src/Controller/MainController.php... nuestra pagina de inicio

no tiene nombre. Vale, tiene un nombre autogenerado, pero no queremos confiar en eso.

Anade name: ajustado a app_homepage. O puedes utilizar app_main_homepage.

src/Controller/MainController.php

$ // ... lines 1 - 9

10 class MainController extends AbstractController

11 {

12 #[Route('/"', name: 'app_homepage')]

13 public function homepage(StarshipRepository $starshipRepository): Response
T // ... lines 14 - 22

23 }

Para enlazar el logo, en base.html.twig... aqui esta... Utiliza

{{ path('app_homepage') }}.

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

$ // ... lines 3 - 13

14 <body class="text-white" style="background: radial-gradient(102.21% 102.21%
at 50% 28.75%, #00121C 42.62%, #013954 100%);">

15 <div class="flex flex-col justify-between min-h-screen relative">

16 <div>

17 <header class="h-[114px] shrink-@ flex flex-col sm:flex-row

items-center sm:justify-between py-4 sm:py-0 px-6 border-b border-white/20
shadow-md">

18
$ // ... line 19

20
T // ... lines 21 - 34

35 </header>
$ // ... Lline 36

37 </div>

T // ... lines 38 - 40

41 </div>

42 </body>

43 </html>

Copialo y repitelo a continuacion para otro enlace de inicio.

templates/base.html.twig

1
2
0

14

15
16
17

18

0
20
21
22

23
24

0
34
35

0
37

0
41
42
43

<!DOCTYPE html>
<html>
// ... lines 3 - 13
<body class="text-white" style="background: radial-gradient(102.21% 102.21%
at 50% 28.75%, #00121C 42.62%, #013954 100%);">
<div class="flex flex-col justify-between min-h-screen relative">
<div>
<header class="h-[114px] shrink-0 flex flex-col sm:flex-row
items-center sm:justify-between py-4 sm:py-0 px-6 border-b border-white/20
shadow-md" >

// ... Lline 19

<nav class="flex space-x-4 font-semibold">
<a class="hover:text-amber-400 pt-2" href="{{
path('app_homepage') }}">
Home

// ... Llines 25 - 33
</nav>
</header>
// ... Line 36
</div>
// ... Llines 38 - 40
</div>
</body>
</html>

Dejaremos estos otros enlaces para un futuro tutorial.

De vuelta al navegador, jhaz clic en ese logotipo! Ya esta. El ultimo enlace que falta esta en la

pagina del programa. Este enlace "atras" también deberia ir a la pagina de inicio.

Abre show.html.twig. Y arriba -ahi esta- pegaré ese mismo enlace.

templates/starship/show.html. twig

T // ... lines 1 - 4

5 {% block body %}

6 <div class="my-4 px-8">

7 <a class="bg-white hover:bg-gray-200 rounded-x1 p-2 text-black" href="{{
path('app_homepage') }}">

8 <svg class="inline text-black"” xmlns="http://www.w3.0rg/2000/svg"
height="16" width="14" viewBox="0 0 448 512"><!--1Font Awesome Free 6.5.1 by
@fontawesome - https://fontawesome.com License -
https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path
fill="#000" d="M9.4 233.4c-12.5 12.5-12.5 32.8 © 45.31160 160c12.5 12.5 32.8 12.5
45.3 0s12.5-32.8 0-45.3L109.2 288 416 288cl7.7 © 32-14.3 32-32s5-14.3-32-32-321-
306.7 0L214.6 118.6¢12.5-12.5 12.5-32.8 0-45.35-32.8-12.5-45.3 01-160 160z"/>
</svg>

9 Back

10

11 </div>

T // ... lines 12 - 38

39 {% endblock %}

Ok equipo, jel disefio esta hecho! jEnhorabuena! Regalate un té... o un café con leche... o un
donut o un paseo por la naturaleza para celebrarlo. jPorque esto es enorme! Nuestro sitio

parece y se siente real. Estoy encantada.

Ahora podemos centrarnos en los detalles mas sutiles. Por ejemplo, cuando hacemos clic en
este enlace, se supone que la barra lateral se colapsa. Para ello, quiero presentarte mi

herramienta favorita para escribir JavaScript: Stimulus.

Chapter 18: Stimulus: Escribir JavaScript
profesional

Sabemos como escribir HTML en nuestras plantillas. Y manejamos CSS con Tailwind. ;Qué
pasa con JavaScript? Bueno, como con CSS, hay un archivo app.js, Yy ya esta incluido en la

pagina. Asi que puedes poner aqui el JavaScript que quieras.

Pero te recomiendo encarecidamente que utilices una pequefa, pero malvada, biblioteca
JavaScript llamada Stimulus. Es una de mis cosas favoritas de Internet. Tomas una parte de tu
HTML existente y lo conectas a un pequefio archivo JavaScript, llamado controlador. Esto te
permite afiadir un comportamiento: por ejemplo, cuando pulses este botén, se llamara al

meétodo greet del controlador.

iY eso es todo! Seguro que Stimulus tiene mas funciones, pero ya entiendes el nucleo de su
funcionamiento. A pesar de su simplicidad, nos permitira construir cualquier funcionalidad
JavaScript y de interfaz de usuario que necesitemos, de forma fiable y predecible. Asi que

vamos a instalarlo.

Instalar Stimulus

Stimulus es una libreria JavaScript, pero Symfony tiene un bundle que ayuda a integrarla. En tu
terminal, si quieres ver lo que hace la receta, confirma tus cambios. Yo ya lo he hecho. Luego

ejecuta:

composer require symfony/stimulus-bundle

Cuando esto termine... la receta ha hecho algunos cambios. Veamos los mas importantes. El

primero esta en app.js: nuestro archivo JavaScript principal. Abrelo y ya esta.

assets/app.js

1 import './bootstrap.js';

2 /*

3 * Welcome to your app's main JavaScript file!

4 *

5 * This file will be included onto the page via the importmap() Twig function,
6 * which should already be in your base.html.twig.

7 */

8 import './styles/app.css';

9
10 console.log('This log comes from assets/app.js - welcome to AssetMapper! & ');

Anadié un import en la parte superior - . /bootstrap.js - a un nuevo archivo que vive justo

al lado de éste.

assets/bootstrap.js

1 import { startStimulusApp } from '@symfony/stimulus-bundle’;

const app = startStimulusApp();
// register any custom, 3rd party controllers here

v b W N

// app.register('some_controller_name', SomeImportedController);

El propdsito de este archivo es iniciar el motor Stimulus. Ademas, en importmap.php, la receta
afnadio el paquete JavaScript @hotwired/stimulus junto con otro archivo que ayuda a

arrancar Stimulus dentro de Symfony.

importmap.php

$ /... lines 1 - 15

16 return [

$ // ... lines 17 - 20

21 '@hotwired/stimulus’ => [

22 'version' => '3.2.2"',

23 1,

24 '@symfony/stimulus-bundle' => [

25 'path' => './vendor/symfony/stimulus-bundle/assets/dist/loader.js"',
26 1

27 1

Por ultimo, la receta cred un directorio assets/controllers/. Aqui es donde viviran nuestros
controladores personalizados. jE incluia un controlador de demostracion para que pudiéramos

empezar! jGracias!

assets/controllers/hello_controller.js

1 import { Controller } from '@hotwired/stimulus’;

2
3 /%
4 * This is an example Stimulus controller!
5 *
6 * Any element with a data-controller="hello" attribute will cause
7 * this controller to be executed. The name "hello" comes from the filename:
8 * hello_controller.js -> "hello"
9 *
10 * Delete this file or adapt it for your use!
11 */
12 export default class extends Controller {
13 connect() {
14 this.element.textContent = 'Hello Stimulus! Edit me in
assets/controllers/hello_controller.js';
15 }
16 }

Estos archivos de controlador tienen una importante convencién de nombres. Como se llama
hello_controller.js, para conectarlo con un elemento de la pagina, utilizaremos

data-controller="hello".

Como funciona Stimulus

Asi es como funciona. En cuanto Stimulus vea un elemento en la pagina
condata-controller="hello", instanciara una nueva instancia de este controlador y llamara
al método connect() . Asi, este controlador hello cambiara automatica e instantdneamente el

contenido del elemento al que esta unido.

Y ya podemos verlo. Actualiza la pagina. Stimulus esta ahora activo en nuestro sitio. Esto
significa que esta buscando elementos con data-controller. Hagamos algo salvaje:
inspecciona los elementos de la pagina, busca cualquier elemento -como esta etiqueta de
anclaje- y anade data-controller="hello". Observa lo que ocurre cuando hago clic en
desactivar para activar este cambio. jPum! Stimulus ha visto ese elemento, ha instanciado
nuestro controlador y ha llamado al método connect().Y puedes hacer esto tantas veces

como quieras en la pagina.

La cuestion es: no importa como llegue un elemento data-controller a tu pagina, Stimulus
lo ve. Asi que si hacemos una llamada Ajax que devuelva HTML y ponemos eso en la pagina...

si, Stimulus va a verlo y nuestro JavaScript va a funcionar. Esa es la clave: cuando escribes

JavaScript con Stimulus, tu JavaScript siempre funcionara, independientemente de como y

cuando se afada ese HTML a la pagina.

Crear un controlador Stimulus que se pueda cerrar

Utilicemos Stimulus para activar nuestro botdn de cierre. En el directorio
assets/controller/, duplica hello_controller.js y crea uno nuevo

llamadocloseable_controller.js.

Borraré casi todo y me limitaré a lo mas basico: importaController de Stimulus... y luego crea

una clase que lo extienda.

assets/controllers/closeable_controller.js

1 import { Controller } from '@hotwired/stimulus’;

2

3 export default class extends Controller {
$ // ... Lines 4 - 6

7}

Esto no hace nada, pero ya podemos adjuntarlo a un elemento de la pagina. Este es el plan:
vamos a adjuntar el controlador a todo el elemento aside. Luego, cuando pulsemos este

botdn, eliminaremos el elemento aside.

Ese elemento vive en templates/main/_shipStatusAside.html.twig. Para adjuntar el
controlador, afiade data-controller="closeable". ;Ves ese autocompletado? Proviene de

un plugin de Stimulus para PhpStorm.

templates/main/_shipStatusAside.html.twig

1 <aside

$ // ... line 2

3 data-controller="closeable"
4 >

T // ... lines 5 - 35

36 </aside>

Si nos desplazamos y actualizamos, aun no ocurrira nada: el botén de cerrar no funciona. Pero
abre la consola de tu navegador. jQué bien! Stimulus afiade utiles mensajes de depuracion:
que se esta iniciando y luego - lo que es importante -

closeable initialize,closeable connect.

Esto significa que si vio el elemento data-controller e inicializé ese controlador.

Asi que volvamos a nuestro objetivo: cuando pulsemos este boton, queremos llamar a codigo
dentro del controlador cerrable que elimine el aside. En closeable_controller.js, afiade

un nuevo método llamado, qué tal, close() . Dentro, digamos this.element.remove().

assets/controllers/closeable controller.js

T /7 ... lines 1 - 2

3 export default class extends Controller {
4 close() {

5 this.element.remove();

6

7

En Stimulus, this.element sera siempre el elemento al que esté unido tu controlador. Por
tanto, este elemento aside. Pero por lo demas, este cédigo es JavaScript estandar: cada

Elemento tiene un método remove().

Para llamar al método close(), en el boton, afiade data-action="" luego el nombre de

nuestro controlador - closeable - un signo #, y el nombre del método: close.

templates/main/_shipStatusAside.html.twig

1 <aside
// ... Line 2
data-controller="closeable"

<div class="flex justify-between mt-11 mb-7">
// ... Line 6
<button data-action="closeable#close">
<svg xmlns="http://www.w3.0rg/2000/svg" width="20" height="20"
viewBox="0 @ 448 512"><!--1Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96¢c0-17.7
14.3-32 32-32s32 14.3 32 32V416¢0 17.7-14.3 32-32 32s-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 0-45.31128-128c12.5-12.5 32.8-12.5 45.3 0s12.5 32.8 0
45.3L109.3 224 288 224c17.7 © 32 14.3 32 32s-14.3 32-32 321-178.7 © 73.4
73.4c12.5 12.5 12.5 32.8 @ 45.3s5-32.8 12.5-45.3 01-128-128z"/></svg>
9 </button>
10 </div>
T // ... lines 11 - 35
36 </aside>

00 N €& b wWw &

Animar el cierre

Ya esta Hora de probar. {Clic! jYa esta! jPero quiero que sea mas elegante! Quiero que se
anime al cerrarse en lugar de ser instantaneo. ; Podemos hacerlo? jClaro que si! Y no

necesitamos mucho JavaScript... porque el CSS moderno es increible.

Sobre el elemento aside, aflade una nueva clase CSS -puede ir en cualquier sitio-

lamadatransition-all.

Es una clase Tailwind que activa las transiciones CSS. Esto significa que si cambian ciertas
propiedades de estilo -como que la anchura se ponga de repente a 0- hara una transicién de

ese cambio, en lugar de cambiarlo instantaneamente.

También anade overflow-hidden para que, al reducirse la anchura, no cree una extrafa

barra de desplazamiento.

Si probamos esto ahora, se sigue cerrando instantaneamente. Eso es porque no hay nada que

transicionar: no estamos cambiando la anchura... sélo eliminando el elemento.

Pero fijate en esto. Inspecciona el elemento y busca el aside: aqui esta. Cambia manualmente
la anchura a 0. jGenial! jVas pequeiiito, grande, pequefiito, grande, pequefiito! El lado CSS de

las cosas esta funcionando.

De vuelta en nuestro controlador, en lugar de eliminar el elemento, tenemos que cambiar la
anchura a cero, esperar a que termine la transicion CSS y luego eliminar el elemento. Podemos

hacer lo primero con this.element.style.width = 0@.

templates/main/_shipStatusAside.html.twig

1 <aside
// ... Line 2
data-controller="closeable"

<div class="flex justify-between mt-11 mb-7">
// ... Line 6
<button data-action="closeable#close">
<svg xmlns="http://www.w3.0rg/2000/svg" width="20" height="20"
viewBox="0 @ 448 512"><!--1Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96¢c0-17.7
14.3-32 32-32s32 14.3 32 32V416¢0 17.7-14.3 32-32 32s5-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 0-45.31128-128c12.5-12.5 32.8-12.5 45.3 ©s12.5 32.8 0
45.3L109.3 224 288 224c17.7 © 32 14.3 32 32s-14.3 32-32 321-178.7 © 73.4
73.4c12.5 12.5 12.5 32.8 @ 45.3s5-32.8 12.5-45.3 01-128-128z"/></svg>
9 </button>
10 </div>
T // ... lines 11 - 35
36 </aside>

00 N € b wWw &

La parte complicada es esperar a que termine la transicién CSS antes de eliminar el elemento.

Para ayudarte con eso, voy a pegar un método en la parte inferior de nuestro controlador.

assets/controllers/closeable_controller.js

T // ... lines 1 - 2

3 export default class extends Controller {
4 async close() {

5 this.element.style.width = '0"';

T // ... lines 6 - 8

9 }
10
11 #waitForAnimation() {
12 return Promise.all(
13 this.element.getAnimations().map((animation) => animation.finished),
14);
15 }
16 }

Si no estas familiarizado, el signo # hace que éste sea un método privado en JavaScript: un
pequefio detalle. Este codigo parece lujoso, pero tiene una funcién sencilla: pedir al elemento

que nos diga cuando han terminado todas sus animaciones CSS.

Gracias a eso, aqui arriba, podemos decir await this.#waitForAnimation().Y siempre

que utilices await, tienes que poner async en la funcion alrededor de esto. No entraré en

detalles sobre async, pero eso no cambiara el funcionamiento de nuestro codigo.

assets/controllers/closeable_controller.js

? /... lines 1 - 2

3 export default class extends Controller {
4 async close() {

5 this.element.style.width = '0"';

6

7 await this.#waitForAnimation();

8 this.element.remove();

9 }
10
11 #waitForAnimation() {
12 return Promise.all(
13 this.element.getAnimations().map((animation) => animation.finished),
14)5
15 }
16 }

jComprobemos el resultado! Actualiza. Y... Me encanta.

A continuacién, todo el mundo quiere una aplicacién de pagina unica, ¢, verdad? Un sitio en el

qgue no haya refrescos de pagina completa. Pero para construir una, ¢ no necesitamos utilizar

un framework JavaScript como React? jNo! Vamos a transformar nuestra aplicacion en una

aplicacidon de una sola pagina en... unos 3 minutos con Turbo.

Chapter 19: Turbo: Tu aplicacion de una sola
pagina

Cuando construyo una interfaz de usuario, quiero que sea bonita, interactiva y fluida.
Personalmente, elijo no utilizar frameworks frontales como React o Vue o Next. Pero tu
puedes... y no tienen nada de malo: son herramientas estupendas. Ademas, jconstruir una API

en Symfony es genial!

Pero si quieres construir tu HTML en Twig -como a mi me encanta hacer-, jpodemos tener una

interfaz de usuario interactiva, receptiva y super rica!

Una gran pieza de una interfaz elegante es eliminar las recargas de pagina completa. Ahora
mismo, cuando hago clic, mira: es rapido, pero son recargas de pagina completa. Eso no

ocurre si utilizas algo como React o Vue.

Para eliminarlas, vamos a utilizar otra biblioteca de la misma gente que hizo Stimulus, llamada
Turbo. Turbo puede hacer muchas cosas, pero su funcién principal es eliminar los refrescos de
pagina completa. Al igual que Stimulus, es una biblioteca de JavaScript. Y también como

Stimulus, Symfony tiene un bundle que ayuda a integrarla.

Instalacion de Turbo

Busca tu terminal y ejecuta:

composer require symfony/ux-turbo

Esta vez, la receta ha hecho dos cambios interesantes. Te los mostraré. El primero esta

enimportmap.php: anadio el paquete JavaScript @hotwired/turbo.

importmap.php

T // ... lines 1 - 15

16 return [

T // ... lines 17 - 26

27 '@hotwired/turbo’ => [

28 'version' => '7.3.0',
29 1,

30 1;

El segundo cambio esta en assets/controllers.json. Antes no hablamos de este archivo,
pero lo afiadio la receta StimulusBundle: es una forma de activar los controladores Stimulus

que viven dentro de paquetes de terceros.

assets/controllers.json

1 {

2 "controllers": {

3 "@symfony/ux-turbo": {

4 "turbo-core": {

5 "enabled": true,
6 "fetch": "eager"
7 }s

8 "mercure-turbo-stream": {
9 "enabled": false,
10 "fetch": "eager"
11 }
12 }
13 %
14 "entrypoints": []
15 }

Asi que el paquete PHP symfony/ux-turbo que acabamos de instalar tiene dentro un
controlador JavaScript llamado turbo-core. Y como tenemos enabled: true aqui, significa
que ese controlador esta ahora registrado y disponible: es como si viviera en nuestro directorio

assets/controllers/.

Ahora no vamos a utilizar este controlador directamente: no vamos a adjuntarlo a un elemento.
Pero el hecho de que esté cargado y registrado en Stimulus es suficiente para activar Turbo en

nuestro sitio.

Se acabaron los refrescos de pagina completa

¢ Qué diablos significa esto? Es como magia: refresca la pagina y jbam! jLas recargas de
pagina completa desaparecen! Fijate bien: cuando vuelva a hacer clic, no veras que se recarga

iBoom! Es superrapido y todo ocurre a través de Ajax.

Asi es como funciona. Cuando hacemos clic en este enlace, Turbo intercepta el clic y, en lugar
de recargar toda la pagina, hace una llamada Ajax a esa pagina. Esa llamada Ajax devuelve el

HTML completo de esa pagina y luego Turbo lo pone en esta pagina.

Esa pequena cosa transforma nuestro proyecto en una aplicacion de una sola pagina y marca

una gran diferencia en la rapidez de nuestro sitio.

Llamadas AJAX y Ia barra de herramientas de depuracion web

Pero hay una cosa mas. Actualizaré para que podamos verlo. Cada vez que haces una llamada
Ajax en una aplicacién Symfony - ya sea a través de Turbo o de cualquier otra forma - la Barra
de Herramientas de Depuracién Web lo nota. Miralo por aqui cuando haga clic. Ejecuta una
lista de todas las llamadas Ajax realizadas en esta pagina. Y si queremos ver el perfil de

cualquiera de esas peticiones Ajax, podemos hacer clic en el enlace.

Y si... ahi lo tenemos. Aqui esta la peticion Ajax que se hizo para la pagina de inicio. Aunque
con Turbo, ni siquiera necesitas recurrir a este truco porque, a medida que hacemos clic, toda

esta barra es sustituida por la nueva Barra de Herramientas de Depuracion Web para la pagina.

Ah, y escucha esto: en Turbo 8, que ya esta a la venta, tu sitio parecera aun mas rapido,
gracias a una nueva funcién llamada Clic Instantaneo. Con ella, cuando pasas el ratén por
encima de un enlace, Turbo hace una llamada Ajax a esa pagina antes de que hagas clic.

Entonces, cuando hagas clic, se cargara instantaneamente... o al menos tendra una ventaja.

Turbo tiene muchas otras funciones, y utilizamos un montén de ellas en nuestro Tutorial LAST

Stack, donde construimos un frontend con popovers, modales, notificaciones tostadas y mucho

mas.

Turbo requiere un buen JavaScript

Pero una nota sobre Turbo. Dado que las recargas de pagina completa ya no existen, tu

JavaScript debe estar disefiado para gestionarlas. Mucho JavaScript espera recargas de

https://symfonycasts.com/screencast/last-stack
https://symfonycasts.com/screencast/last-stack

pagina completas... y si de repente se afiade HTML a la pagina sin una recarga, se rompe. La

buena noticia es que si escribes tu JavaScript en Stimulus, todo ira bien.

Observa. No importa como lleguemos a la pagina de inicio, nuestro JavaScript para cerrar la

barra lateral sigue funcionando.

Muy bien equipo, jestamos en la recta final! Antes de terminar, quiero hacer un ultimo capitulo
extra en el que jugaremos con la impresionante herramienta de generaciéon de Symfony:
MakerBundle.

Chapter 20: Maker Bundle: jGeneremos algo de
codigo!

Me quito el sombrero por haber superado casi por completo el primer tutorial de Symfony. Has
dado un gran paso hacia la construccion de lo que quieras en la web. Para celebrarlo, quiero
jugar con MakerBundle: La impresionante herramienta de Symfony para la generacion de

codigo.

Composer require vs require-dev

Vamos a instalarlo:

composer require symfony/maker-bundle --dev

Aun no hemos visto la bandera --dev, pero no es tan importante. Muévete y abre
composer.json. Gracias a la bandera, en lugar de que symfony/maker-bundle vaya bajo la

clave require, se ha afiadido aqui abajo, bajo require-dev.

composer.json

1 {

T // ... lines 2 - 84

85 "require-dev": {

T // ... Line 86

87 "symfony/maker-bundle": "~1.52",
$ // ... Lines 88 - 89
90 }
91 }

Por defecto, cuando ejecutes composer install, descargara todo lo que esté bajo requirey
require-dev. Pero require-dev esta pensado para paquetes que no necesitan estar
disponibles en produccion: paquetes que solo necesitas cuando desarrollas localmente. Esto se

debe a que, cuando despliegues, si quieres, puedes decirle a Composer:

“iEh! Instala solo los paquetes de mi clave require: no instales las cosas de

require-dev.”

Eso puede darte un pequefio aumento de rendimiento en produccién. Pero, en general, no es

gran cosa.

Los comandos Maker

Acabamos de instalar un bundle. ; Recuerdas lo principal que nos proporcionan los bundles?
Exacto: servicios. Esta vez, los servicios que nos ha proporcionado MakerBundle son servicios

que proporcionan nuevos comandos de consola. Redoble de tambores, por favor. Ejecuta:

php bin/console

O, en realidad, empezaré a ejecutar symfony console, que es lo mismo. jGracias al nuevo
bundle, tenemos un montén de comandos que empiezan por make! Comandos para generar un
sistema de seguridad, hacer un controlador, generar entidades de doctrina para hablar con la

base de datos, formularios, oyentes, un formulario de registro.... jmuchas, muchas cosas!

Generar un comando de consola

Utilicemos uno de éstos para crear nuestro propio comando de consola personalizado. Ejecuta:

symfony console make:command

Esto nos preguntara interactivamente por nuestro comando. Llamémoslo: app:ship-report.

jListo!

Esto ha creado exactamente un archivo: src/Command/ShipReportCommand.php. jVamos a

comprobarlo!

src/Command/ShipReportCommand.php

T // ... lines 1 - 2

namespace App\Command;

use Symfony\Component\Console\Attribute\AsCommand;
use Symfony\Component\Console\Command\Command;

use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;

O 00 N O U1 b W

use Symfony\Component\Console\Input\InputOption;
10 use Symfony\Component\Console\Output\OutputInterface;
11 use Symfony\Component\Console\Style\SymfonyStyle;

12

13 #[AsCommand(

14 name: ‘app:ship-report’,

15 description: 'Add a short description for your command',

16)]

17 class ShipReportCommand extends Command

18 {

19 public function _ construct()

20 {

21 parent::__construct();

22 }

23

24 protected function configure(): void

25 {

26 $this

27 ->addArgument('argl', InputArgument::OPTIONAL, 'Argument
description')

28 ->addOption('optionl’, null, InputOption::VALUE_NONE, 'Option
description')

29 K

30 }

31

32 protected function execute(InputInterface $input, OutputInterface $output):
int

33 {

34 $io = new SymfonyStyle($input, $output);

35 $argl = $input->getArgument('argl');

36

37 if ($argl) {

38 $io->note(sprintf('You passed an argument: %s', $argl));

39 }

40

41 if ($input->getOption('optionl')) {

42 /] ..

43 }

44

45 $io->success('You have a new command! Now make it your own! Pass --help
to see your options.');

46

47 return Command: :SUCCESS;

48 }

49 }

iGenial! Esta es una clase normal - es un servicio, por cierto - pero con un atributo encima:

#[AsCommand] . Esto le dice a Symfony:

“IEh! ¢ Ves este servicio? No es solo un servicio: Me gustaria que lo incluyeras en la lista de

comandos de la consola.”

El atributo incluye el nombre del comando y una descripcién. Ademas, la propia clase tiene un
método configure() en el que podemos anadir argumentos y opciones. Pero la parte

principal es que, cuando alguien llame a este comando, Symfony llamara a execute() .

Esta variable $io es genial. Nos permite mostrar cosas -como $this->note()o
$this->success() - con diferentes estilos. Y aunque no lo veamos aqui, también podemos

hacer preguntas al usuario de forma interactiva.

&Y lo mejor? Con solo crear esta clase, jya esta lista para usar! Pruébala:

symfony console app:ship-report

iQué guay! El mensaje de aqui abajo procede del mensaje de éxito de la parte inferior del

comando. Y gracias a configure(), tenemos un argumento llamadoargl. Los argumentos

son cadenas que pasamos después del comando, como:

symfony console app:ship-report ryan

Dice

“Has pasado un argumento: ryan”

... que viene de este lugar del comando.

Construir una barra de progreso

Hay muchas cosas divertidas que puedes hacer con los comandos... y quiero jugar con una de

ellas. Uno de los superpoderes del objeto $io es crear barras de progreso animadas.

Imagina que estamos construyendo un informe sobre un barco... y requiere algunas consultas
pesadas. Asi que queremos mostrar una barra de progreso en la pantalla. Para ello, decimos

$io->progressStart()y le pasamos el numero de filas de datos que estemos recorriendo y
manejando. Imaginemos que estamos haciendo un bucle sobre 100 filas de datos para este

informe.

En lugar de hacer un bucle sobre datos reales, crea un bucle falso con for. jIncluso voy a
incluir la variable $i en el medio! Dentro, para hacer avanzar la barra de progreso, di
$io->advance() . Entonces, aqui es donde hariamos nuestra consulta pesada o trabajo

pesado. Finge eso con un usleep(10000) para crear una breve pausa.

Después del bucle, termina con $io->progressFinish().

src/Command/ShipReportCommand. php

T // ... lines 1 - 16

17 class ShipReportCommand extends Command

18 {

T // ... lines 19 - 31

32 protected function execute(InputInterface $input, OutputInterface $output):
int

33 {

T // ... lines 34 - 44

45 $io->progressStart(100);

46 for ($1i = 0; $i < 100; ++$i) {

47 $io->progressAdvance();

48 usleep(10000);

49 }

50 $io->progressFinish();

T // ... lines 51 - 54

55 }

56}

Ya esta Gira y pruébalo:

symfony console app:ship-report ryan

Qué guay.

Y... jeso es todo, gente! Choca esos cinco contigo mismo... 0, mejor, jsorprende a un
companero de trabajo con un choca esos cinco saltarin! Después, celébralo con una merecida
cerveza, un té, un paseo por la manzana o un partido de frisbee con tu perro. Porque... jlo has
conseguido! Has dado el primer gran paso para ser peligroso con Symfony. Entonces, vuelve y
prueba estas cosas: juega con ellas, construye un blog, crea unas cuantas paginas estaticas, lo

que sea. Eso marcara una gran diferencia.

Y si alguna vez tienes alguna pregunta, miramos atentamente la seccion de comentarios debajo
de cada video y respondemos a todo. Ademas, jsigue adelante! En el préximo tutorial, vamos a
ponernos aun mas peligrosos profundizando en la configuracién y los servicios de Symfony: los

sistemas que dirigen todo lo que haras en Symfony.

Muy bien, amigos, jhasta la proxima!

With <3 from SymfonyCasts

