Desarrollo Encantador en
Symfony 5

Wo




Chapter 1: Creando un Nuevo Proyecto de
Symfony 5

Hola Amigos! y bienvenidos al mundo de Symfony 5... el cual resulta ser mi mundo favorito! Ok,
quizas Disneylandia es mi mundo favorito... pero programar en Symfony 5 esta en segundo

lugar...

Symfony 5 es simple y eficiente: es muy veloz, empieza en pequefio, pero crece conforme a tu
aplicacién. Y esto no es solo jerga de Marketing! Tu aplicacion de Symfony literalmente crecera

conforme necesites mas funcionalidades. Ya hablaremos de eso mas tarde.

Symfony 5 es también el producto de afios de trabajo sobre experiencia de desarrollo.
Basicamente, la gente detras de Symfony quiere que ames utilizarlo sin sacrificar calidad. Asi

es, escribes codigo del cual estas orgulloso, amas el proceso, y construyes cosas rapidamente.

Symfony es también el framework mas rapido de PHP, lo cual no nos sorprende: - su creador
también creo el sistema de analisis de rendimiento de PHP llamado Blackfire. Por lo que el

rendimiento siempre esta en la mira.

B Go Deeper!

Mira nuestro Blackfire.io: Revealing Performance Secrets with Profiling curso sobre

Blackfire.

Descargando el instalador de Symfony

Entonces... Manos a la obra! Empieza por abrir http://symfony.com y dar click en "Download".

Lo que estamos apunto de descargar no es realmente Symfony. Es un ejecutable que va a

hacer que tu experiencia de desarrollo con Symfony sea... Excelente.

Como estoy en una Mac, voy a copiar este comando. para luego abrir una terminal - yo ya

tengo una abierta. No importa en donde lo ejecutes. Pégalo!


https://symfonycasts.com/screencast/blackfire
http://symfony.com/

curl -sS https://get.symfony.com/cli/installer | bash

Esto simplemente descarga un archivo ejecutable y, para mi, lo guarda en mi carpeta home.
Para poder hacerlo ejecutable en cualquier lugar en el sistema, Voy a seguir el consejo del

comando y lo moveré a otro lugar:

mv /Users/weaverryan/.symfony/bin/symfony /usr/local/bin/symfony

Ok, inténtalo!

symfony --version

Symfony esta vivo! Saluda al CLI de Symfony: una herramienta de linea de comandos que nos

va a ayudar con varias cosas a lo largo de nuestro camino hacia la gloria de programacion.

Empezando una nueva aplicacion de Symfony

Su primer trabajo sera ayudarnos en crear un nuevo projecto de Symfony 5. Ejecuta:

symfony new cauldron_overflow

Donde cauldron_overflow sera el directorio donde la nueva aplicacion vivira. Este también

resulta ser el nombre del sitio que vamos a construir... Pero ya hablaremos de eso mas tarde.

Detras de escenas, este comando no esta haciendo nada especial: clona un repositorio de Git
llamado symfony/skeleton y luego utiliza Composer para instalar las dependencias del

proyecto. Hablaremos mas sobre ese repositorio y de Composer un poco mas adelante.

Cuando termine, muévete al nuevo directorio:



cd cauldron_overflow

Y luego abrelo en tu editor favorito. Yo ya lo tengo abierto en mi editor favorito: PhpStorm, solo
abre Archivo -> Abrir Directorio y selecciona la carpeta del nuevo proyecto. En fin, saluda a tu

totalmente nuevo, brillante, prometedor proyecto de Symfony 5.

Nuestra aplicacion es diminuta!

Antes de comenzar a mover aqui y alla, vamos a crear un nuevo repositorio de git y hacer un

commit. Pero espera... Ejecuta:

git status

“En la rama master, nada por hacer commit.”

Sorpresa! El comando new de Symfony ya inicializé el repositorio de Git por nosotros e hizo el

primer commit. Puedes verlo tras ejecutar:

git log

“Add initial set of files”

Perfecto! Aunque, personalmente me hubiera gustado un mensaje ligeramente mas épico...

pero esta bien.
Voy a oprimir "q" para salir.

Mencioné anteriormente que Symfony empieza en pequerio. Para probarlo, podemos ver una

lista de todos los archivos agregados en el commit. Tras ejecutar:



git show --name-only

Eso es! Nuestro proyecto, el cual esta completamente listo para trabajar con Symfony tiene

menos de 15 archivos... si no cuentas archivos como .gitignore. Simple y eficiente.

Revisando los Requerimientos

Conectemos un servidor web a nuestra aplicacion y veamoslo en accion! Primero, asegurate

que tu computadora tenga todo lo que necesita Symfony al ejecutar:

symfony check:req

Para revisar los requerimientos. Estamos bien - pero si tienes algun problema y necesitas

ayuda, mencionalo en los comentarios.

Iniciando el Servidor Web de PHP

Para poner el proyecto en marcha, regresa a PhpStorm. Vamos a hablar mas sobre cada
directorio pronto. Pero la primer cosa que tienes que saber es que el directorio public/ es el
"documento raiz". Esto significa que necesitas apuntar tu servidor web - como Apache o Nginx -

a este directorio. Symfony tiene documentacion sobre como hacerlo.

Pero! para facilitarnos la vida, en vez de configurar un servidor web en nuestra maquina,

podemos usar el servidor integrado de PHP. En la raiz de to proyecto, ejecuta:

php -S 127.0.0.1:8000 -t public/

Tan pronto hacemos eso Podemos regresar a nuestro navegador e ir a http://localhost:8000

para descubrir... Bienvenido a Symfony 5! Ooh, que elegancia!

Siguiente: tan facil como fue ejecutar ese servidor web de PHP, Voy a mostrarte aun una mejor

opcién para el desarrollo local. Ahora vamos a conocer el significado de los directorios en


http://localhost:8000/

nuestra nueva aplicacion y asegurarnos de que tenemos algunos plugins instalados en

PhpStorm... los cuales hacen trabajar con Symfony todo un placer.



Chapter 2: Bienvenidos a nuestra pequena
Aplicacion y setup de PhpStorm

Uno de mis objetivos principales en este tutorial sera ayudarte a entender realmente como

funciona Symfony, tu aplicacion.

Para empezar, echemos un vistazo a la estructura de carpetas.

El Directorio public/

Hay solo 3 directorios que debes tener en cuenta. Primero, public/ es el documento raiz: el
cual contendra todos los archivos que deben ser accesibles por un navegador. Y... por ahora

hay uno solo: index.php:



public/index.php

0

O 00 N O U1 b W

10
11
12
13
14
15

16

17
18
19

20
21
22
23
24
25
26
27

// ... lines 1 - 2

use App\Kernel;

use Symfony\Component\ErrorHandler\Debug;

use Symfony\Component\HttpFoundation\Request;

require dirname(__DIR__).'/config/bootstrap.php';

if ($_SERVER['APP_DEBUG']) {
umask (0000) ;

Debug: :enable();

if ($trustedProxies = $_SERVER['TRUSTED PROXIES'] ?? $_ENV['TRUSTED PROXIES'] ??
false) {

Request::setTrustedProxies(explode(',"', $trustedProxies),
Request: :HEADER_X_FORWARDED ALL ~ Request::HEADER_X_FORWARDED_HOST);

}

if ($trustedHosts = $_SERVER['TRUSTED _HOSTS'] ?? $_ENV['TRUSTED _HOSTS'] ?? false)

{
Request: :setTrustedHosts([$trustedHosts]);

$kernel = new Kernel($_SERVER['APP_ENV'], (bool) $_SERVER['APP_DEBUG']);
$request = Request::createFromGlobals();

$response = $kernel->handle($request);

$response->send();

$kernel->terminate($request, $response);

Este se llama el "front controller": un término complejo que los programadores inventaron para

decir que este archivo es el que ejecuta tu servidor web.

Pero, en realidad, salvo poner archivos CSS o imagenes en public/, casi nunca tendras que

pensar en ello.

src/ y_config/

Asi que... En realidad te menti. Hay en verdad soélo dos directorios que debes tener en cuenta:

config/ y src/. config/ tiene... ehh... perritos? No, config/ tiene archivos de

configuracion y src/ es donde tu cddigo PHP estara. Es asi de simple.



Doénde esta Symfony? Nuestro proyecto comenzé con un archivo composer.json:

composer.json

1 {

2 "type": "project”,

3 "license": "proprietary",

4 "require”: {

5 "php": "A7.2.5",

6 "ext-ctype": "*",

7 "ext-iconv": "*"

8 "symfony/console": "5.0.*",
9 "symfony/dotenv": "5.0.*",
10 "symfony/flex": "~1.3.1",
11 "symfony/framework-bundle": "5.0.*",
12 "symfony/yaml": "5.0.*"
13 %
14 "require-dev": {
15 1,

T // ... lines 16 - 64
65 }

el cual contiene todas las librerias de terceros que nuestra aplicacion necesita. Detras de
escenas, el comando symfony new utilizd6 a composer para instalarlas... Lo cual es una forma
sofisticada de decir que Composer descargé un monton de librerias dentro del directorio

vendor/ ... Incluyendo Symfony.

Mas adelante hablaremos de los otros archivos y directorios, pero éstos todavia no nos

importan.

Utilizando el Servidor Web Local de Symfony

Hace algunos minutos, usamos PHP para iniciar un servidor web local. Bien. Pero presiona
Ctrl+C para salir del mismo. Por qué? Porque esa herramienta binaria symfony que instalamos

viene con un servidor local mucho mas poderoso.

Ejecuta:

symfony serve



Eso es todo. La primera vez que lo corres, podria preguntarte sobre instalar un certificado. Esto
es opcional. Si lo instalas - yo lo hice - iniciara el servidor web con https. Sip, tienes https local
con cero esfuerzo. Una vez que corre, ve a tu navegador y refresca. Funciona! Y ese pequefio

candado prueba que estamos usando https.

Para parar el servidor, solo presiona Control + C. Puedes ver todas estas opciones de comando

al ejectuar:

symfony serve --help

Como por ejemplo, formas de controlar el nUumero de puerto

Cuando uso este comando, usualmente corro:

symfony serve -d

-d significa correr como un daemon. Hace exactamente lo mismo excepto que ahora corre en

segundo plano... Lo que significa que puedo seguir usando esta terminal. Si corro:

symfony server:status

Me muestra que el servidor esta corriendo y

symfony server:stop

Lo apagara. Iniciemoslo de nuevo:

symfony serve -d




Instalando Plugins de PhpStorm

Ok: estamos a punto de comenzar a escribir un montéon de codigo... ai que quiero asegurarme
de que tu editor esta listo para trabajar. Y, claro, puedes usar cualquier editor que tu quieras.
Pero mi mejor recomendacion es PhpStorm! En serio, hace que desarrollar en Symfony sea un
suefio! Y no, las buenas personas de PhpStorm no me estan pagando para decir esto...
aunque... s/ patrocinan a varios desarrolladores de codigo libre en PHP... o que lo hace aun

mejor.

Para tener un fantastico PhpStorm, tienes que hacer dos cosas. Primero, abre Preferencias,
selecciona "Complementos" y click en "Marketplace". Haz una busqueda por "Symfony". Este
plugin es increible... probado por casi 4 millones de descargas. Esto nos dara toda clase de

auto-completes e inteligencia extra para Symfony.

Si no lo tienes aun, instalalo. Deberias también instalar los plugins "PHP Annotations" y "PHP
toolbox". Si realizas una busqueda por "php toolbox"... puedes ver los tres de ellos. Instalalos y

luego reinicia PhpStorm.

Una vez reiniciado, vuelve a Preferencias y haz una busqueda por Symfony. Ademas de instalar
este plugin, tienes que habilitarlo en cada proyecto. Haz click en Habilitar y luego Aplicar. Dice

que tienes que reiniciar PhpStorm... pero no creo que eso sea necesario.

La segunda cosa que tienes que hacer en PhpStorm es buscar Composer y encontrar la
seccion "ldiomas y Frameworks", "PHP", "Composer". Asegurate de que la opcion "Sincronizar
ajustes IDE con composer.json" esta activada... lo cual automaticamente configura algunas

funciones utiles.

Haz click en "Ok" y... estamos listos! A continuacién, vamos a crear nuestra primerisima pagina

y veremos de qué se trata symfony.



Chapter 3: Rutas, Controladores & Respuestas!

La pagina que estamos viendo ahora... la cual es super divertida... e incluso cambia de color...
esta aqui solo para decir "Hola!". Symfony muestra esta pagina porque, en realidad, nuestra

aplicacién aun no tiene ninguna pagina. Cambiemos eso.

Ruta + Controlador = Pagina

Cada framework web... en cualquier lenguaje... tiene la misma labor principal: brindarte un
sistema de ruteo -> controlador: un sistema de dos pasos para construir paginas. La ruta define
la URL de la pagina y en él controlador es donde escribimos cédigo PHP para construir esa
pagina, como HTML 6 JSON.

Abre config/routes.yaml:

config/routes.yaml

1 #index:
2 # path: /
3 # controller: App\Controller\DefaultController::index

Mira! ya tenemos un ejemplo! Descomentarizalo. Si no te es familiar el formato YAML, es super
amigable: es un formato de configuracion tipo llave-valor que se separa mediante dos puntos.

La identacién también es importante.

Esto crea una simple ruta donde la URL es /. El controlador apunta a una funcién que va a
construir esta pagina... en realidad, esto apunta a un método de una clase. En general, esta

ruta dice:

“cuando el usuario vaya a la homepage, por favor ejecuta el método index de la clase

DefaultController.”

Ah, y puedes ignorar esa llave index que esta al principio del archivo: es solo el nombre

interno de la ruta... y aun no es importante.



Nuestra Aplicacion

El proyecto que estamos construyendo se llama "Cauldron Overflow". Originalmente queriamos
crear un sitio donde los desarrolladores puedan hacer preguntas y otros desarrolladores
pudieran responderlas pero... alguien ya nos gano... hace como... unos 10 afos. Asi como
cualquier otro impresionante startup, estamos pivoteando! Hemos notado que muchos magos
accidentalmente se han hecho explotar... o invocan dragones que exhalan fuego cuando en
realidad querian crear una pequefia fogata para azar malvaviscos. Asi que... Cauldron Overflow
esta aqui para convertirse en el lugar donde magos y hechiceros pueden preguntar y responder

sobre desventuras magicas.

Creando un Controlador

En la homepage, eventualmente vamos a listar algunas de las preguntas mas recientes. Asi
que vamos a cambiar la clase del controlador a QuestionController y el método a

homepage.

config/routes.yaml

1 index:
2 path: /
3 controller: App\Controller\QuestionController::homepage

Ok, la ruta esta lista: define la URL y apunta al controlador que va a construir la pagina. Ahora...
necesitamos crear ese controlador! Dentro del directorio src/ ya existe el directorio
Controller/ pero esta vacio. Haré click derecho aqui y seleccionaré "Nueva clase PHP".

Llamalo QuestionController.

Namespaces Yy el Directorio src/

Ooh, mira esto. El namespace ya esta ahi! Sorprendente! Esto es gracias a la configuracion de

Composer en el PhpStorm que agregamos en el ultimo capitulo.

Asi esta la cosa: cada clase que creamos dentro del directorio src/ va a requerir un

namespace. Y... por alguna razdén que no es muy importante, el namespace debe iniciar con
App\ y continuar con el nombre del directorio donde vive el archivo. Como estamos creando
este archivo dentro del directorio Controller/, su namespace debe ser App\Controller.

PhpStorm va a autocompletar esto siempre.



src/Controller/QuestionController.php

T // ... lines 1 - 2

3 namespace App\Controller;
1 // ... lines 4 - 6

7 class QuestionController
8 {

$ // ... lines 9 - 12
13 }

Perfecto! Ahora, porque en routes.yaml decidimos nombrar al método homepage, crealo

aqui: public function homepage() .

src/Controller/QuestionController.php

T // ... lines 1 - 2

3 namespace App\Controller;

1 // ... lines 4 - 6

7 class QuestionController

8 {

9 public function homepage()
10 {

T /... line 11
12 }
13 }

Los Controladores Deben Regresar Una Respuesta

Y... felicitaciones! Estas dentro de una funcién del controlador, el cual algunas veces es llamado
"accion"... solo para confundirnos. Nuestro trabajo aqui es simple: construir esa pagina.

Podemos escribir cualquier codigo para hacerlo - como ejecutar queries en la base de datos,
cachear cosas, realizar llamados a APIls, minar criptomonedas... lo que sea. La unica regla es

que la funcion del controlador debe regresar un objeto del tipo Symfony Response.

Escribe return new Response() . PhpStorm intenta autocompletar esto... pero existen
multiples clases Response en nuestra app. La que queremos es la
Symfony\Component\HttpFoundation. HitpFoundation es una de las partes - o

"componentes” - mas importantes en Symfony. Presiona tab para autocompletarlo.

Pero detente! Viste eso? Como dejamos que PhpStorm autocompletara esa clase por nosotros,
escribid Response, pero también agrego la declaracion de esa clase al principio del archivo!

Esa es una de las mejores funciones de PhpStorm vy lo utilizaré bastante. Me veras



constantemente escribir una clase y dejar que PhpStorm la autocomplete. Para que agregue la

declaracion en el archivo por mi.

Dentro de new Response(), agrega algo de texto:

“Pero qué controlador tan embrujado hemos conjurado!”

src/Controller/QuestionController.php

T // ... lines 1 - 2

namespace App\Controller;
use Symfony\Component\HttpFoundation\Response;

class QuestionController

{

public function homepage()
10 {

11 return new Response('What a bewitching controller we have conjured!');

Y... listo! Acabamos de crear nuestra primera pagina! Vamos a probarla! Cuando vamos a la

homepage, deberia ejecutar nuestra funcion del controlador... la cual regresa el mensaje.

Encuentra tu navegador. Ya estamos en la homepage... asi que solo refresca. Saluda a nuestra
primerisima pagina. Lo s€, no hay mucho que ver aun, pero acabamos de cubrir la parte mas

fundamental de Symfony: el sistema ruta-controlador.

A continuacién, hagamos nuestra ruta mas elegante al usar algo llamado anotaciones. También

vamos a crear una segunda pagina con una ruta que utiliza comodines.



Chapter 4: Anotaciones y Rutas con Comodin

Es muy sencillo crear una ruta en YAML que apunte a una funcion del controlador. Pero hay

una forma aun mas simple de crear rutas... y me encanta. Se llama: anotaciones.

Primero, comenta la ruta en YAML. Basicamente, borrala. Para comprobar que no funciona,

refresca la homepage. Asi es! Regreso a la pagina de bienvenida.

config/routes.yaml

1 #index:
2 # path: /
3 # controller: App\Controller\QuestionController::homepage

Instalacion Soporte a Anotaciones

Las anotaciones son un formato especial de configuracion y el soporte a anotaciones no es un
standard en nuestra pequefa aplicacion de Symfony. Y... eso esta bien! De hecho, esa es toda

la filosofia de Symfony: empieza pequefio y agrega funcionalidades cuando las necesites.

Para agregar soporte a anotaciones, vamos a utilizar Composer para requerir una nueva

libreria. Si aun no tienes Composer instalado, ve a https://getcomposer.org.

Una vez que lo instales, corre:

composer require annotations

Si estas familiarizado con Composer, el nombre de la libreria se te ha de hacer extrafio. Y en
realidad, instal6 una libreria totalmente diferente: sensio/framework-extra-bundle. Casi al
final del comando, menciona algo sobre dos recetas. Hablaremos sobre ello proximamente: es

parte de lo que hace especial a Symfony.

Agregando Rutas con Anotaciones


https://getcomposer.org/

En fin, ya que el soporte a anotaciones esta instalado, podemos agregar de vuelta nuestra ruta
usando anotaciones. Que significa eso? Arriba de la funcién del controlador, escribe /** y
presiona enter para crear una secciéon PHPDoc Luego escribe @Route y autocompleta la del
componente Routing. Tal como la otra vez, PhpStorm agregé automaticamente el use

statement en la parte de arriba de la clase.

Dentro de los paréntesis, escribe "/".

src/Controller/QuestionController.php

1 // ... lines 1 - 5

6 use Symfony\Component\Routing\Annotation\Route;
7

8 class QuestionController

9 {

11 * @Route("/")

12 */

13 public function homepage()
14 {

$ // ... Lline 15

16 }

17 }

Eso es todo! Cuando el usuario vaya a la homepage, se va a ejecutar la funcién abajo de esto.
Me encantan las anotaciones porque son simples de leer y mantienen la ruta y controlador uno
junto del otro. Y si... las anotaciones son literalmente configuracién dentro de comentarios de
PHP. Si no te gustan, siempre puedes utilizar YAML o XML: Symfony es super flexible. Desde el

punto de vista del rendimiento, todos los formatos son lo mismo.

Ahora cuando refrescamos la homepage... estamos de vuelta!

Una Segunda Ruta y Controlador

Esta pagina eventualmente va a listar algunas preguntas recientes. Cuando le das click a una
pregunta en especifico, necesitara su propia pagina. Vamos a crear una segunda ruta y
controlador para ello. Como? creando un segundo metodo. Que tal:

public function show().



src/Controller/QuestionController.php

T // ... lines 1 - 7

8 class QuestionController
9 {

$ // ... lines 10 - 20

21 public function show()
22 {

$ // ... Line 23

24 }

25 }

Arriba de esto, agrega @Route() y asigna la URL a, que te parece,

/questions/how-to-tie-my-shoes-with-magic. Eso seria grandioso!

src/Controller/QuestionController.php

T /7 ... lines 1 - 7

8 class QuestionController
9 {

$ // ... lines 10 - 17

19 * @Route("/questions/how-to-tie-my-shoes-with-magic")
20 */

21 public function show()
22 {

T // ... Line 23

24 }

25 }

Adentro, justo como la ultima vez, retorna una nueva respuesta: la de HttpFoundation.

“La pagina futura para mostrar preguntas”

src/Controller/QuestionController.php

T // ... lines 1 - 7

8 class QuestionController

9 {

$ // ... lines 10 - 17

18 ik

19 * @Route("/questions/how-to-tie-my-shoes-with-magic")
20 */

21 public function show()

22 {

23 return new Response('Future page to show a question!');
24 }

25 }



Vamos a probarla! Copia la URL, ve a tu navegador, pega y... funciona! Acabamos de crear una

segunda pagina... en menos de un minuto.

El Controlador Frontal: Trabajando Detras De Camaras

Por cierto, no importa a cual URL vayamos - como esta o la homepage - el archivo PHP que
nuestro servidor web ejecuta es index.php. Es como si fuéramos a

/index.php/questions /how-to-tie-my-shoes-with-magic. La unica razén porla que no
necesitas escribir index.php en la URL es porque nuestro servidor web local esta configurado
para ejecutar index.php automaticamente. En produccion, tu configuracion de Nginx o Apache

debe de hacer lo mismo. Revisa la documentacion de Symfony para aprender como hacerlo.

Rutas con Comodin

Eventualmente, vamos a tener una base de datos llena de preguntas. Y entonces, no, no
vamos a crear manualmente una ruta por cada pregunta. En su lugar, podemos hacer mas

inteligente esta ruta. Reemplaza la parte how-to-tie-my-shoes-with-magic por {slug}.

Cuando pones algo entre llaves dentro de una ruta, se convierte en comodin. Esta ruta ahora
aplica a /questions/LO-QUE-SEA. El nombre {slug} no es importante: pudimos haber

puesto lo que sea... por ejemplo {slugulusErectus}! No hace ninguna diferencia.

Pero, como sea que llamemos a este comodin - ejemplo {slug} - ahora nos permite tener un
argumento en nuestro controlador con el mismo nombre: $slug... el cual sera asignado con el

valor de esa parte de la URL.

src/Controller/QuestionController.php

T /... lines 1 - 7

8 class QuestionController

9 {

T // ... lines 10 - 17

18 /¥

19 * @Route("/questions/{slug}")
20 */

21 public function show($slug)
22 {

T // ... lines 23 - 26

27 }

28 }



Utilicemoslo para hacer mas elegante a nuestra pagina! Usemos sprintf(), escribe " la

pregunta" y agrega %s como comodin. Pasa $slug como comodin.

src/Controller/QuestionController.php

0

8

9

0
18
19
20
21
22
23
24
25
26
27
28

// ... lines 1 - 7
class QuestionController

{
// ... lines 16 - 17
/**
* @Route("/questions/{slug}")
*/
public function show($slug)
{

return new Response(sprintf(
'"Future page to show the question "%s"!',
$slug

))s

}

Bien! Cambia al navegador, refresca y... me encanta! Cambia la URL a

/questions /accidentally-turned-cat-into-furry-shoes y... eso también funciona!l

En el futuro, vamos a utilizar el $slug para extraer la pregunta de la base de datos. Pero como

aun no llegamos ahi, usaré str_replace() ... y ucwords() solo para hacerlo un poco mas

elegante. Aun es pronto, pero la pagina ya comienza a estar vival

src/Controller/QuestionController.php

21
22
23

0
25
26
27
28

// ... lines 1 - 7
class QuestionController
{
// ... lines 16 - 20
public function show($slug)
{
return new Response(sprintf(
// ... Lline 24
ucwords(str_replace('-', " ', $slug))
))s
}
}

A continuacién, nuestra aplicacion esconde un secreto! Una pequefia linea de comandos

ejecutable que esta llena de beneficios.



Chapter 5: La amada herramienta bin/console

Guardemos nuestro progreso hasta ahora. Voy a limpiar la pantalla y ejecutaré:

git status

Interesante: Hay algunos archivos nuevos aqui que yo no creé. No te preocupes: Vamos a

hablar precisamente de eso en el siguiente capitulo. Agrega todo con:

git add .

Normalmente... Este comando puede ser peligroso - accidentalmente podriamos agregar
algunos archivos que no queremos al commit! Afortunadamente, nuestro proyecto viene con un
archivo .gitignore precargado que ignora cosas importantes como vendor/ y otras rutas de
las cuales hablaremos mas tarde. Por ejemplo, var/ contiene el caché y los archivos de logs.

El punto es, que Symfony nos cuida la espalda.

Guarda los cambios con:

git commit -m "Lo estamos haciendo en grande con esto de Symfony"

Hola comando bin/console

Puedes interactuar de dos maneras diferentes con tu aplicacién de Symfony. La primera es al
cargar una pagina en tu navegador. La segunda es con un util comando llamado bin/console.

En tu terminal, ejecuta:



php bin/console

jOrale! Este comando enlista un montén de cosas diversas que puedes hacer con eso,
incluidas mdltiples herramientas de depuracion. Ahora, para desmitificar este asunto un poco,
existe literalmente un directorio bin/ en nuestra aplicacién con un archivo llamado
console adentro. Asi que esta cosa bin/console no es un comando global que se ha

instalado en nuestro sistema: estamos, literalmente ejecutando un archivo PHP.

El comando bin/console puede hacer muchas cosas - y descubriremos mis caracteristicas

favoritas a lo largo del camino. Por ejemplo, ¢ Quieres ver un listado para cada ruta en tu

aplicacién? Ejecuta:

php bin/console debug:router

iSip! Ahi estan nuestras dos rutas... ademas de otra que Symfony agrega automaticamente

durante el desarrollo.

La herramienta bin/console contiene muchos comandos utiles como este. Pero la lista de
comandos que soporta no es estatica. Nuevos comandos pueden ser agregados por nosotros...

O por nuevos paquetes que instalemos en nuestro proyecto. Este es mi "no tan sutil" presagio.

A continuacion: Hablemos de Symfony Flex, alias con Composer y el sistema de recetas.

Basicamente, las herramientas que hacen a Symfony verdaderamente unico.



Chapter 6: Flex, Recetas & Aliases

Vamos a instalar un paquete totalmente nuevo dentro de nuestra aplicacion llamado "security
checker". El verificador de seguridad es una herramienta que revisa las dependencias de tu
aplicacioén y te dice si alguna de estas tiene vulnerabilidades de seguridad conocidas. Pero,
confidencialmente, tan genial como lo es..., la razén real por la que quiero instalar esta libreria

es porque es una gran manera de ver el importantisimo sistema de "recetas" de Symfony.

En tu terminal, ejecuta:

composer require sec-checker

En una aplicacién real, probablemente deberias pasar --dev y agregar esto a tu dependencia

dev... pero eso no Nos preocupa a Nosotros.

Flex Aliases

No obstante, hay algo extrafio aqui. Especificamente... sec-checker no es un nombre de
paquete valido! En el mundo de Composer, cada paquete debe ser algo/algo-mas: no puede

ser solamente sec-checker. Entonces que diantres esta pasando?

De devuelta en PhpStorm, abre composer.json. Cuando iniciamos el proyecto, solamente

teniamos unas pocas dependencias en este archivo. Una de ellas es symfony/flex.



composer.json

1 {

T // ... lines 2 - 3

4 "require”: {

5 "php": "~7.2.5",

6 "ext-ctype": "*",

7 "ext-iconv": "*"

8 "sensio/framework-extra-bundle": "~5.5",
9 "sensiolabs/security-checker": "76.0",
10 "symfony/console": "5.0.*",
11 "symfony/dotenv": "5.0.*",
12 "symfony/flex": "~1.3.1",
13 "symfony/framework-bundle": "5.0.*",
14 "symfony/yaml": "5.0.*"
15 }s

$ // ... lines 16 - 67
68 }

Este es un plugin de composer que agrega dos caracteristicas especiales al mismo Composer.

El primero se llama "aliases".

En tu navegador, ve a http://flex.symfony.com para encontrar una larga pagina llena de

paquetes. Busca por security. Mejor, busca por sec-checker. Bingo! La misma dice que
hay un paquete llamado sensiolabs/security-checker y tiene los aliases de sec-check,

sec-checker, security-checker y algunos mas.

El sistema de alias es simple: pues Symfony Flex se encuentra en nuestra aplicacion, podemos
decir composer require security-checker,y realmente descargara

sensiolabs/security-checker.

Puedes ver esto en nuestra termina: dijimos sec-checker, pero al final descargé
sensiolabs/security-checker. Eso es algo que también Composer agrego a nuestro
archivo composer.json Entonces... las aliases son una agradable caracteristica de atajo...
pero es realmente genial! Casi que puedes adivinar un alias cuando quieras instalar algo.
Necesitas una bitacora? Ejecuta composer require logger para conseguir la bitacora
recomendada. Necesitas enviar algo por correo electréonico? composer require mailer

Necesitas comer un pastel? composer require cake!

Recetas de Flex



http://flex.symfony.com/

La segunda caracteristica que Flex agrega a Composer es la mas importante. Es el sistema de

recetas

En la terminal, después de instalar el paquete, nos menciona:
“Symfony operations: 1 recipe configuring sensiolabs/security-checker.”

Interesante. Ejecuta:

git status

Wow! Esperabamos que composer.json y composer.lock fueran modificados... asi es como
Composer trabaja. Pero algo también modificé al archivo symfony.lock... y agregé un archivo

totalmente nuevo security_checker.yaml!

Muy bien, primero symfony.lock es un archivo que es manejado por Flex. Tu no necesitas
preocuparte por el, pero deberias asignarlo. Mantiene una gran lista de cuales recetas se han

instalado.

Entonces, ¢Quién cred el otro archivo? Abrelo con

config/packages/security checker.yaml.

config/packages/security checker.yaml

1 services:

2 _defaults:

autowire: true
autoconfigure: true

SensiolLabs\Security\SecurityChecker: null

00 N o v bW

SensiolLabs\Security\Command\SecurityCheckerCommand: null

Cada paquete que instales puede tener una receta de Flex. La idea es maravillosamente
simple. En lugar de decirle a la gente que instale un paquete y después crear este archivo, y
actualizar este otro para hacer que las cosas funcionen, Flex ejecuta una receta la cual... lo

hace por ti! Este archivo ha sido agregado a la receta sensiolabs/security-checker!

No necesitas preocuparte por las especificaciones de que esta dentro de este archivo por el

momento. El punto es, gracias a este archivo, tenemos un nuevo comando bin/console.



Ejecuta:

php bin/console

Ves ese comando security:check? No estaba hace un segundo. Esta ahi ahora gracias al

nuevo archivo YAML. Intenta:

php bin/console security:check

Ningun paquete tiene vulnerabilidades conocidas! Genial!

Como funcionan las recetas

Aqui esta el panorama en general. gracias al sistema de receta, siempre que instales un
paquete, Flex realizara una comprobacion si el paquete tiene una receta y, si lo tiene, lo
instalara. Una receta puede hacer muchas cosas, como agregar archivos, crear directorios, o

incluso modificar archivos nuevos, como agregar lineas a tu archivo .gitignore

El sistema de recetas cambia las reglas del juego. Me encanta, ya que cada vez que necesito
una nueva libreria, todo lo que tengo que hacer es instalarla. No necesito agregar archivos de

configuracion o modificar algo, pues la receta automatiza todo ese trabajo aburrido.

Las Recetas pueden Modificar Archivos

De hecho, esta receta hizo algo méas que no nos dimos cuenta. En la terminal, ejecuta:

git diff composer.json

Esperabamos que Composer agregara esta nueva linea a la seccion require. Pero también

hay una nueva linea bajo la seccién de scripts. Lo cual fue hecho por la receta.



composer.json

1

L VORI o SN

15
0
46
47
0
50
51
0
58
0

68

{

/arrr

s

/arrr

s

7arE

/arrr

s

}

Lines 2 - 3
"require”: {
Lines 5 - 8
"sensiolabs/security-checker": "76.0",
Lines 10 - 14
¥
Lines 16 - 45
"scripts": {
"auto-scripts": {
Lines 48 - 49
"security-checker security:check": "script”

s
Llines 52 - 57

}s
Lines 59 - 67

Gracias a esto, cada vez ejecutes:

composer install

Después de terminar, automaticamente el comando security checker.

El punto es: para usar el comando security checker, lo unico que teniamos que hacer era...

instalarlo. Su receta se hizo cargo del resto de la configuracién.

Ahora... si te estas preguntando:

“Oye! Donde rayos vive esta receta? Puedo verla?”

Esa es una gran pregunta! Vamos a averiguar donde viven las recetas y como se ven a

continuacion.



Chapter 7: Como Funcionan las Recetas

¢, Donde viven estas recetas Flex? Viven... en la nube. Especificamente, si miras en

https://flex.symfony.com, puedes clickear para ver la receta de cualquier paquete. Esto va a...

interesante: un repositorio GitHub llamado symfony/recipes.

Ve a la pagina principal de ese repositorio. Este es el repositorio central para recetas,
organizado por el nombre de los paquetes... y luego cada paquete puede tener diferentes

recetas para cada version. Nuestra receta vive en sensiolabs/security-checker/4.0.

El Cddigo de la Receta

Cada receta tiene al menos este archivo manifest. json, el cual describe todas las "cosas"
que tiene que hacer. Este copy-from-recipe dice que el contenido del directorio config/ en
la receta deberia ser copiado a nuestro proyecto. Esta es la razén por la cual un archivo

config/packages/security_checker.yaml fue copiado a nuestra aplicacion.

De vuelta en el manifesto, la seccion composer-scripts le dice a Flex que agregue esta linea
a nuestro archivo composer.json... y los aliases definen... bueno... los aliases que deberian

corresponderse con este paquete.
Hay algunas cosas mas que una receta puede hacer, pero esta es la idea basica.

Asi que... fodas las recetas de Symfony viven en este repositorio. Mmm, en realidad, esto no es
asi: Todas las recetas de symfony viven en este repositorio o en otro llamado
recipes-contrib. No hay diferencia entre estos, excepto que el control de calidad es mas

alto para las recetas del repositorio principal.

Usando Composer Para Ver Recetas

Otra forma de ver los detalles de las recetas es a través del mismo Composer. Corre:


https://flex.symfony.com/

composer recipes

Estas son las 7 recetas que fueron instaladas en nuestra aplicacion. Y si corremos:

composer recipes sensiolabs/security-checker

Podemos ver mas detalles, como la URL de la receta y los archivos que copi6 a nuestra

aplicacion.

El sistema de recetas siempre sera nuestro mejor amigo: permitiendo que nuestra app empiece

pequeia, pero que crezca automaticamente cuando instalamos nuevos paquetes.

Removiendo un Paquete & Receta

Oh, y si decides que debes remover un paquete, su receta sera desinstalada. Echa un vistazo:

composer remove sec-checker

Eso - claro esta - removera el paquete... pero también "desconfigurd” la receta. Cuando

corremos:

git status

Esta limpio! Revirtié el cambio en composer.json y removi6 el archivo de configuracion.



composer.json

1 {

$ // ... lines 2 - 3

4 "require”: {

5 "php": "~7.2.5",

6 "ext-ctype": "*",

7 "ext-iconv": "*"

8 "sensio/framework-extra-bundle": "~5.5",
9 "symfony/console": "5.0.*",

10 "symfony/dotenv": "5.0.*",

11 "symfony/flex": "~1.3.1",

12 "symfony/framework-bundle": "5.0.*",
13 "symfony/yaml": "5.0.*"

14 },

$ // ... lines 15 - 44
45 "scripts": {
46 "auto-scripts": {
47 "cache:clear": "symfony-cmd",
48 "assets:install %PUBLIC_DIR%": "symfony-cmd"
49 },

$ // ... lines 50 - 55

56 },

$ // ... lines 57 - 65

66 }

A continuacion: Instalemos Twig - el sistema de templates de Symfony - para poder crear

templates HTML. La receta de Twig va a hacer que esto sea muy facil.



Chapter 8: La Receta de Twig

Salvo que estés creando una API pura - y hablaremos de retornar JSON mas tarde en este
tutorial - necesitaras escribir algo de HTML. Y... poner texto o HTML en un controlador asi es...

horrible.

No te preocupes! Symfony tiene una excelente integracion con una increible libreria de
templates llamada Twig. Hay solo un problema: nuestra app de Symfony es tan pequena que
Twig ni siquiera esta instalado! Ah, pero eso no es realmente un problema... gracias al sistema

de recetas.

Instalar Twig

Vuelve a https://flex.symfony.com y haz una busqueda por "template". Ahi esta! Aparentemente

la libreria de templates recomendada por Symfony es also llamado twig-pack. jInstalémosla!l

composer require template

Esto instala algunos paquetes... Y si! 2 recetas! Veamos lo que hicieron:

git status

Chequeando los Cambios de |la Receta

Wow, impresionante. Muy bien: los cambios en composer.json composer.lock y

symfony.lock eran de esperarse. Todo lo demas fue hecho por estas recetas.

; Qué son los Bundles?



https://flex.symfony.com/

Veamos bundles.php primero:

git diff config/bundles.php

Interesante: agrego dos lineas. Abre ese archivo: config/bundles.php.

config/bundles.php

T // ... lines 1 - 2

3 return [

4 Symfony\Bundle\FrameworkBundle\FrameworkBundle::class => ['all' => true],
5 Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle::class =>

["all" => true],

6 Symfony\Bundle\TwigBundle\TwigBundle::class => ['all' => true],
7 Twig\Extra\TwigExtraBundle\TwigExtraBundle::class => ['all' => true],
8 I;

Un "bundle" es un plugin de Symfony. Comunmente, cuando quieres agregar una funcionalidad
a tu app, instalas un bundle. Y cuando instalas un bundle, necesitas habilitarlo en tu aplicacion.
Hace mucho tiempo atras, lo haciamos manualmente. Pero gracias a Symfony Flex, siempre
que instalas un bundle de Symfony, automaticamente actualiza este archivo para habilitarla por
ti. Asi que... ahora que hemos hablado de este archivo, probablemente jamas necesitaras

pensar en esto de nuevo.

Los directorios templates/ y config/

La receta también agrego un directorio templates/ . Asi que si te preguntabas donde se
supone que viven tus templates... la receta contestd esa pregunta! También agregd un archivo

de layout base.html.twig del cual hablaremos pronto.



templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="UTF-8">

5 <title>{% block title %}Welcome!{% endblock %}</title>
6 {% block stylesheets %}{% endblock %}
7 </head>

8 <body>

9 {% block body %}{% endblock %}
10 {% block javascripts %}{% endblock %}
11 </body>
12 </html>

Entones... aparentemente nuestros templates se supone que viven en templates/. ¢ Pero por
qué? Quiero decir, esa ruta esta fijada en algun archivo interno de la libreria de Twig? No! Vive
justo en nuestro codigo, gracias al archivo twig.yaml que fue creado por la receta.

Revisémoslo: config/packages/twig.yaml.

config/packages/twig.yaml

1 twig:
2 default_path: '%kernel.project_dir%/templates'’

Hablaremos mas sobre estos archivos YAML en otro tutorial. Pero sin comprender demasiado
sobre este archivo, él mismo... ya tiene sentido! Esta configuracién default_path apunta al
directorio templates/. ;Quieres que tus templates vivan en algun otro lugar? Solo cambia

esto y... Listo! Tu tienes el control.

Por cierto, no te preocupes por esta rara sintaxis %kernel.project_dir%. Aprenderemos
sobre esto mas adelante. Pero basicamente, es una forma sofisticada de apuntar al directorio

raiz de nuestro proyecto.

La receta también creo otro archivo twig.yaml el cual es menos importante:
config/packages/test/twig.yaml. El mismo hace un pequerio cambio a Twig para tus tests
automatizados. Los detalles no importan realmente. El punto es: Hemos instalado Twig y su
receta se encargo de todo lo demas. Estamos 100% listos para usarlo en nuestra app.

jHagamos esto a continuacion!



Chapter 9: Twig ¢

Hagamos que la accién show() del controlador renderé cédigo HTML usando un template. Tan
pronto como quieras representar un template, necesitaras que tu controlador herede del
AbstractController. No olvides permitir que PhpStorm lo autocomplete para que pueda

agregar el import necesario.

Ahora, obviamente, un controlador no necesita heredar esta clase base - A Symfony no le
interesa eso. Pero, es usual heredar del AbstractController por una simple razén: nos

brinda métodos utiles!

src/Controller/QuestionController.php

T // ... lines 1 - 4

5 use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
$ // ... Lines 6 - 8

9 class QuestionController extends AbstractController
10 {

$ // ... lines 11 - 27
28 }

Rendereando un Template

El primer método util es render. Podemos decir: return this->render() y pasar dos
argumentos. El primero es el nombre del archivo del template: podemos poner lo que sea aqui,
pero usualmente - porque valoramos nuestra cordura - lo nombramos igual que el controlador:

question/show.html.twig.

El segundo argumento es un array de todas las variables que queremos pasar al template.
Eventualmente, vamos a hacer una query especifica a la base de datos y pasaremos los datos
al template. Por el momento, hay que fingirlo. Voy a copiar la linea ucwords() y borrar el
cédigo viejo. Pasemos una variable al template llamada - que tal: question - asignada a este

string.



src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController

10 {

$ /7 ... lines 11 - 21

22 public function show($slug)

23 {

24 return $this->render('question/show.html.twig', [
25 'question' => ucwords(str_replace('-', ' ', $slug))
26 1);

27 }

28 }

Es hora de una pregunta! Qué valor crees que regresa el método render() ? Un string? alguna
otra cosa? La respuesta es: un objeto Response... conteniendo HTML. Porque recuerda: la

unica regla de un controlador es que siempre debe de regresar un objeto tipo Response.

@ Tip

Un controlador puede regresar algo distinto a un objeto Response, pero no te preocupes

por eso ahorita... o tal vez nunca.

Creando el Template

Entonces, creemos ese template! Dentro de templates/, crea el subdirectorio question,
luego un nuevo archivo llamado show.html.twig. Empecemos sencillo: un <h1> y luego
{{ question }} para representar la variable question. Y... voy a poner un poco mas de

sintaxis.

templates/question/show.html.twig

1 <h1>{{ question }}</h1>

<div>
Eventually, we'll print the full question here!
</div>

a1 A~ W N

Las 3 Sintaxis de Twig!




Acabamos de escribir nuestro primer codigo de Twig! Twig es muy amigable: es un simple

archivo HTML hasta que escribes una de sus dos sintaxis.

La primera es la sintaxis "imprime algo". {{, lo que quieres imprimir, luego }}. Dentro de las
llaves, estas escribiendo codigo en Twig... el cual es muy similar a JavaScript. Esto imprime la
variable question. Si pones comillas alrededor, imprimira la palabra question. Y claro,
puedes hacer cosas mas complejas - como el operador terneario. Es decir, es muy similar a

JavaScrip.

La segunda sintaxis es la que yo llamo "haz algo". Va de esta forma {% seguido por lo que

quieres hacer, por ejemplo un if o un for. Hablaremos mas de esto en un momento.

Y... eso es todo! O estas imprimiendo algo con {{ o haciendo algo, como un if, con {%.

Ok, una pequerfia mentira, existe una tercera sintaxis... pero es solo para comentarios: {#, el

comentario... luego #}.

templates/question/show.html.twig

1 <h1>{{ question }}</h1>
{# oh, I'm just a comment hiding here #}
<div>

Eventually, we'll print the full question here!
</div>

00 N o 1 b~ W N

Veamos si funciona! Abre la pagina, refresca y... Lo tenemos! Si miras el cédigo fuente, puedes
notar que no hay una estructura HTML aun. Es literalmente la estructura de nuestro template y

nada mas. Le vamos a agregar una estructura base en algunos minutos.

Haciendo Bucles con el Tag {%

Ok: tenemos una pregunta falsa. Creo que se merece algunas respuestas falsas! De regreso al

controlador, en la accion show(), voy a pegar 3 respuestas falsas.



src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController

10 {

T // ... lines 11 - 21

22 public function show($slug)

23 {

24 $answers = [

25 'Make sure your cat is sitting purrrfectly still ?°',
26 'Honestly, I like furry shoes better than MY cat',
27 ‘Maybe... try saying the spell backwards?',

28 15

T // ... lines 29 - 33

34 }

35 }

Como he dicho, una vez que hayamos hablado sobre base de datos, vamos a hacer un query
en lugar de esto. Pero para comenzar, esto va a funcionar de maravilla. Pasalas al template

como la segunda variable llamada answers.

src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController

10 {

$ // ... lines 11 - 21

22 public function show($slug)

23 {

24 $answers = [

25 ‘Make sure your cat is sitting purrrfectly still ?°',
26 'Honestly, I like furry shoes better than MY cat',
27 'Maybe... try saying the spell backwards?',

28 15

29

30 return $this->render('question/show.html.twig', [

31 'question' => ucwords(str_replace('-', ' ', $slug)),
32 "answers' => $answers,

33 1);

34 }

35 }

De regreso al template. Como las podriamos imprimir? No podemos solo decir

{{ answers }}... porque es un array. Lo que realmente queremos hacer es recorrer el array e
imprimir cada respuesta individual. Para poder hacer esto, tenemos que hacer uso de nuestra
primer funcion "haz algo"! Se veria algo asi: {% for answer in answers %}.y la mayoria de

las etiquetas "haz algo" también tienen una etiqueta de cierre: {% endfor %}.



Ponle una etiqueta ul alrededor y, dentro del ciclo, di <1i> y {{ answer }}.

templates/question/show.html. twig

T // ... lines 1 - 8

9 <h2>Answers</h2>

10

11 <ul>

12 {% for answer in answers %}
13 <li>{{ answer }}</1li>
14 {% endfor %}

15 </ul>

T // ... lines 16 - 17

Me fascina! Ok navegador, refresca! Funciona! Digo, esta muy, muy feo... pero lo vamos a

arreglar pronto.

La Referencia de Twig: Tags,_Filtros, Funciones

Dirigete a https://twig.symfony.com. Twig es su propia libreria con su propia documentacion.

Aqui hay un montén de cosas utiles... Pero lo que realmente me gusta esta aqui abajo: la

Referencia de Twig.

Ves esas "Etiquetas" a la izquierda? Esas son fodas las etiquetas "Haz algo" que existen. Asi
es, siempre sera {% y luego una de estas palabras - por ejemplo, for, if o {% set. Si

intentas {% pizza, yo voy a pensar que es gracioso, pero Twig te va a gritar.

Twig también tiene funciones... como cualquier lenguaje... y una agradable funcionalidad
llamada "tests", la cual es algo unica. Esto te permite decir cosas como: if foo is defined o

if number is even.

Pero la mayory mejor seccion es la de los "filtros". Los filtros son basicamente funciones... pero
mas hipster. Mira el filtro 1ength. Los filtros funcionan como las "cadenas" en la linea de
comandos: solo que aqui unimos la variable users en el filtro 1length, el cual solo los cuenta.
El valor va de izquierda a derecha. Los filtros son en realidad funciones... con una sintaxis mas

amigable.

Usemos este filtro para imprimir el nimero de respuestas. Voy a poner algunos paréntesis,

luego {{ answer|length }} Cuando lo probamos... de lujo!


https://twig.symfony.com/
https://twig.symfony.com/doc/3.x/#reference

templates/question/show.html. twig

T // ... lines 1 - 7

8

9 <h2>Answers {{ answers|length }}</h2>
10

T // ... lines 11 - 17

Herencia con Templates de Twig: extends

En este punto, ya eres apto para convertirte en un profesional de Twig. Solo hay una

funcionalidad importante mas de la cual hablar. y es una buena: herencia de templates.

La mayoria de nuestras paginas van a compartir una estructura HTML. Actualmente, no
contamos con ninguna estructura HTML. Para hacer una, arriba del template, escribe
{% extends 'base.html.twig' %}.

templates/question/show.html. twig

1 {% extends 'base.html.twig' %}

<h1>{{ question }}</h1>
// ... lines 4 - 19

Q@ woN

Esto le dice a Twig que queremos usar el template base.html.twig como la estructura base.
En este momento, este archivo es muy basico, pero es nuestro para modificarlo - y lo haremos

pronto.

Pero si refrescas la pagina... huye! Un gran error!

“Un template que hereda de otro no puede incluir contenido fuera de los bloques de Twig.”

Cuando heredas de un template, estas diciendo que quieres que el contenido de este template
vaya dentro de base.html.twig. Pero... donde? deberia Twig ponerlo arriba? Abajo? En algun

lugar del medio? Twig no lo sabe!

Estoy seguro que ya habias notado estos bloques, como stylesheets, title y body. Los
bloques son "hoyos" donde un template hijo puede agregar contenido. No podemos
simplemente heredar de base.html.twig: necesitamos decirle en cual bloque debe ir el

contenido. El bloque body es el lugar perfecto.



Como hacemos esto? Arriba del contenido agrega {% block body %}, y después,
{% endblock %}.

templates/question/show.html. twig

1 {% extends 'base.html.twig' %}

2
3 {% block body %}

$ // ... lines 4 - 18
19 {% endblock %}

T // ... lines 20 - 21

Ahora intentalo. Funciona! No pareciera que es mucho... porque la estructura base es tan

simple, pero si revisas el codigo fuente de la pagina, tenemos la estructura HTML basica.

Agregar, Remover, Cambiar Bloques?

Por cierto, estos bloques en base.html.twig no son especiales: los puedes renombrar,
moverlos de lugar, agregar o remover. Entre mas bloques agregues, mas flexible es tu template

"hijo" para agregar contenido en lugares diferentes.

La mayoria de los bloques existentes estan vacios... pero el bloque puede definir contenido por
defecto. Como el bloque title. Ves ese Welcome? No es sorpresa, ese es el titulo actual de

la pagina.

Como se encuentra dentro de un bloque, podemos sobreescribirlo en cualquier template. Mira
esto: en donde sea dentro de show.html.twig, escribe {% block title %}, Question,

imprime la pregunta, luego {% endblock %}.

templates/question/show.html. twig

1 {% extends 'base.html.twig' %}

{% block title %}Question: {{ question }}{% endblock %}

{% block body %}

// ... lines 6 - 20
21 {% endblock %}

T // ... lines 22 - 23

S v howoN

Esta vez cuando recargamos... tenemos un nuevo titulo!



Ok, con Twig en nuestras espaldas, vamos a ver una de las funcionalidades mas utiles de

Symfony... y tu nuevo mejor amigo para depurar: Symfony profiler.



Chapter 10: Profiler: El mejor amigo de tu
Debugger

Estamos teniendo un muy buen progreso - Deberias estar orgulloso! Veamos qué archivos

hemos modificado:

git status

Agrega Todo:

git add .

Y haz commit:

git commit -m "Added some Twiggy goodness"

Instalando el Profiler

Porque ahora quiero instalar una de mis herramientas de symfony favoritas. Corre:

composer require profiler --dev

Estoy usando --dev porque el profiler es una herramienta que sélo necesitaremos mientras
estamos en desarrollo: No sera usada en produccion. Esto significa que Composer lo agrega a
la seccion require-dev de composer.json. No es tan importante, pero es |la forma correcta

de hacerlo.



@ Tip

En proyectos nuevos, en vez de symfony/profiler-pack, podrias ver 3 paquetes aqui,
incluyendo symfony/web-profiler-bundle. No hay problema! Explicaremos esto en

algunos minutos.

composer.json

1 {

$ // ... lines 2 - 15

16 "require-dev": {

17 "symfony/profiler-pack": "~1.0"
18 ¥

$ // ... lines 19 - 67
68 }

Y... en este punto, no deberia sorprendernos que esto ha instalado una receta!

Corre:

git status

Saluda a |la Barra de Herramientas Web Debug

iOh, wow! Agreg6 tres archivos de configuracion. Gracias a éstos, el médulo funcionara al
instante. Pruébalo: de vuelta a tu navegador, refresca la pagina. jSaluda a la barra de
herramientas debug! La dichosa barrita en la parte inferior. Ahora esto aparecera en cada
pagina HTML mientras estamos desarrollando. Nos muestra el codigo de status, cual
controlador y ruta usamos, velocidad, memoria, llamadas Twig e incluso mas iconos

apareceran a medida que empezamos a usar mas partes de symfony.

Y Saluda al Profiler

La mejor parte es que puedes hacer click en cualquier de estos iconos para saltar... al profiler.
Esta es basicamente la version expandida de la barra de herramientas y esta llena de
informacion sobre la carga de la pagina, incluyendo la informacion del request, response e

incluso una maravillosa pestafa de performance. Esta no solo es una buena manera de hacer



un debug del performance de tu aplicacion, también es una gran manera... de simplemente

entender qué esta sucediendo dentro de Symfony.

Hay otras secciones para Twig, configuracion, cacheo y eventualmente habra una pestafa para
ver las queries a la base de datos. A prop0ésito, esto no es solo para paginas HTML: también
puedes acceder al profiler para las llamadas AJAX que haces a tu app. Te mostraré cdmo mas

adelante.

Las Funciones dump().y_dd()

Cuando instalamos el profiler, también obtuvimos otra herramienta util lamada dump() . Haré
click en atras un par de veces para ir a la pagina. Abre el controlador:

src/Controller/QuestionController.php.

Imagina que queremos ver una variable. Normalmente, usaria var_dump(). En vez de ello, usa

dump () y vamos a imprimir el $slug vy... qué tal el propio objeto $this.

src/Controller/QuestionController.php

1 // ... lines 1 - 8

9 class QuestionController extends AbstractController
10 {

$ // ... lines 11 - 21

22 public function show($slug)
23 {

$ // ... Lines 24 - 29

30 dump($slug, $this);

1 // ... lines 31 - 35

36 }

37 }

Cuando refrescamos, o6rale! Funciona exactamente como var_dump() excepto... muchisimo
mas bello y util. El controlador aparentemente tiene una propiedad llamada container...y

podemos ir mas y mas profundo.

Y si eres muy haragan... Como la mayoria de nosotros lo es... también puedes usar dd() lo

cual significa dump() y luego die().



src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController
10 {

$ /7 ... lines 11 - 21

22 public function show($slug)
23 {

$ // ... lines 24 - 29

30 dd($slug, $this);

T // ... lines 31 - 35

36 }

37 }

Ahora cuando refrescamos... hace el dump, pero también termina la ejecucion en la pagina.
Hemos perfeccionado el desarrollo basado en dump-and-die. ¢ Creo que deberiamos estar

orgullosos?

Instalando el Paquete de Debug

Cambialo de vuelta a dump() ... y s6lo hagamos dump($this).

src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController
10 {

$ /7 ... lines 11 - 21

22 public function show($slug)
23 {

$ // ... lines 24 - 29

30 dump($this);

$ // ... lines 31 - 35

36 }

37 }

Hay otra libreria que podemos instalar para herramientas de debug. Esta es menos importante

- pero de todas formas buena para tener en cuenta. En tu terminal, corre:

composer require debug



Esta vez no estoy usando -- dev porque esto instalara algo que si quiero en produccién. Esto
instala el DebugBundle - eso no es algo que necesitemos en produccion - pero también instala
Monolog, que es una libreria de logueo. Y probablemente si querramos loguear cosas en

produccion.

Paquetes Composer?

Antes de hablar de lo que esto nos di6, hecha un vistazo al nombre del paquete que instalo:
debug-pack. Esta no es la primera vez que hemos instalado una libreria con "pack" en su

nombre.

Un "pack" es un concepto especial en Symfony: Es como un tipo de paquete "falso" cuya unica
funcién es ayudar a instalar varios paquetes al mismo tiempo. Echale un vistazo: copia el

nombre del paquete, busca tu navegador, y ve a https://github.com/symfony/debug-pack. Orale!

No es nada mas que un archivo composer.json! Esto nos da una manera facil de instalar solo

este paquete... pero en realidad obtener fodas estas librerias.

@ Tip

En mi proyecto, instalar un "pack" solo agregaria una linea a composer.json:
symfony/debug-pack. Pero a partir de symfony/flex 1.9, cuando instalas un pack, en
vez de agregar symfony/debug-pack a composer.json, agregara 5 paquetes. Aun

obtienes el mismo cédigo, pero esto facilita el manejo de las versiones de los paquetes.

Asi que gracias a esto, tenemos dos nuevas cosas en nuestra aplicacion. La primera es un
logguer! Si refrescamos la pagina... y hacemos click en el profiler, tenemos la seccién "Logs"
que nos muestra todos los logs para este request. Estos también son guardados en el archivo

var/log/dev.log.

La segunda cosa nueva en nuestra aplicacion es... bueno... si miraste atentamente, el dump()
desapareci6 de la pagina! El DebugBundle integra la funcion dump() incluso mas dentro de
Symfony. Ahora si usamos dump(), en vez de imprimirlo en la mitad de la pagina, lo pone aqui
abajo en la barra de herramientas debug. Puedes hacer click en ella para ver una versién mas
grande. No es tan importante... Es solo otro ejemplo de como Symfony se vuelve mas listo a

medida que instalas mas cosas.


https://github.com/symfony/debug-pack

El Comando server.dump

Oh, ya que estamos hablando de ello, el DebugBundle nos dié un nuevo comando de la

consola. En tu terminal, corre:

php bin/console server:dump

Esto inicia un pequeno servidor detras de escena. Ahora, siempre que se ejecute dump() en
nuestro cddigo, aun se muestra en nuestra barra de herramientas... Pero también se imprime
en la terminal! Esa es una excelente manera de ver informacién pedida en los requests de

AJAX. Presionaré Control-C para detenerlo.

Expandiendo Packs

Oh, y hablando de estos "packs", si abres el archivo composer.json, el unico problema con
los packs es que aqui solo vemos debug-pack version 1.0: no podemos controlar las versiones

de los paquetes de dentro. Simplemente obtienes cualquiera que sea la version que el pack

solicita.
1 {
T // ... lines 2 - 3
4 "require”: {
T // ... Llines 5 - 9
10 "symfony/debug-pack": "~1.0",
$ /7 ... lines 11 - 15
16 3,
T // ... lines 17 - 68
69 }

Si necesitas mas control, no hay problema... Sélo extrae el pack:

composer unpack symfony/debug-pack

Eso hace exactamente lo que esperas: quita debug-pack de composer.json y agrega los

paquetes subyacentes, como debug-bundle y monolog. Ah, y como el profiler-pack es



una dependencia del debug-pack, esta en ambos lugares. Removeré el extra del require.

composer.json

1 {

T // ... lines 2 - 3

4 "require": {

5 "php": "~7.2.5",

6 "ext-ctype": "*",

7 "ext-iconv": "*",

8 "easycorp/easy-log-handler": "~1.0.7",
9 "sensio/framework-extra-bundle": "~5.5",
10 "symfony/console": "5.0.*",
11 "symfony/debug-bundle": "5.0.*",
12 "symfony/dotenv": "5.0.*",

13 "symfony/flex": "~1.3.1",

14 "symfony/framework-bundle": "5.0.*",
15 "symfony/monolog-bundle": "~3.0",

16 "symfony/profiler-pack": "*",

17 "symfony/twig-pack": "~1.0",

18 "symfony/var-dumper": "5.0.*",

19 "symfony/yaml": "5.0.*"

20 1

T // ... lines 21 - 72

73}

A continuacién, hagamos nuestro sitio mas bello incluyendo CSS en nuestra aplicacion.



Chapter 11: Assets: CSS, Imagenes, etc

Vamos muy bien pero, Cielos! Nuestro sitio esta muy feo. Es hora de arreglarlo.

Si descargas el codigo del curso en esta pagina, después de que lo descomprimas,
encontraras el directorio start/ con el directorio tutorial/ ahi dentro: el mismo directorio

tutorial/ que ves aqui. Vamos a copiar algunos archivos de ahi en los proximos minutos.

Copiando el Layout Base y el Archivo CSS principal

El primero es base.html.twig. Lo voy a abrir, copiar el contenido, cerrarlo, y luego abriré

nuestro templates/base.html.twig. Pega el nuevo contenido aqui.



templates/base.html. twig

1

N ool b woN

10
11
12
13
14
15
16

17

18
19
20
21
22
23
24

25
26
27
28

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>{% block title %}Welcome!{% endblock %}</title>
{% block stylesheets %}
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-
Vkoo8x4CGs03+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFNOMuhOf23Q9Ifjh"
crossorigin="anonymous">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?
family=Spartan&display=swap">
<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css"
integrity="sha256-mmgLkCYLUQbXn®B1SRqzHar6dCnv90oZFPEC1glcwlkk="
crossorigin="anonymous" />
<link rel="stylesheet" href="/css/app.css">
{% endblock %}
</head>
<body>
<nav class="navbar navbar-light bg-light" style="height: 1@0px;">
<a class="navbar-brand" href="#">
<1 style="color: #444; font-size: 2rem;" class="pb-1 fad fa-
cauldron"></i>
<p class="pl-2 d-inline font-weight-bold" style="color:
#444;">Cauldron Overflow</p>
</a>
<button class="btn btn-dark">Sign up</button>

</nav>

{% block body %}{% endblock %}
<footer class="mt-5 p-3 text-center">
Made with <i style="color: red;" class="fa fa-heart"></i> by the guys
and gals at <a style="color: #444; text-decoration: underline;"
href="https://symfonycasts.com">SymfonyCasts</a>

</footer>
{% block javascripts %}{% endblock %}
</body>
</html>

Esto no fué un gran cambio: sélo agrego algunos archivos CSS - incluyendo Bootstrap - y un

poco de HTML basico. Pero tenemos los mismos bloques que antes: {% block body %} en el

medio, {% block javascripts %} , {% block title %}, etc.



Date cuenta que los link tags estan dentro del bloque llamado stylesheets. Pero eso aun no

es importante. Explicaré porque esta hecho de esa forma dentro de poco.

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

3 <head>

T // ... lines 4 - 5

6 {% block stylesheets %}

7 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-
Vkoo8x4CGs03+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFNOMuhOf23Q9Ifjh"
crossorigin="anonymous">

8 <link rel="stylesheet" href="https://fonts.googleapis.com/css?
family=Spartan&display=swap">

9 <link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/1libs/font-awesome/5.12.1/css/all.min.css’
integrity="sha256-mmgLkCYLUQbXn@B1SRqzHar6dCnv9oZFPEC1glcwlkk="
crossorigin="anonymous" />

10 <link rel="stylesheet" href="/css/app.css">
11 {% endblock %}

12 </head>

$ // ... lines 13 - 27

28 </html>

Uno de los link tags esta apuntando a /css/app.css. Ese es ofro archivo que vive en el
directorio tutorial/. De hecho, selecciona el directorio images/ y app.css y copialos.
Ahora, selecciona el directorio public/ y pégalos. Agrega otro directorio css/ y mueve

app.css adentro.

Recuerda: el directorio public/ es nuestro documento raiz. Asi que si necesitas que un
archivo sea accesible por un usuario del navegador, entonces necesita vivir aqui. La ruta

/css/app.css cargara el archivo public/css/app.css.

Vamos a ver como se ve! Muévete hacia tu navegador y refresca. Mucho mejor. El centro aun
se ve terrible... pero eso es porque no hemos agregado ninguna etiqueta HTML al template

para esta pagina.

A Symfony le Importan tus Assets




Asi que hagamos una pregunta... y respondamosla: que funcionalidad nos ofrece Symfony

cuando se trata de CSS y JavaScript? La respuesta es... ninguna... o muchas!

Symfony tiene dos niveles diferentes de integracion con CSS y JavaScript. Por el momento
estamos usando el nivel basico. De hecho, por ahora, Symfony no esta haciendo nada por
nosotros: creamos un archivo CSS, luego le agregamos un link tag muy tradicional con HTML.

Symfony no esta haciendo nada: todo depende de ti.

El otro tipo de integracion de mayor nivel es utilizar algo llamado Webpack Encore: una
fantastica libreria que maneja minificacion de archivos, soporte de Sass, soporte a React o
VuedS y otras muchas cosas. Te voy a dar un curso rapido sobre Webpack Encore al final de

este tutorial.

Pero por ahora, lo vamos a mantener simple: Crearas archivos CSS o de JavaScript, los
pondras dentro del directorio public/, y luego crearas un link o script tag que apunte a

ellos.

La No Tan Importante Funcion asset()

Bueno, de hecho, incluso con esta integracion "basica", hay una pequefia funcionalidad de

Symfony que debes de utilizar.

Antes de mostrartelo, en PhpStorm abre preferencias... y busca de nuevo por " Symfony" para
encontrar el plugin de Symfony. Ves esa option de directorio web? Cambiala a public/ - solia
ser llamada web/ en versiones anteriores de Symfony. Esto nos ayudara a tener un mejor

autocompletado proximamente. Presiona "Ok".

Asi es como funciona: cada vez que hagas referencias a un archivo estatico en tu sitio - como
un archivo CSS, JavaScript o imagen, en vez de solo escribir /css/app.css, debes de usar la
funcién de Twig llamada asset() . Entonces, {{ asset() }} yluego la misma ruta que antes,

pero sin la / inicial: css/app.css.



templates/base.html. twig

T // ... line 1
2 <html>

3 <head>

T // ... lines 4 - 5
6 {% block stylesheets %}

T // ... lines 7 - 9

10 <link rel="stylesheet" href="{{ asset('css/app.css') }}">
11 {% endblock %}

12 </head>

$ // ... lines 13 - 27

28 </html>

Qué es lo que hace esta increible funcion asset() ? Practicamente.. nada. De hecho, esto va a

retornar exactamente la misma ruta que antes: /css/app.css.

Entonces porque nos molestamos en utilizar una funcién que no hace nada? Bueno, en
realidad hace dos cosas... las cuales pueden o no interesarte. Primero, si decides instalar tu
aplicacidén en un subdirectorio de un dominio - como por ejemplo
ILikeMagic.com/cauldron_overflow, la funcion asset() automaticamente agrega el prefijo

/cauldron_overflow a todas las rutas. Grandioso! si es que te interesa.

La segunda cosa que hace es mas util: si decides instalar tus assets a un CDN, con agregar
una linea a un archivo de configuracién, repentinamente, Symfony agregara el prefijo en todas
las rutas con la URL de tu CDN.

Asi que... en realidad no es tan importante, pero si utilizas asset() en todos lados, seras feliz

en caso de que luego lo necesites.

Pero... si refrescamos... sorpresa! El sitio exploto!
“Acaso olvidaste correr composer require symfony/asset ? La funcién asset no existe.”

Que tan genial es eso? Recuerda, Symfony empieza en pequenio: instalas las cosas solo
cuando las necesitas. En este caso, estamos tratando de utilizar una funcionalidad que no esta
instalada... por lo tanto Symfony nos da el comando exacto que tenemos que correr. Copialo,

abre la terminal y ejecuta:

composer require symfony/asset



Cuando termine... regresa al navegador y... funciona. Si observas la fuente HTML y buscas

app.css... Asi es! esta imprimiendo la misma ruta que antes.

Mejorando la pagina "show"

Hagamos que el centro de nuestra pagina se vea un poco mejor. De vuelta en el directorio
tutorial/, abre show.html.twig, copia el contenido, ciérralo, luego abre nuestra version:

templates/question/show.html.twig. Pega el nuevo cédigo.



templates/question/show.html. twig
1

{% extends 'base.html.twig' %}

2
3 {% block title %}Question: {{ question }}{% endblock %}
4
5 {% block body %}
6 <«div class="container">
7 <div class="row">
8 <div class="col-12">
9 <h2 class="my-4">Question</h2>
10 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">
11 <div class="g-container-show p-4">
12 <div class="row">
13 <div class="col-2 text-center">
14 <img src="/images/tisha.png" width="100"
height="100">
15 </div>
16 <div class="col">
17 <hl class="g-title-show">{{ question }}</h1l>
18 <div class="g-display p-3">
19 <i class="fa fa-quote-left mr-3"></i>
20 <p class="d-inline">I've been turned into a cat,
any thoughts on how to turn back? While I'm adorable, I don't really care for cat
food.</p>
21 <p class="pt-4"><strong>--Tisha</strong></p>
22 </div>
23 </div>
24 </div>
25 </div>
26 </div>
27 </div>
28 </div>
29
30 <div class="d-flex justify-content-between my-4">
31 <h2 class="">Answers <span style="font-size:1.2rem;">({{ answers|length
}})</span></h2>
32 <button class="btn btn-sm btn-secondary">Submit an Answer</button>
33 </div>
34
35
36
37 <ul class="list-unstyled">
38 {% for answer in answers %}
39 <li class="mb-4">
40 <div class="d-flex justify-content-center">
41 <div class="mr-2 pt-2">

42 <img src="/images/tisha.png" width="50" height="50">



43 </div>

44 <div class="mr-3 pt-2">

45 {{ answer }}

46 <p>-- Mallory</p>

47 </div>

48 <div class="vote-arrows flex-fill pt-2" style="min-width:
90px;">

49 <a class="vote-up" href="#"><i class="far fa-arrow-alt-

circle-up"></i></a>

50 <a class="vote-down" href="#"><i class="far fa-arrow-alt-
circle-down"></i></a>

51 <span>+ 6</span>

52 </div>

53 </div>

54 </1i>

55 {% endfor %}

56 </ul>

57 </div>

58 {% endblock %}

Recuerda, aqui no esta pasando nada importante: seguimos sobreescribiendo el mismo bloque
title y body. Estamos usando la misma variable question y seguimos haciendo el mismo
ciclo sobre answers aqui abajo. Solo tenemos mucha mas sintaxis HTML... lo cual... tu sabes...

hace que luzca bien.

Al refrescar... mira! Hermoso! De vuelta en el template, nota que esta pagina tiene algunas tags
img... pero no estan usando la funcién asset() . Hay que arreglarlo. Utilizaré un atajo!
Simplemente escribo "tisha", oprimo tab y... boom! el resto se agrega solo! Buscar por img...y
reemplaza también esta con "tisha". Te preguntas quien es tisha? Oh, es solo una de los

multiples gatos que tenemos aqui en el staff de SymfonyCasts. Esta controla a Vladimir.



templates/question/show.html. twig

T // ... lines 1 - 4

5 {% block body %}

6 <«div class="container">

7 <div class="row">

8 <div class="col-12">

$ // ... line 9

10 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">
11 <div class="g-container-show p-4">

12 <div class="row">

13 <div class="col-2 text-center">

14 <img src="{{ asset('images/tisha.png') }}"

width="100" height="100">

15 </div>

1 // ... lines 16 - 23

24 </div>

25 </div>

26 </div>

27 </div>
28 </div>

T // ... Lines 29 - 36

37 <ul class="list-unstyled">

38 {% for answer in answers %}

39 <1i class="mb-4">
40 <div class="d-flex justify-content-center">
41 <div class="mr-2 pt-2">
42 <img src="{{ asset('images/tisha.png') }}" width="50"

height="50">

43 </div>

1 // ... lines 44 - 52

53 </div>

54 </1li>

55 {% endfor %}

56 </ul>

57 </div>

58 {% endblock %}

Por cierto, en una aplicacién real, en vez de que estas imagenes sean archivos estaticos en el
proyecto, podrian ser archivos que los usuarios suben. No te preocupes: tenemos todo un

tutorial sobre como manejar la subida de archivos.

Asegurate de que esto funciona y... si funciona.

Puliendo la Homepage



https://symfonycasts.com/screencast/symfony-uploads

La dltima pagina que no hemos estilizado es el homepage... la cual en este momento... imprime
un texto. Abre el controlador: src/Controller/QuestionController.php. Asi es! Solamente
retorna un nuevo objeto Response() y texto. Podemos hacerlo mejor. Cambialo por

return $this->render().Llamemos al template question/homepage.html.twig. y... por
ahora... No creo que necesitemos pasar alguna variable al template... Asi que dejaré vacio el

segundo argumento.

src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController

10 {

T /... lines 11 - 13

14 public function homepage()

15 {

16 return $this->render('question/homepage.html.twig');
17 }

T // ... lines 18 - 34

35 }

Dentro de templates/question/, crea un nuevo archivo: homepage.html.twig.

La mayoria de los templates empiezan de la misma forma. Genial consistencia! En la parte de
arriba, {% extends 'base.html.twig' %}, {% block body %} y {% endblock %}.En

medio, agrega mas HTML para ver si esto funciona.

templates/question/homepage.html.twig

1 {% extends 'base.html.twig' %}

2
3 {% block body %}

4 <h1>Voila</h1>
5 {% endblock %}

Muy bien... refresca la pagina y... excelente! Excepto por la parte de que se ve horrible.

Robemos algo de cddigo del directorio tutorial/ una ultima vez. Abre
homepage.html. twig. Esto es solo un monton de HTML estatico para hacer que se vea mejor.

Copialo, cierra ese archivo... y luego pegalo en nuestro cédigo homepage.html.twig



templates/question/homepage.html. twig

1 {% extends 'base.html.twig' %}

2
3 {% block body %}
4 <div class="jumbotron-img jumbotron jumbotron-fluid">
5 <div class="container">
6 <hl class="display-4">Your Questions Answered</h1l>
7 <p class="lead">And even answers for those questions you didn't think to
ask!</p>
</div>
</div>

10 <div class="container">

11 <div class="row mb-3">

12 <div class="col">

13 <button class="btn btn-question">Ask a Question</button>

14 </div>

15 </div>

16 <div class="row">

17 <div class="col-12">

18 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

19 <div class="g-container p-4">

20 <div class="row">

21 <div class="col-2 text-center">

22 <img src="{{ asset('images/tisha.png’) }}"
width="100" height="100">

23 <div class="d-block mt-3 vote-arrows">

24 <a class="vote-up" href="#"><i class="far fa-
arrow-alt-circle-up"></i></a>

25 <a class="vote-down" href="#"><i class="far fa-
arrow-alt-circle-down"></i></a>

26 </div>

27 </div>

28 <div class="col">

29 <a class="g-title" href="#"><h2>Reversing a
Spell</h2></a>

30 <div class="qg-display p-3">

31 <i class="fa fa-quote-left mr-3"></i>

32 <p class="d-inline">I've been turned into a cat,
any thoughts on how to turn back? While I'm adorable, I don't really care for cat
food.</p>

33 <p class="pt-4"><strong>--Tisha</strong></p>

34 </div>

35 </div>

36 </div>

37 </div>

38 <a class="answer-1ink" href="#" style="color: #fff;">

39 <p class="g-display-response text-center p-3">

40 <i class="fa fa-magic magic-wand"></i> 6 answers



41 </p>

42 </a>

43 </div>

44 </div>

45

46 <div class="col-12 mt-3">

47 <div class="g-container p-4">

48 <div class="row">

49 <div class="col-2 text-center">

50 <img src="{{ asset('images/magic-photo.png') }}"
width="100" height="100">

51 <div class="d-block mt-3 vote-arrows">

52 <a class="vote-up" href="#"><i class="far fa-arrow-
alt-circle-up"></i></a>

53 <a class="vote-down" href="#"><i class="far fa-arrow-
alt-circle-down"></i></a>

54 </div>

55 </div>

56 <div class="col">

57 <a class="g-title" href="#"><h2>Pausing a Spell</h2></a>

58 <div class="g-display p-3">

59 <i class="fa fa-quote-left mr-3"></i>

60 <p class="d-inline">I mastered the floating card, but
now how do I get it back to the ground?</p>

61 <p class="pt-4"><strong>--Jerry</strong></p>

62 </div>

63 </div>

64 </div>

65 </div>

66 <a class="answer-1ink" href="#" style="color: #fff;">

67 <p class="q-display-response text-center p-3">

68 <i class="fa fa-magic magic-wand"></i> 15 answers

69 </p>

70 </a>

71 </div>

72 </div>

73 </div>

74 {% endblock %}

75

Y ahora... se ve mucho mejor.

Asi que esta es la integracién basica de CSS y Javascript dentro de Symfony: tu te encargas de

manejarlo. Claro, debes de utilizar la funcion asset(), pero no hace nada muy impresionante.



Si quieres mas, estas de suerte! En el dltimo capitulo, llevaremos nuestros assets al siguiente

nivel. Te va a fascinar.

A continuacién: nuestro sitio tiene algunos links! Y todos te llevan a ninguna parte! Aprendamos

como generar URLs con rutas.



Chapter 12: Generando URLs

Vuelve a la pagina "show" para una cuestién. El logo de arriba es un link... que no va a ninguna

parte aun. Este deberia llevarnos a la pagina de inicio.

Como forma parte del layout, el link vive en base.html.twig. Aqui esta: navbar-brand con

href="#".

templates/base.html.twig

T // ... line 1

2 <html>

T // ... lines 3 - 12

13 <body>

14 <nav class="navbar navbar-light bg-light" style="height: 100px;">
15 <a class="navbar-brand" href="#">
$ // ... lines 16 - 17

18 </a>

T // ... Line 19

20 </nav>

T // ... Llines 21 - 26

27 </body>

28 </html>

Para hacer que esto nos lleve a la pagina de inicio, podemos simplemente cambiarlo a /,
¢ Cierto? Podrias hacerlo, pero en Symfony, una mejor forma es pedirle a Symfony que genere
una URL hacia esta ruta. De esta forma, si decidimos cambiar esta URL en el futuro, todos

nuestros links se actualizaran automaticamente.

iCada Ruta Tiene un Nombre!

Para ver cdmo hacer esto, ve a tu terminal y corre:

php bin/console debug:router



Esto muestra un listado de cada ruta del sistema... Y, hey! Desde la ultima vez que lo corrimos,
hay un montén de rutas nuevas. Estas alimentan a la barra de herramientas debug y el profiler

y son agregadas automaticamente por el WebProfilerBundle cuando estamos en modo dev.

De todas formas, lo que realmente quiero ver es la columna "Name". Toda ruta tiene un nombre
interno, incluyendo las dos rutas que hicimos. Aparentemente sus nombres son
app_question_homepage y app_question_show. Pero... eh... ; De dénde vinieron? jNo

recuerdo haber escrito ninguno de éstos!

Entonces... A cada ruta debe serle dada un nombre interno. Pero cuando usas rutas en
anotacion... te deja hacer trampa: elige un nombre por ti basado en la clase y método del

controlador... jLo cual es asombroso!

Pero... tan pronto como necesitas generar la URL de una ruta, yo recomiendo darle un nombre
explicito, en lugar de depender de este nombre autogenerado, el cual podria cambiar de

repente si le cambias el nombre al método. Para darle un nombre a una ruta, agrega name=

y... Que tal: app_homepage.

src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController
10 {

12 * @Route("/", name="app_homepage")
13 */

14 public function homepage()

15 {

$ // ... Line 16

17 }

T // ... Llines 18 - 34

35 }

Me gusta mantener los nombres de mis rutas cortos, pero app_ lo hace lo suficientemente

largo como para poder realizar una busqueda a partir de esta cadena si alguna vez lo necesito.

Ahora, si corremos debug:router nuevamente:

php bin/console debug:router



iBien! Tomamos el control del nombre de nuestra ruta. Copia el nombre app_homepage y luego

vuelve a base.html.twig. El objetivo es simple, queremos decir:
“iHey symfony! ;Puedes por favor decirme la URL para la ruta app_homepage ?”

Para hacer esto en Twig, usa {{ path() }} y pasale el nombre de la ruta.

templates/base.html.twig

T // ... line 1

2 <html>

T // ... lines 3 - 12

13 <body>

14 <nav class="navbar navbar-light bg-light" style="height: 100px;">
15 <a class="navbar-brand" href="{{ path('app_homepage') }}">
$ // ... lines 16 - 17

18 </a>

T /7 ... Line 19

20 </nav>

T // ... lines 21 - 26

27 </body>

28 </html>

iEso es todo! Cuando volvemos y refrescamos... Ahora esto va hacia la pagina principal.

Apuntando a una Ruta con {Comodines}

En la pagina principal, tenemos dos preguntas escritas a mano... y cada una tiene dos links que

actualmente no van a ninguna parte. jArreglémoslos!

Paso uno: ahora que queremos generar una URL de esta ruta, encuentra la ruta y agrega

name="app_question_show".



src/Controller/QuestionController.php

T // ... lines 1 - 8

9 class QuestionController extends AbstractController
10 {

T // ... lines 11 - 18

19 ik

20 * @Route("/questions/{slug}", name="app_question_show")
21 */
22 public function show($slug)
23 {

$ // ... lines 24 - 33
34 }
35 }

Copia esto y abre el template: templates/question/homepage.html.twig. Veamos... Justo
debajo de la parte de votar, aqui esta el primer link a una pregunta que dice "Reversing a spell".

Quita el signo numeral, agrega {{ path() }} y pega app_question_show.

Pero... no podemos detenernos aqui. jSi probamos la pagina ahora, un error glorioso!

“Algunos parametros obligatorios estan faltando - "slug"”

jEso tiene sentido! {No podemos simplemente decir "genera la URL hacia
app_question_show" porque esa ruta tiene un comodin! Symfony necesita saber qué valor
deberia usar para {slug}. ;Cémo le decimos? Agrega un segundo parametro a path() con
{}. El {} es un array asociativo de Twig... nuevamente, tal como en JavaScript. Pasale slug
igual a... Veamos... Esta es una pregunta escrita a mano por el momento, asi que escribe

reversing-a-spell.



templates/question/homepage.html. twig

35
36
37
38

42
43
44

72
73
74

// ... lines 1 - 2
{% block body %}
// ... lines 4 - 9
<div class="container">
// ... lines 11 - 15
<div class="row">
<div class="col-12">
<div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">
<div class="g-container p-4">
<div class="row">
// ... lines 21 - 27
<div class="col">
<a class="qg-title" href="{{ path('app_question_show",
{ slug: 'reversing-a-spell' }) }}"><h2>Reversing a Spell</h2></a>
// ... lines 30 - 34
</div>
</div>

</div>

<a class="answer-1ink" href="{{ path('app_question_show', { slug:
"reversing-a-spell’ }) }}" style="color: #fff;">

// ... lines 39 - 41
</a>
</div>
</div>
// ... lines 45 - 71
</div>
</div>
{% endblock %}
// ... Llines 75 - 76

Copialo todo, porque hay un link mas aqui abajo para la misma pregunta. Para la segunda

pregunta... Pégalo nuevamente, pero cambialo a pausing-a-spell para igualar el nombre.

Copiaré eso... Encuentra la ultima ocurrencia... Y pégalo.



templates/question/homepage.html. twig

T // ... lines 1 - 2

3 {% block body %}

T // ... lines 4 - 9

10 <div class="container">

T // ... lines 11 - 15

16 <div class="row">

$ /7 ... lines 17 - 45

46 <div class="col-12 mt-3">

47 <div class="g-container p-4">

48 <div class="row">

$ // ... lines 49 - 55

56 <div class="col">

57 <a class="qg-title" href="{{ path('app_question_show', {
slug: 'pausing-a-spell' }) }}"><h2>Pausing a Spell</h2></a>

$ // ... lines 58 - 62

63 </div>

64 </div>

65 </div>

66 <a class="answer-1link" href="{{ path('app_question_show', { slug:
"pausing-a-spell' }) }}" style="color: #fff;">

T // ... lines 67 - 69

70 </a>

71 </div>

72 </div>

73 </div>

74 {% endblock %}

T // ... lines 75 - 76

Mas adelante, cuando implementemos una base de datos, vamos a mejorar esto y evitaremos
repetirnos tantas veces. jPero! Si volvemos, refrescamos... jY hacemos click en el link,

funciona! Ambas paginas van hacia la misma ruta, pero con un valor diferente para el slug.

A continuacién, llevemos nuestro sitio al siguiente nivel, al crear una interface APl JSON que

consumiremos con JavaScript.



Chapter 13: Rutas JSON en la API

Una de las funcionalidades en nuestro sitio... la cual aun no funciona... es la de votar a favor o
en contra en las respuestas de las preguntas. Eventualmente, cuando hagas click arriba o
abajo, esto hara un request tipo AJAX a una ruta de una API que vamos a crear. Esa ruta va a
guardar el voto en la base de datos y va a responder con un JSON que contendra el nuevo total

de votos y asi nuestro JavaScript podra actualizar el contador.

Aun no tenemos una base de datos en nuestra aplicacion, pero estamos listos para construir

todas las otras partes de esta funcionalidad.

Creando una Ruta JSON

Comencemos por crear una ruta tipo JSON para la API a la cual accederemos con AJAX

cuando el usuario vote en una respuesta arriba o abajo.

Podriamos crear esto en QuestionController como un nuevo método. Pero como esta ruta
en realidad trabaja con un "comment", vamos a crear un nuevo controlador. LIamalo

CommentController.

Como la vez pasada, vamos a escribir extends AbstractController y presionar tab para
que PhpStorm autocomplete esto y agregue el import en la parte de arriba. Al extender de

esta clase nos brinda métodos de atajo... y me encantan los atajos!

src/Controller/CommentController.php

T /... lines 1 - 2

namespace App\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class CommentController extends AbstractController

{
}

Dentro, crea una funcién publica. Puede tener cualquier nombre... que tal commentVote() .

Agrega la ruta arriba: /** | luego @Route. Autocompleta la del componente Routing para que



asi PhpStorm agregue el import.

Para la URL, que tal /comments/{id} - esto eventualmente sera el id del comentario
especifico en la base de datos - /vote/{direction}, donde {direction} sera cualquiera de

las palabras arriba o abajo.

y como tenemos estos dos comodines, podemos agregar dos argumentos: $id y $direction.
Empezaré con un comentario: el $id sera super importante después cuando tengamos una

base de datos... pero no lo vamos a usar por ahora.

src/Controller/CommentController.php

T // ... lines 1 - 6

7 use Symfony\Component\Routing\Annotation\Route;

T /7 ... line 8

9 class CommentController extends AbstractController

10 {
11 Jx*
12 * @Route("/comments/{id}/vote/{direction}")
13 */
14 public function commentVote($id, $direction)
15 {
T // ... lines 16 - 25
26 }
27 %}
Sin una base de datos, vamos a simular la l6gica. Si $direction == 'up', entonces

normalmente guardariamos el voto a favor en la base de datos y consultariamos el nuevo total

de votos. En vez de eso, escribe $currentVoteCount = rand(7, 1090).



src/Controller/CommentController.php

7

9
10

0
14
15
16
17
18
19
20
21

0
23

0
26
27

// ... Lines 1 - 8
class CommentController extends AbstractController

{
// ... lines 11 - 13

public function commentVote($id, $direction)

{
// todo - use id to query the database

// use real logic here to save this to the database

if ($direction === 'up') {
$currentVoteCount = rand(7, 100);
} else {
// ... Lline 22
¥
// ... Llines 24 - 25

}

El conteo de votos esta escrito directamente en el template con un total de 6. Asi que esto hara

que el nuevo conteo de votos parezca ser un nuevo numero mayor que este. En el else, haz lo

opuesto: un numero aleatorio entre 0 y 5.

src/Controller/CommentController.php

0

9
10

0
14
15
16
17
18
19
20
21
22
23

0
26
27

// ... lines 1 - 8
class CommentController extends AbstractController

{
// ... Llines 11 - 13

public function commentVote($id, $direction)

{
// todo - use id to query the database

// use real logic here to save this to the database

if ($direction === 'up') {
$currentVoteCount = rand(7, 100);
} else {
$currentVoteCount = rand(0, 5);
}
// ... lines 24 - 25

Si, esto serda mucho mas interesante cuando tengamos una base de datos, pero va a funcionar

muy bien para nuestro propasito.



Regresando un JSON?

La pregunta ahora es: después de "Guardar" el voto en la base de datos, que deberia de
retornar el controlador? Bueno, probablemente deberia retornar un JSON... y sé que quiero
incluir el nuevo conteo en la respuesta para que nuestro JavaScript pueda utilizarlo y actualizar

el numero de votos.

Asi que... como regresamos un JSON? Recuerda: nuestro tnico trabajo en un controlador es
retornar un objeto de tipo Symfony Response. JSON no es nada mas que una respuesta cuyo
contenido es una cadena JSON en vez de HTML. Asi que podemos poner:

return new Response() con json_encode() con algun dato.

Pero! en vez de eso, return new JsonResponse() - autocompleta esto para que PhPStorm
agregue el import. Pasa un array con los datos que queremos. Que tal pasar la llave votes

con $currentVoteCount.

src/Controller/CommentController.php

$ // ... lines 1 - 5

6 use Symfony\Component\HttpFoundation\JsonResponse;

T // ... lines 7 - 8

9 class CommentController extends AbstractController

10 {

T // ... lines 11 - 13

14 public function commentVote($id, $direction)

15 {

16 // todo - use id to query the database

17

18 // use real logic here to save this to the database
19 if ($direction === 'up') {

20 $currentVoteCount = rand(7, 100);

21 } else {

22 $currentVoteCount = rand(@, 5);

23 }

24

25 return new JsonResponse(['votes' => $currentVoteCount]);
26 }

27 }

Ahora... tal vez estés pensando:

‘Ryan! Te la pasas diciendo que debemos retornar un objeto Response... y acabas de

retornar algo diferente. Esto es una locura!”



Es un punto valido. Pero! si presionas Command or Ctrl y das click en la clase JsonResponse,
vas a aprender que JsonResponse hereda de Response. Esta clase no es nada mas que un
atajo para crear respuestas tipo JSON: esto hace el JSON encode a los datos que le pasamos
y se asegura que la cabecera Content-Type sea asignada a application/json, la cual

ayuda a las librerias AJAX a entender que estamos regresando un JSON.

Asi que... ah! Probemos nuestra nueva y brillante ruta de la API! Copia la URL, abre un nueva
nueva pestana en el navegador, pega y llena los comodines: que tal 10 para el {id} y para el

voto "up". Presiona enter. Hola ruta JSON!

El punto clave mas importante aqui es: las respuestas JSON no son nada especiales.

El Método atajo json()

La clase JsonResponse nos hace la vida mas sencilla.. pero podemos ser aun mas flojos! En

vez de new JsonResponse simplemente escribe return $this->json().

src/Controller/CommentController.php

T // ... lines 1 - 8

9 class CommentController extends AbstractController

10 {

$ // ... lines 11 - 13

14 public function commentVote($id, $direction)

15 {

$ // ... lines 16 - 24

25 return $this->json(['votes' => $currentVoteCount]);
26 }

27 }

Esto no cambia nada: es solo un atajo para crear el mismo objeto JsonResponse. Pan comido.

El Serializador de Symfony

Por cierto, uno de los "componentes" de Symfony se llama "Serializer", y es muy bueno
convirtiendo objetos a JSON o XML. Aun no lo hemos instalado, pero si lo hiciéramos, el
$this->json() empezaria a utilizarlo para serializar cualquier cosa que le pasemos. No haria
ninguna diferencia en nuestro caso donde pasamos un array, pero significa que podrias

empezar a pasar objetos a $this->json(). Si quieres saber mas - o quieres construir una



muy sofisticada API - ve nuestro tutorial sobre API Platform: un increible bundle de Symfony

para construir APIs.

A continuacién, escribamos algo de JavaScript que hara un llamado AJAX a nuestra nueva ruta.
También vamos a aprender como agregar JavaScript global y JavaScript especifico a una

pagina


https://symfonycasts.com/screencast/api-platform

Chapter 14: JavaScript, AJAX y el Profiler

Este es nuestro proximo objetivo: escribir algo de JavaScript para que cuando hagamos click
en los iconos de arriba o abajo, se realice un request AJAX a nuestra ruta JSON. Este "simula"
guardar el voto en la base de datos y retorna el nuevo recuento de votos, el cual usaremos

para actualizar el numero de votos en la pagina.

Agregando Clases js- al Template

El template de esta pagina es: templates/question/show.html.twig. Para cada respuesta,
tenemos estos links de votar-arriba y votar-abajo. oy a agregar algunas clases a esta
seccion para ayudar a nuestro JavaScript. En el elemento vote-arrows, agrega una clase
js-vote-arrows: lo usaremos en el JavaScript para encontrar el elemento. Luego, en el link
de vote-up, agrega un atributo data llamado data-direction="up". Haz lo mismo para el
link de abajo: data-direction="down" . Esto nos ayudara a saber en cual link se hizo click.
Finalmente, rodea el numero de votos - el 6 - con un span que contenga otra clase:

js-vote-total. Usaremos esto para encontrar el elemento para poder actualizar ese numero.



templates/question/show.html. twig

T // ... lines 1 - 4
5 {% block body %}

6 <div class="container">

T // ... lines 7 - 36

37 <ul class="list-unstyled">

38 {% for answer in answers %}

39 <li class="mb-4">

40 <div class="d-flex justify-content-center">

$ // ... lines 41 - 47

48 <div class="vote-arrows flex-fill pt-2 js-vote-arrows"

style="min-width: 90px;">

49 <a class="vote-up" href="#" data-direction="up"><i
class="far fa-arrow-alt-circle-up"></i></a>

50 <a class="vote-down" href="#" data-direction="down"><i
class="far fa-arrow-alt-circle-down"></i></a>

51 <span>+ <span class="js-vote-total">6</span></span>

52 </div>

53 </div>

54 </1i>

55 {% endfor %}

56 </ul>

57 </div>

58 {% endblock %}

Agregando JavaScript Dentro del Bloque javascripts.

Para simplificar las cosas, el codigo JavaScript que escribiremos usara jQuery. De hecho, si tu
sitio usa jQuery, probablemente querras incluir jQuery en cada pagina... Lo cual significa que
queremos agregar una etiqueta script a base.html.twig. En la parte de abajo, fijate que
tenemos un bloque llamado javascripts. Dentro de este bloque, voy a pegar una etiqueta
<script> para descargar jQuery desde un CDN. Puedes copiar esto desde el bloque de

codigo en esta pagina, o ir a jQuery para obtenerlo.

@ Tip

En los nuevos proyectos de Symfony, el bloque javascripts se encuentra en la parte
superior de este archivo - dentro de la etiqueta <head>. Puedes dejar el bloque
javascripts en <head> o moverlo aqui abajo. Silo dejas dentro de head, asegugate de
agregar un atributo defer a cada etiqueta script: Esto hara que tu JavaScript sea

ejecutado luego de que la pagina termine de cargar.



templates/base.html. twig

T /... line 1

2 <html>

1 // ... lines 3 - 12

13 <body>

$ // ... lines 14 - 25

26 {% block javascripts %}

27 <script

28 src="https://code.jquery.com/jquery-3.4.1.min.js"
29 integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSF1Bw8HfCJo="
30 crossorigin="anonymous"></script>

31 {% endblock %}

32 </body>

33 </html>

Si te preguntas por qué pusimos esto dentro del bloque javascripts... Mas alla de que
"parece" un lugar logico, te mostraré por qué en un minuto. Ya que, técnicamente, si
pusiéramos esto luego del bloque javascripts o antes, no habria ninguna diferencia por el

momento. Pero ponerlos dentro va a ser util pronto.

Para nuestro propio JavaScript, dentro del directorio public/, crea un nuevo directorio

llamado js/.Y luego, un archivo: question_show.js.

Esta es la idea: usualmente tendras algun cédigo JavaScript que querras incluir en cada
pagina. No tenemos ninguno por el momento, pero si lo tuviéramos, yo crearia un archivo
app.js y agregaria una etiqueta script para ello en base.html.twig. Luego, en ciertas
paginas, podrias necesitar incluir algun JavaScript especifico para la pagina, como por ejemplo,

para hacer funcionar el voto de comentarios que solo vive en una pagina.

Esto es lo que estoy haciendo y esta es la razdn por la que creé un archivo llamado

question_show. js: Es JavaScript especifico para esa pagina.

Dentro de question_show. js, voy a pegar al rededor de 15 lineas de cddigo.



public/js/question_show.js

1 /**
2 * Simple (ugly) code to handle the comment vote up/down
3 ¥/

4 var $container = $('.js-vote-arrows');

5 $container.find('a').on('click', function(e) {

6 e.preventDefault();

7 var $link = $(e.currentTarget);

8

9 $.ajax({
10 url: '/comments/10/vote/'+$link.data('direction'),
11 method: 'POST'

12 }) .then(function(response) {

13 $container.find("'.js-vote-total').text(response.votes);
14 })s

15 });

Esto encuentra el elemento .js-vote-arrows - el cual agregamos aqui - encuentra cualquier
etiqueta dentro del mismo, y registra una funcion para el evento click alli. Al hacer click,
hacemos una llamada AJAX a /comments/10 - el 10 es escrito a mano por ahora - /vote/ y
luego leemos el atributo data-direction del elemento <a> para saber si este es un voto
arriba o abajo. Al finalizar exitosamente, jQuery nos pasa los datos JSON de nuestra

llamada. Renombremos esa variable a data para ser mas exactos.

public/js/question_show.js

$ // ... lines 1 - 4

5 $container.find('a').on('click"', function(e) {

T // ... lines 6 - 8

9 $.ajax({

$ // ... lines 10 - 11
12 }).then(function(data) {
13 $container.find('.js-vote-total').text(data.votes);
14 3
15 1)

Luego usamos el campo votes de los datos - porque en nuestro controlador, estamos

retornando una variable votes - para actualizar el total de votos.

Sobreescribiendo el Bloque javascripts.

Entonces... ;; COmo incluimos este archivo? Si quisiéramos incluir esto en cada pagina, seria

bastante facil: agrega otra etiqueta script abajo de jQuery en base.html.twig. Pero queremos



incluir esto solo en la pagina show. Aqui es donde tener el script de jQuery dentro del bloque

javascripts es util. Porque, en un template "hijo", podemos sobreescribir ese bloque.

Echemos un vistazo: en show.html.twig, no importa donde - pero vayamos al final, di
{% block javascripts %} {% endblock %}.Dentro, agrega una etiqueta <script> con
src="". Ah, tenemos que recordar usar la funcién asset() . Pero... PhpStorm nos sugiere

js/question_show. js. Selecciona ese. jMuy bien! Agrego la funcién asset() por nosotros.

templates/question/show.html.twig

$ // ... lines 1 - 59

60 {% block javascripts %}

T // ... lines 61 - 62

63 <script src="{{ asset('js/question_show.js') }}"></script>
64 {% endblock %}

Si pararamos ahora, esto literalmente sobreescribiria el bloque javascripts de
base.html.twig. Porlo que jQuery no seria incluido en la pagina. jEn vez de sobreescribir el
bloque, lo que realmente queremos es agregar algo a él! En el HTML final, queremos que

nuestra nueva etiqueta script vaya justo debajo de jQuery.

¢, Como podemos hacer esto? Sobre nuestra etiqueta script, di {{ parent() }}.

templates/question/show.html.twig

T // ... lines 1 - 59
60 {% block javascripts %}

61 {{ parent() }}
62

63 <script src="{{ asset('js/question_show.js') }}"></script>
64 {% endblock %}

iMe encanta! La funcion parent() toma el contenido del bloque padre, y lo imprime.

jProbémoslo! Refresca y... Haz click en up. jSe actualiza! Y si hacemos click en down, vemos

un numero muy bajo.

Requests AJAX en el Profiler

Ah, y ¢ Ves este numero "6" aqui abajo en la barra de herramientas debug? Esto es genial.
Refresca la pagina. Fijate que el icono no esta aqui abajo. jPero, tan pronto como nuestra

pagina hace una llamada AJAX, aparece! Sip, la barra de herramientas debug detecta llamadas



AJAXy las enlista aqui. jLa mejor parte es que puedes usar esto para saltar al profiler para
cualquiera de estos requests! Voy a hacer click con el botdn derecho y abriré este link de voto

"abajo" en una nueva pestafa.

Este es el profiler completo para la llamada en todo su esplendor. Si usas dump() en alguna
parte de tu cddigo, la variable volcada para esa llamada AJAX estara aqui. Y luego, tendremos

una seccion de base de datos aqui. Esta es una funcionalidad maravillosa.

A continuacion, ajustemos nuestra ruta de la APIl: No deberiamos poder hacer un request GET
al mismo - como si lo abriéramos en nuestro navegador. Y... ; Tenemos algo que valide que el

comodin {direction}... de la URL sea up o down pero nada mas? Todavia no.



Chapter 15: Rutas Inteligentes: Solo POST y
Validacion de {Comodin}

Dentro de nuestro JavaScript, estamos haciendo una peticion POST a la API. Y tiene sentido.
El tema de "cual método HTTP" - como GET, POST, PUT, etc - se supone debes usar para un
llamado a la API... puede ser complicado. Pero como nuestra ruta eventualmente va a cambiar
algo en la base de datos, como practica recomendable, no queremos permitir a la gente que
hagan llamados tipo GET a nuestra ruta. Por ahora, podemos hacer un llamado GET con tan

solo poner la URL en nuestro navegador. Hey! Acabo de votar!

Para mejorar esto, en el CommentController, podemos hacer mas inteligente a nuestra ruta,
podemos hacer que solo funcione cuando el método sea POST. Para lograrlo agrega
methods="POST".

src/Controller/CommentController.php

$ // ... lines 1 - 8

9 class CommentController extends AbstractController

10 {

12 * @Route("/comments/{id}/vote/{direction}", methods="POST")
13 */

14 public function commentVote($id, $direction)

15 {

$ // ... lines 16 - 25

26 }

27 }

Tan pronto lo hagamos, al refrescar... error 404! La ruta ya no se encuentra

@ Tip

De hecho, es un error 405! Método HTTP no permitido.

El Comando router:match




Otra buena forma de ver esto es en tu terminal. Corre: php bin/console router:match.

Luego copia la URL... y pegala.

php bin/console router:match /comments/10/vote/up

Este divertido comando nos dice cual ruta le pertenece a una URL. En este caso, ninguna ruta

fue encontrada pero esto nos dice que casi encuentra la ruta app_comment_commentvote.

Para ver si un llamado POST seria encontrado, pasa --method=POST:

php bin/console router:match /comments/10/vote/up --method=POST

Y... Bum! Nos muestra la ruta que pudo encontrar y todos los detalles, incluyendo el

controlador.

Restringiendo un {Comodin}

Pero hay algo mas que no esta del todo bien con nuestra ruta. La ruta espera que la parte
{direction} sea arriba o abajo. Pero... técnicamente, alguien podria poner platano en la

URL. De hecho, probémoslo: Cambia la direccion por platano:

php bin/console router:match /comments/10/vote/banana --method=POST

Si! Votamos "platano" para este comentario! No es el fin del mundo... si un usuario intenta
hackear nuestro sistema y hace esto, solo significaria un voto negativo. Pero podemos hacerlo

mejor.

Como has de saber, normalmente un comodin se empareja con cualquier cosa. Sin embargo, si
quisieras, puedes controlarlo con una expresién regular. Dentro de {}, pero después del

nombre, agrega <>. Dentro, escribe up|down.



src/Controller/CommentController.php

T // ... lines 1 - 8

9 class CommentController extends AbstractController
10 {

11 ik

12 * @Route("/comments/{id}/vote/{direction<up|down>}", methods="POST")
13 */

14 public function commentVote($id, $direction)
15 {

T // ... lines 16 - 25

26 }

27 }

Ahora prueba el comando router:match

php bin/console router:match /comments/10/vote/banana --method=POST

Si! No encuentra la ruta porque platano no es arriba o abajo. Si cambiamos esto por arriba,

funciona:

php bin/console router:match /comments/10/vote/up --method=POST

Como Hacer que el id Solo Funcione con Enteros?

Por cierto, podrias ser tentado a hacer mas inteligente el comodin {id}. Asumiendo que
usamos ids con auto incremento en la base de datos, sabemos que el id debe de ser un
entero. Para hacer que esta ruta solo funcione si la parte del id es un numero, puedes agregar

<\d+>, lo que significa: encuentra un "digito" con cualquier tamafio.



src/Controller/CommentController.php

T // ... lines 1 - 8

9 class CommentController extends AbstractController
10 {

11 ik

12 * @Route("/comments/{id<\d+>}/vote/{direction<up|down>}", methods="POST")
13 */

14 public function commentVote($id, $direction)
15 {

T // ... lines 16 - 25

26 }

27}

Pero... En realidad no voy a poner esto aqui. Por qué? Eventualmente vamos a usar $id para
llamar a la base de datos. Si alguien escribe platano aqui, a quien le importa? El query no va
a encontrar ningun comentario con platano como id y vamos a agregar algo de cédigo para
retornar una pagina 404. Incluso si alguien intenta hacer un ataque de inyeccion de SQL, como
aprenderas mas tarde en nuestro tutorial de base de datos, no habria problema, porque la capa

de la base de datos nos protege de ello.

src/Controller/CommentController.php

$ /... lines 1 - 8

9 class CommentController extends AbstractController
10 {

11 Vil

12 * @Route("/comments/{id}/vote/{direction<up|down>}", methods="POST")
13 */

14 public function commentVote($id, $direction)
15 {

T // ... lines 16 - 25

26 }

27 }

Hay que asegurarnos que todo aun funciona. Voy a cerrar una pestana del navegador y

refrescar la pagina. Eso! los votos aun se ven bien.

A continuacién, demos un vistazo a la parte mas fundamental de Symfony: Los servicios.



Chapter 16: Objetos Servicio

En realidad, Symfony tiene dos partes... y acabamos de aprender una de ellas.

La primera parte es el sistema ruta-controlador. Y espero que te sientas muy comodo: crea una

ruta, la ruta ejecuta una funcién del controlador, regresamos una respuesta.

La segunda mitad de Symfony es todo sobre los multiples "objetos utiles" que flotan alrededor
de Symfony. Por ejemplo, cuando hacemos un render de un template, lo que en realidad
hacemos es aprovecharnos del objeto twig y decirle que haga el render. El método render()
es solo un atajo para utilizar ese objeto. También existe un objeto logger, el objeto del caché y
muchos otros, como el objeto de la conexidn con la base de datos y un objeto que ayuda a

hacer llamados HTTP a otras APIs.

Basicamente... cada cosa que Symfony realiza - o nosotros - realmente es hecha por uno de
estos objetos utiles. Demonios, incluso el ruter es un objeto que busca cual ruta se empareja

con el request actual.

En el mundo de Symfony - bueno, en realidad, en el mundo de programacion orientada a
objetos - estos "objetos que hacen algun trabajo" se les otorga un nombre especial: servicios.

Pero no permitas que te confunda: cuando escuches "servicio", solo piensa:

“iHey! Es un objeto que hace algun trabajo - como el objeto logger o el objeto que hace

consultas a la base de datos.”

Listando Todos los Servicios

Dentro del CommentController, vamos a registrar un log. Para hacerlo, necesitamos el

servicio "logger". ; Como lo podemos obtener?

Encuentra tu terminal y corre:

php bin/console debug:autowiring



Saluda a uno de los comandos mas importantes de bin/console. Esto nos muestra una lista
de todos los objetos servicio en nuestra app. Bueno, esta bien, estos no son fodos: pero es una

lista que contiene todos los servicios que probablemente necesites.

Incluso en nuestra pequefa app, hay muchas cosas aqui: hay algo llamado
Psr\Log\LoggerInterface, hay cosas para el caché y mucho mas. Conforme instalamos

mas bundles, esta lista va a crecer. Mas servicios significa mas herramientas.

Para encontrar qué servicio nos permite crear "logs", corre:

php bin/console debug:autowiring log

Esto retorna un montén de cosas... pero ignora todos los de aqui abajo por ahora y enfocate en
la linea de arriba. Esto nos dice que hay un objeto servicio logger y su clase implementa una
Psr\Log\LoggerInterface. ;Por qué es esto importante? Porque para pedir el servicio

logger, lo haces utilizando este type-hint. Se le llama "autowiring".

Usando Autowiring_para el Servicio del Logger

Asi es como obtienes un servicio desde un controlador. Agrega un tercer argumento a tu
meétodo - aunque el orden de los argumentos no importa. Escribe LoggerInterface -

autocompleta el del Psr\Log\LoggerInterface -y $logger.

src/Controller/CommentController.php

T // ... lines 1 - 4

5 wuse Psr\Log\LoggerInterface;

$ // ... lines 6 - 9
10 class CommentController extends AbstractController
11 {

T // ... lines 12 - 14
15 public function commentVote($id, $direction, LoggerInterface $logger)
16 {

$ // ... lines 17 - 28
29 }
30}

Esto agreg6 el import arriba de la clase para Psr\Log\LoggerInterface, el cual es él mismo

type-hint que el debug:autowiring nos dijo que usaramos. Gracias a este type-hint, cuando



Symfony hace un render de nuestro controlador, sabra que queremos que nos pase el servicio

del logger a este argumento.

Entonces... si: ahora existen dos tipos de argumentos que puedes agregar a tus métodos del
controlador. Primero, puedes tener un argumento que se empareja con un comodin de tu ruta.
Y segundo, puedes tener un argumento cuyo type-hint sea el mismo a una de las clases o
interfaces listadas en debug:autowiring. CacheInterface es otro type-hint que podemos

usar para tener el servicio de cache.

Utilizando el Servicio del Logger

Asi que... jVamos a usar este objeto! ; Qué métodos nos permite llamar? jNo tengo idea! Pero
como escribimos el type-hint apropiado, podemos decir $1logger-> y PhpStorm nos dice
exactamente cuales métodos tiene. Utilicemos $logger->info() para decir "Voting up!".

Cépialo y di "Voting down!" en el else.

src/Controller/CommentController.php

T // ... lines 1 - 9

10 class CommentController extends AbstractController
11 {

T // ... lines 12 - 14

15 public function commentVote($id, $direction, LoggerInterface $logger)
16 {

T /7 ... lines 17 - 19

20 if ($direction === 'up') {

21 $logger->info('Voting up!"');

T // ... Line 22

23 } else {

24 $logger->info('Voting down!');

T // ... line 25

26 }

T // ... lines 27 - 28

29 }

30}

iEs hora de probarlo! Refresca la pagina y... Hagamos click en arriba, abajo, arriba. Esto... por

lo menos no parece que esté rofto.

Mueve el mouse sobre la parte del AJAX de la herramienta web debug y abre el profiler para

uno de estos llamados. El profiler tiene una seccion de "Logs", la cual ofrece una forma facil de



ver los logs para un solo Request. jAhi esta! "Voting up!". También puedes encontrar esto en el

archivo var/log/dev.log.

El punto es: Symfony tiene muchos, muchos objetos utiles, digo "servicios". Y poco a poco,
vamos a empezar a utilizar mas de ellos... Cada vez agregando un type-hint para decirle a

Symfony cual servicio queremos.

Autowiring & Utilizando el Servicio de Twig

Veamos otro ejemplo. El primer servicio que usamos en nuestro codigo es el servicio de Twig.
Lo usamos... de forma "indirecta" al llamar $this->render() . En realidad, ese método es un
atajo para utilizar el servicio Twig detras de escenas. Y eso no deberia de sorprenderte. Como

dije antes, fodo lo que se realiza en Symfony es hecho en realidad por un servicio.

Como reto, vamos a suponer que la funcién render() no existe. Gasp! En el controlador del

homepage() comentariza la linea render().

Entonces... ;; COmo podemos utilizar el servicio de Twig directamente para hacer un render de
un template? jNo lo sé! Definitivamente podemos encontrar algo de documentacion al
respecto... pero vamos a ver si podemos descubrirlo por nosotros mismos con la ayuda del

comando debug:autowiring

php bin/console debug:autowiring twig

Y, jVoila! Aparentemente existe una clase llamada Twig\Environment que podemos usar
como "type-hint" para obtener el servicio de Twig. En nuestro controlador, escribe
Environment y presiona tab para agregar el import arriba. Voy a nombrar al argumento

$twigEnvironment.



src/Controller/QuestionController.php

// ... lines 1 - 7

use Twig\Environment;

// ... Line 9

class QuestionController extends AbstractController

{

// ... lines 12 - 14
public function homepage(Environment $twigEnvironment)
{

// ... lines 17 - 21

//return $this->render('question/homepage.html.twig');

}

// ... lines 24 - 40

}

Dentro, escribe $html = $twigEnvironment->. De nuevo, sin leer nada de documentacion,

gracias al hecho de que estamos escribiendo cédigo responsablemente y usamos type-hints,

PhpStorm nos muestra todos los métodos de esta clase. jMira! jEste método render() parece

que es el que necesitamos! Pasa el mismo nombre del template de antes.

src/Controller/QuestionController.php

)
10
11

0
15
16
17
18

)
22
23

0

41

// ... lines 1 - 9
class QuestionController extends AbstractController
{
// ... lines 12 - 14
public function homepage(Environment $twigEnvironment)
{
// fun example of using the Twig service directly!
$html = $twigEnvironment->render('question/homepage.html.twig');
// ... lines 19 - 21
//return $this->render('question/homepage.html.twig');

// ... lines 24 - 40
}

Cuando usas twig directamente, en vez de retornar un objeto tipo Response, retorna un string

con el HTML. No hay problema: termina con return new Response() -la de

HttpFoundation -y pasa $html.



src/Controller/QuestionController.php

T /...

6 use

I ...

lines 1 - 5
Symfony\Component\HttpFoundation\Response;

Lines 7 - 9

10 class QuestionController extends AbstractController

11 {

T /...

15
16
17
18
19
20
21
22
23

T /...

41 }

Lines 12 - 14

public function homepage(Environment $twigEnvironment)

{
// fun example of using the Twig service directly!
$html = $twigEnvironment->render('question/homepage.html.twig');
return new Response($html);
//return $this->render('question/homepage.html.twig');
}

Lines 24 - 40

Esto ahora esta haciendo exactamente lo mismo que $this->render (). Para probarlo, haz

click en la pagina de inicio. Todavia funciona.

Ahora en realidad, mas alla de ser un "gran ejercicio" para entender los servicios, no hay razén

para tomar el camino mas /largo. solo quiero que entiendas que los servicios realmente son las

"cosas" que hacen el trabajo detras de escenas. Y si quisieras hacer algo - como un log o un

render de un template - lo que realmente necesitas es encontrar que servicios hacen ese

trabajo. Confia en mi, esta es la clave para liberar todo tu potencial de Symfony.

Pongamos de vuelta el codigo anterior mas corto, y comentariza el otro ejemplo.



src/Controller/QuestionController.php

T // ... lines 1 -9

10 class QuestionController extends AbstractController

11 {

T // ... lines 12 - 14

15 public function homepage(Environment $twigEnvironment)
16 {

17 /*

18 // fun example of using the Twig service directly!
19 $html = $twigEnvironment->render('question/homepage.html.twig');
20

21 return new Response($html);

22 */

23

24 return $this->render('question/homepage.html.twig');
25 }

T // ... lines 26 - 42

43 }

Muy bien, ya casi has terminado el primer tutorial de symfony. jEres el mejor! Como premio,
vamos a terminar con algo divertido: Una introduccion al sistema llamado Webpack Encore que

te va a permitir hacer cosas alocadas con tu CSS y JavaScript.



Chapter 17: Hola Webpack Encore

Nuestra configuraciéon de CSS y JavaScript esta correcta: tenemos el directorio public/ con
los archivos app.css y question_show. js. Dentro de nuestros templates - por ejemplo
base.html.twig - incluimos los archivos con la etiqueta tradicional link o script. Claro,
utilizamos la funcion {{ asset() }}, pero esta no hace nada importante. Symfony para nada

esta tocando nuestros archivos del frontend.

Eso esta bien. Pero si quieres ponerte serio con el desarrollo de frontend - como utilizar un

framework como React o Vue - necesitas llevarlo al siguiente nivel.

Para hacerlo, vamos a utilizar una libreria de Node llamada Webpack: la cual es una
herramienta estandar en la industria para el manejo de los archivos del frontend. Combina y
unifica tus archivos CSS y JavaScript... aunque eso es solo la punta del iceberg de lo que

puede hacer.

Pero... para hacer que Webpack funcione en realidad bien necesitas de mucha configuracién
complicada. Asi que, en el mundo de Symfony, utilizamos una grandiosa libreria llamada
Webpack Encore. Es una capa ligera por encima de Webpack que... jLo hace mas facil! Y

tenemos todo un [tutorial gratuito] (https://symfonycasts.com/screencast/webpack-encore) aqui

en SymfonyCasts.

Pero tengamos un curso rapido ahora mismo.

Instalando Webpack Encore

Primero, asegurate que tienes node instalado:

node -v

Y también yarn:


https://symfonycasts.com/screencast/webpack-encore

yarn -v

@ Tip

Si no tienes Node o Yarn instalado - ve manuales oficiales sobre como instalarlos para tu

SO. Para Node, ve https://nodejs.org/en/download/ y para Yarn:

https://classic.yarnpkg.com/en/docs/install . Recomendamos utilizar Yarn en la version 1.x

para seguir este tutorial.

Yarn es un gestor de paquetes para Node... basicamente es un Composer para Node.

Antes de que instalemos Encore, asegurate de guardar todos tus cambios - Yo ya lo hice.

Luego corre:

composer require "encore:”1.8"

Espera... hace un minuto dije que Encore es una libreria de Node. Entonces, por qué lo
estamos instalando con Composer? Excelente pregunta! Este comando en realidad no instala
Encore. Nop, instala un diminuto bundle llamado webpack-encore-bundle, el cual ayuda a
integrar nuestra app de Symfony con Webpack Encore. Lo mejor de esto es que el bundle

contiene una receta muy util. Mira esto, corre:

git status

Wow! La receta hizo bastante por nosotros! Algo interesante es que modificé nuestro archivo

.gitignore. Abrelo en tu editor.

.gitignore

T s/ ... lines 1 - 11

12 ###> symfony/webpack-encore-bundle #i##
13 /node_modules/

14 /public/build/

15 npm-debug.log

16 yarn-error.log

17 #i##< symfony/webpack-encore-bundle ###


https://nodejs.org/en/download/
https://classic.yarnpkg.com/en/docs/install

Bien! Ahora ignoramos node_modules/ - el cual es la version de Node del directory vendor/ -

y algunas otras rutas.

La receta también agrego algunos archivos YAML, los cuales ayudan a configurar algunas

cosas - pero en realidad no necesitas verlos.

Lo mas importante que hizo la receta fue darnos estos 2 archivos: package.json - el cual es el
composer.json de Node - y webpack.config.js, el cual es el archivo de configuracion para

Webpack Encore.

Revisa el archivo package.json. Esto le dice a Node qué librerias deberia descargar y ya

tiene las cosas basicas que necesitamos. Aun mas importante: @symfony/webpack-encore.

package.json

1 {

2 "devDependencies": {

3 "@symfony/webpack-encore": "70.28.2",
4 "core-js": ""3.0.0",

5 "regenerator-runtime”: "70.13.2",

6 "webpack-notifier": "~1.6.0"

7 ¥

8 "license": "UNLICENSED",

9 "private": true,

10 "scripts": {

11 "dev-server": "encore dev-server",

12 "dev": "encore dev",

13 "watch": "encore dev --watch",

14 "build": "encore production --progress"
15 }

16 }

Instalando Dependencias de Node con Yarn

Para decirle a Node que instale esas dependencias, corre:

yarn install

Este comando lee package.json y descarga un montén de archivos y directorios dentro de la

nueva carpeta node_modules/. Puede tomar algunos minutos en descargar todo y construir un



par de paquetes.

Cuando termine, vas a ver dos cosas nuevas. Primero, tienes un nuevo y flamante directorio
node_modules/ con demasiadas cosas en €l. Y esto ya esta siendo ignorado por git. Segundo,
creo6 un archivo yarn.lock, el cual tiene la misma funcién que composer.lock. Asi que...

debes hacer commit del archivo yarn.lock, pero no te preocupes por él.

Ok, Encore esta instalado! A continuacion, vamos a refactorizar nuestra configuracion del

fronted para utilizarlo.



Chapter 18: Webpack Encore: La Grandeza de

Javascript

@ Tip

Ahora la receta agrega estos dos archivos en un lugar ligeramente diferente:

assets/app.js

assets/styles/app.css

Pero el propdsito de cada uno es exactamente el mismo.

Muy bien: Asi es como funciona todo esto. La receta agreg6 una nuevo directorio assets/ con

un par de archivos CSS y JS como ejemplo. El archivo app.js basicamente hace un

console.log() de algo:

assets/js/app.js

1

O 00 N OO0 U1 b W N

/*
* Welcome to your app's main JavaScript file!
*

* We recommend including the built version of this JavaScript file
* (and its CSS file) in your base layout (base.html.twig).
*/

// any CSS you import will output into a single css file (app.css in this case)
import '../css/app.css';

// Need jQuery? Install it with "yarn add jquery", then uncomment to import it.
// import $ from 'jquery';

console.log('Hello Webpack Encore! Edit me in assets/js/app.js');

El app.css cambia el color del fondo a gris ligero:

assets/css/app.css

1
2
3

body {
background-color: lightgray;

}



Webpack Encore esta completamente configurado por un solo archivo: webpack.config. js.



webpack.config.js

1 var Encore = require('@symfony/webpack-encore');
2

3 // Manually configure the runtime environment if not already configured yet by
the "encore" command.

4 // It's useful when you use tools that rely on webpack.config.js file.
5 if (!Encore.isRuntimeEnvironmentConfigured()) {
6 Encore.configureRuntimeEnvironment(process.env.NODE_ENV || 'dev');
7}
8
9 Encore
10 // directory where compiled assets will be stored
11 .setOutputPath('public/build/")
12 // public path used by the web server to access the output path
13 .setPublicPath('/build")
14 // only needed for CDN's or sub-directory deploy
15 //.setManifestKeyPrefix('build/")
16
17 /*
18 * ENTRY CONFIG
19 *
20 * Add 1 entry for each "page" of your app
21 * (including one that's included on every page - e.g. "app")
22 *
23 * Each entry will result in one JavaScript file (e.g. app.js)
24 * and one CSS file (e.g. app.css) if your JavaScript imports CSS.
25 */
26 .addEntry('app', './assets/js/app.js')
27 //.addEntry('pagel’, './assets/js/pagel.js")
28 //.addEntry('page2', './assets/js/page2.js")
29
30 // When enabled, Webpack "splits" your files into smaller pieces for greater
optimization.
31 .splitEntryChunks()
32
33 // will require an extra script tag for runtime.js
34 // but, you probably want this, unless you're building a single-page app
35 .enableSingleRuntimeChunk()
36
37 /*
38 * FEATURE CONFIG
39 *
40 * Enable & configure other features below. For a full
41 * list of features, see:
42 * https://symfony.com/doc/current/frontend.html#adding-more-features
43 */

44 .cleanupOutputBeforeBuild()



45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

.enableBuildNotifications()
.enableSourceMaps(!Encore.isProduction())
// enables hashed filenames (e.g. app.abcl23.css)

.enableVersioning(Encore.isProduction())

// enables @babel/preset-env polyfills
.configureBabelPresetEnv((config) => {
config.useBuiltIns = 'usage';

config.corejs = 3;

)

// enables Sass/SCSS support
//.enableSassLoader()

// uncomment if you use TypeScript
//.enableTypeScriptLoader()

// uncomment to get integrity="..." attributes on your script & link tags
// requires WebpackEncoreBundle 1.4 or higher

//.enableIntegrityHashes(Encore.isProduction())

// uncomment if you're having problems with a jQuery plugin
// .autoProvidejQuery()

// uncomment if you use API Platform Admin (composer req api-admin)
//.enableReactPreset()
//.addEntry('admin', './assets/js/admin.js")

74 module.exports = Encore.getWebpackConfig();

No hablaremos mucho sobre este archivo - lo vamos a guardar para el tutorial sobre Encore -

pero ya esta configurado para apuntar a los archivos app.js y app.css: Encore sabe que

necesita procesarlos.

Corriendo Encore

Para ejecutar Encore, ve a tu terminal y corre:

yarn watch




Este es un atajo para correr yarn run encore dev --watch. ;Qué hace esto? Lee esos dos

archivos en assets/, hace algo de procesamiento, y emite una versidon construida de cada uno
dentro del nuevo directorio public/build/. Aqui esta el archivo app.css ya construido... y el

archivo app.js. Si corriéramos Encore en modo de produccién - el cual es solamente otro

comando - minificaria el contenido de cada archivo.

Incluyendo los Archivos CSS y JS Construidos

Ocurren muchas otras cosas interesantes, pero esta es la idea basica: ponemos el codigo en el

directorio assets/, pero apuntamos a los archivos construidos en nuestros templates.

Por ejemplo, en base.html.twig, en vez de apuntar al viejo archivo app.css, queremos
apuntar al que esta en el directorio build/. Eso es muy simple, pero WebpackEncoreBundle
tiene un atajo para hacerlo incluso mas facil: {{ encore_entry link tags() }} y pasa este

app, porque ese es el nombre del archivo fuente - se le llama "entry" en el mundo de Webpack.

templates/base.html. twig

T // ... line 1

2 <html>

3 <head>

T // ... lines 4 - 5

6 {% block stylesheets %}

7 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-
Vkoo8x4CGs03+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFNOMuhOf23Q9Ifjh"
crossorigin="anonymous">

8 <link rel="stylesheet" href="https://fonts.googleapis.com/css?
family=Spartan&display=swap">

9 <link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css"
integrity="sha256-mmgLkCYLUQbXn@B1SRqzHar6dCnv90oZFPEC1glcwlkk="
crossorigin="anonymous" />

10 {{ encore_entry_link_tags('app') }}

11 {% endblock %}

12 </head>

$ // ... lines 13 - 33

34 </html>

Abajo, agrega la etiqueta script con {{ encore_entry_script_tags('app') }}.



templates/base.html.twig

T // ... line 1

2 <html>

T // ... lines 3 - 12

13 <body>

T // ... lines 14 - 25

26 {% block javascripts %}

27 <script

28 src="https://code.jquery.com/jquery-3.4.1.min.js"
29 integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSF1Bw8HfCJo="
30 crossorigin="anonymous"></script>

31 {{ encore_entry script_tags('app') }}

32 {% endblock %}

33 </body>

34 </html>

iVamos a probarlo! Ve al navegador y refresca. ¢ Funciond? jLo hizo! El color de fondo es gris...

y si abro la consola, ahi esta el log:
“Hello Webpack Encore!”

Si miras la fuente HTML, ahi no esta ocurriendo nada especial: tenemos una simple etiqueta

link apuntando a /build/app.css.

Moviendo nuestro Cédigo a Encore

Ahora que esto esta funcionando, vamos a mover nuestro CSS hacia el nuevo sistema. Abre
public/css/app.css, copia todo esto, luego haz click derecho y borrar el archivo. Ahora abre

el nuevo app.css dentro de assets/ y pega.



assets/css/app.css

1 body {

2 font-family: spartan;

3 color: #444;

4 }

5

6 .jumbotron-img {

7 background: rgb(237,116,88);

8 background: linear-gradient(302deg, rgba(237,116,88,1) 16%, rgba(51,61,81,1)

97%);

9 color: #fff;

10 }

11

12 .qg-container {

13 border-top-right-radius: .25rem;
14 border-top-left-radius: .25rem;
15 background-color: #efefee;

16 }

17

18 .g-container-show {

19 border-top-right-radius: .25rem;
20 border-top-left-radius: .25rem;
21 background-color: #ED7458 ;
22}

23

24 .g-container img, .g-container-show img {
25 border: 2px solid #fff;

26 border-radius: 50%;

27 '}

28

29 .g-display {

30 background: #fff;

31 border-radius: .25rem;

32}

33 .g-title-show {

34 text-transform: uppercase;

35 font-size: 1.3rem;

36 color: #fff;

37 }

38 .g-title {

39 text-transform: uppercase;
40 color: #444;
41 }
42
43 .q-title:hover {
44 color: #2B2B2B;

45}



46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

.g-title h2 {
font-size: 1.3rem;

.q-display-response {
background: #333D51;
color: #fff;

.answer-link:hover .magic-wand {

transform: rotate(20deg);

.vote-arrows {

font-size: 1.5rem;

.vote-arrows span {

font-size: 1rem;

.vote-arrows a {
color: #444;

.vote-up:hover {
color: #3D9970;

¥

.vote-down:hover {
color: #FF4136;

.btn-question {
color: #FFFFFF;
background-color: #ED7458;
border-color: #D45B3F;

.btn-question:hover,
.btn-question:focus,
.btn-question:active,
.btn-question.active,
.open .dropdown-toggle.btn-question
color: #FFFFFF;
background-color: #D45B3F;
border-color: #D45B3F;



93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

.btn-question:active,

.btn-question.active,

.open .dropdown-toggle.btn-question {
background-image: none;

.btn-question.disabled,
.btn-question[disabled],
fieldset[disabled] .btn-question,
.btn-question.disabled:hover,
.btn-question[disabled]:hover,
fieldset[disabled] .btn-question:hover,
.btn-question.disabled:focus,
.btn-question[disabled]:focus,
fieldset[disabled] .btn-question:focus,
.btn-question.disabled:active,
.btn-question[disabled]:active,
fieldset[disabled] .btn-question:active,
.btn-question.disabled.active,
.btn-question[disabled].active,
fieldset[disabled] .btn-question.active {
background-color: #ED7458;
border-color: #D45B3F;

.btn-question .badge {
color: #ED7458;
background-color: #FFFFFF;

}
footer {

background-color: #efefee;
}

Tan pronto como hago eso, cuando refresco... jFunciona! jNuestro CSS esta de vuelta! La

razon es que - si revisas tu terminal - yarn watch esta observando a nuestros archivos por

cambios. Tan pronto modificamos el archivo app.css, esto vuelve a leer el archivo y arroja una

nueva version dentro del directorio public/build. Esa es la razén por la cual corremos esto

en segundo plano.

Hagamos lo mismo para nuestro JavaScript particular. Abre question_show.js y, en vez de

tener un archivo JavaScript especifico por pagina - donde solo incluimos esto en nuestra



pagina "show" - para mantener las cosas simples, voy a poner esto dentro del nuevo app.js,

el cual es cargado en cada pagina.

assets/js/app.js

T // ... lines 1 - 13

14 /**

15 * Simple (ugly) code to handle the comment vote up/down
16 */

17 var $container = $('.js-vote-arrows');
18 $container.find('a').on('click', function(e) {

19 e.preventDefault();

20 var $link = $(e.currentTarget);

21

22 $.ajax({

23 url: '/comments/10/vote/'+$link.data('direction'),
24 method: 'POST'

25 }) .then(function(data) {

26 $container.find('.js-vote-total').text(data.votes);
27 })s

28 1});

Luego ve a borrar el directorio public/js/ completamente... y public/css/. También abre

templates/question/show.html.twig vy, al final, remueve la vieja etiqueta script.

templates/question/show.html.twig

1 {% extends 'base.html.twig' %}
{% block title %}Question: {{ question }}{% endblock %}
{% block body %}

// ... lines 6 - 57
58 {% endblock %}

O v b owN

Con algo de suerte, Encore ya reconstruyé mi app.js. Asi que si damos click para ver una
pregunta - Voy a refrescar solo para estar seguros - y... da click en los iconos para votar. Si!

Todavia funciona.

Instalando e Importando Librerias Externas (jQuery)

Ya que estamos usando Encore, existen algunas cosas muy interesantes que podemos hacer.
Esta es una: en vez de enlazar a una CDN o descargar jQuery directamente en nuestro

proyecto y agregarlo al commit, podemos importar jQuery e instalarlo en nuestro directorio



node_modules/ ... lo cual es exactamente como |lo hariamos en PHP: Instalamos una libreria

publica dentro de vendor/ en vez de descargarla manualmente.

Para hacer eso, abre una nueva terminal y corre:

yarn add jquery --dev

Esto es lo equivalente a correr el comando composer require: Agrega jquery al archivo

package.json y lo descarga dentro de node_modules/. La parte --dev no es importante.

Después, dentro de base.html.twig, remueve por completo jQuery del layout.

templates/base.html. twig

$ // ... Line 1

2 <html>

T /7 ... lines 3 - 12

13 <body>

$ // ... lines 14 - 25

26 {% block javascripts %}

27 {{ encore_entry_script_tags('app') }}
28 {% endblock %}

29 </body>

30 </html>

Si regresas a tu navegador y refrescas la pagina ahora... Esta completamente roto:

“$ is not defined”

...viniendo de app.js. Eso tiene sentido: Solamente descargamos jQuery en nuestro directorio
node_modules/ - aqui puedes encontrar un directorio llamado jquery - pero aun no lo

estamos usando.

¢, Coémo lo utilizamos? Dentro de app.js, descomentariza la linea del

import: import $ from 'jquery'.



assets/js/app.js

$ // ... lines 1 - 9

10

11 // Need jQuery? Install it with "yarn add jquery", then uncomment to import it.
12 import $ from 'jquery';

13

$ // ... lines 14 - 29

Esto "carga" el paquete jquery que instalamos y lo asigna a la variable $. Todas esas

variables $ de mas abajo estan haciendo referencia al valor que importamos.

Esta es la parte realmente interesante: sin hacer ningtn otro cambio, cuando refrescamos,
jFunciona! Webpack se dio cuenta que estamos importando jquery y automaticamente lo
empaquetd dentro del archivo app.js final. Importamos las cosas que necesitamos, y

Webpack se encarga de... empaquetar todo.

@ Tip

De hecho, Webpack los separa en multiples archivos por cuestion de eficiencia. En
realidad, jQuery vive dentro de un archivo diferente en public/build/ jPero eso no es

importante!

Importando el CSS de Bootstrap

Podemos hacer lo mismo para el CSS de Boostrap. En base.html.twig, arriba, elimina la

etiqueta que enlaza a Bootstrap.



templates/base.html.twig

T /7 ... line 1
2 <html>

3 <head>

T // ... lines 4 - 5
6 {% block stylesheets %}
7

<link rel="stylesheet" href="https://fonts.googleapis.com/css?
family=Spartan&display=swap">

(0]

<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css"
integrity="sha256-mmgLkCYLUQbXn@B1SRqzHar6dCnv9oZFPEC1lglcwlkk="
crossorigin="anonymous" />

9 {{ encore_entry link_tags('app') }}
10 {% endblock %}

11 </head>

$ // ... lines 12 - 28

29 </html>

Nada nuevo, cuando refrescamos, nuestro sitio se ve terrible.

Para arreglarlo, encuentra tu terminal y corre:

yarn add bootstrap --dev

Esto descarga el paquete de bootstrap dentro de node_modules/. Este paquete contiene

ambos JavaScript y CSS. Queremos activar el CSS.

Para hacerlo, abre app.css Y, en la parte de arriba, utiliza la vieja y confiable sintaxis

@import. Dentro de las comillas, escribe ~bootstrap:

assets/css/app.css

1 @import "~bootstrap";
2
$ // ... lines 3 - 129

En CSS, la ~ es una forma especial de decir que quieres cargar el CSS del paquete de

bootstrap dentro de node_modules/.

Ve al navegador, refresca y... estamos de vuelta! Webpack vio el import, tomé el CSS del

paquete de bootstrap, y lo incluyé en el archivo app.css final. ; Qué tan bueno es eso?



¢ Qué Otras Cosas Puede Hacer Encore?

Esto es solo el comienzo de lo que Webpack Encore puede hacer. También puede minificar tus
archivos para produccion, puede compilar codigo Sass o LESS, viene con soporte para React y
Vue.js, maneja versiones para los archivos y mas. Para aprender mas, mira nuestro tutorial

gratuito sobre Webpack Encore.

Y... jEso es todo para este tutorial! jFelicitaciones por llegar al final junto conmigo! Ahora ya
entiendes las partes mas importantes de Symfony. En el siguiente tutorial, vamos a hacer
crecer incluso aun mas tu potencial de Symfony al revelar el secreto de los servicios. Seras

imparable.

Como siempre, si tienes preguntas, problemas o tienes una historia divertida - especialmente si

involucra a tu gato - nos encantaria escuchar sobre ti en los comentarios.

Muy bien amigos - jNos vemos la proxima vez!


https://symfonycasts.com/screencast/webpack-encore

With <3 from SymfonyCasts



