
Desarrollo Armonioso con

Symfony 6

Chapter 1: Hola Symfony

Bienvenido. Hola. Hola, mi nombre es Ryan y tengo el absoluto placer de presentarte el

hermoso y fascinante y productivo mundo de Symfony 6. En serio, me siento como Willie

Wonka invitándote a mi fábrica de chocolate, excepto que, con suerte, con menos lesiones

relacionadas con el azúcar. De todos modos, si eres nuevo en Symfony, estoy... ¡sinceramente

un poco celoso! Te va a encantar el viaje... y espero que te conviertas en un desarrollador aún

mejor por el camino: definitivamente vas a construir cosas geniales.

La salsa secreta de Symfony es que empieza siendo diminuto, lo que hace que sea fácil de

aprender. Pero luego, amplía sus características automáticamente a través de un sistema de

recetas único. En Symfony 6, esas características incluyen nuevas herramientas de JavaScript

y un nuevo sistema de seguridad... sólo por nombrar dos de las muchas cosas nuevas.

Symfony también es rápido como un rayo, con un gran enfoque en la creación de una

experiencia alegre para el desarrollador, pero sin sacrificar las mejores prácticas de

programación. Sí: consigues amar la codificación y amar tu código. Lo sé... ha sonado cursi,

pero es cierto.

Así que ven conmigo y estarás en un mundo de pura elucidación.

Es la primera vez que canto en estos tutoriales... y quizá la última. Empecemos.

Instalar el binario "symfony

Dirígete a https://symfony.com/download. En esta página, encontrarás algunas instrucciones -

que variarán en función de tu sistema operativo- sobre cómo descargar algo llamado el binario

de Symfony.

Esto... no es realmente Symfony. Es sólo una herramienta de línea de comandos que nos

ayudará a iniciar nuevos proyectos Symfony y nos dará algunas buenas herramientas de

desarrollo local. Es opcional, pero lo recomiendo encarecidamente

Una vez que hayas instalado esto - yo ya lo he hecho - abre tu aplicación de terminal favorita.

Yo estoy usando iTerm para mac, pero no importa. Si lo has configurado todo correctamente,

https://symfony.com/download

deberías poder ejecutarlo:

symfony

O incluso mejor

symfony list

para ver una lista de todas las "cosas" que puede hacer este binario de symfony. Hay muchas

cosas aquí: cosas que ayudan al desarrollo "local"... y también algunos servicios opcionales

para el despliegue. Vamos a repasar las cosas que necesitas saber a lo largo del camino.

¡Iniciemos una aplicación Symfony!

Bien, queremos iniciar una nueva y brillante aplicación Symfony. Para ello, ejecuta:

symfony new mixed_vinyl

Donde "mixed_vinyl" es el directorio en el que se descargará la nueva app. Se trata de nuestro

proyecto secreto para combinar la mejor parte de los años 90 -no, no el Internet de acceso

telefónico, hablo de las cintas de mezcla- con el deleite auditivo de los discos. Más adelante

hablaremos de ello.

Entre bastidores, este comando utiliza Composer -el gestor de paquetes de PHP- para crear el

nuevo proyecto. Más adelante hablaremos de ello.

El resultado final es que podemos pasar a nuestro nuevo directorio mixed_vinyl . Abre esta

carpeta en tu editor favorito. Yo estoy usando PhpStorm y lo recomiendo encarecidamente.

Conociendo nuestro nuevo Proyecto

¿Qué ha hecho ese comando symfony new? Ha arrancado un nuevo proyecto Symfony! Ooh.

Y ya tenemos un repositorio git. Ejecuta:

git status

Sí: en la rama principal, nada que confirmar. Prueba:

git log

Genial. Después de descargar el nuevo proyecto, el comando confirmó todos los archivos

originales automáticamente... lo cual fue muy agradable. Aunque me gustaría que el primer

mensaje de confirmación fuera un poco más rockero.

¡Lo que realmente quiero mostrarte es que nuestro nuevo proyecto es súper pequeño! Prueba

este comando:

git show --name-only

¡Sí! Todo nuestro proyecto es... unos 17 archivos. Y aprenderemos sobre todos ellos a lo largo

del camino. Pero quiero que te sientas cómodo: no hay mucho código aquí.

Vamos a añadir funciones poco a poco. Pero si quieres empezar con un proyecto más grande y

con más funciones, puedes hacerlo ejecutando el comando symfony new con --webapp .

 Tip

Si quieres una nueva aplicación Symfony con todas las funciones, echa un vistazo a

https://github.com/dunglas/symfony-docker

Comprobación de los requisitos del sistema

Antes de saltar a la codificación, vamos a asegurarnos de que nuestro sistema está listo.

Ejecuta otro comando del binario de symfony:

https://github.com/dunglas/symfony-docker

symfony check:req

¡Parece que está bien! Si a tu instalación de PHP le falta alguna extensión... o hay algún otro

problema... como que tu ordenador es en realidad una tetera, esto te lo hará saber.

Iniciar el servidor web de desarrollo

Entonces: tenemos una nueva aplicación Symfony aquí... ¡y nuestro sistema está listo! Todo lo

que necesitamos ahora es un subwoofer. Es decir, ¡un servidor web! Puedes configurar un

servidor web real como Nginx o algo moderno como Caddy. Pero para el desarrollo local, el

binario de Symfony puede ayudarnos. Corre:

symfony serve -d

Y... ¡tenemos un servidor web funcionando! ¡Vuelve!

La primera vez que ejecutes esto, es posible que te pida que ejecutes otro comando para

configurar un certificado SSL, lo cual está bien porque entonces el servidor soporta https.

¡Momento de la verdad! Copia la URL, gira hacia tu navegador, aguanta la respiración y ¡woo!

Hola página de bienvenida de Symfony 6... completa con extravagantes cambios de color cada

vez que recargamos.

A continuación: conozcamos -y hagámonos amigos- del código dentro de nuestra aplicación,

para poder desmitificar lo que hace cada parte. Luego codificaremos.

Chapter 2: Conoce nuestra Diminuta App

Vamos a conocer nuestro nuevo proyecto porque mi objetivo final es que entiendas realmente

cómo funcionan las cosas. Como he mencionado, no hay mucho aquí todavía... unos 15

archivos. Y realmente sólo hay tres directorios en los que tengamos que pensar o

preocuparnos.

El directorio public/

El primero es public/ ... y esto es sencillo: es la raíz del documento. En otras palabras, si

necesitas que un archivo sea accesible públicamente -como un archivo de imagen o un archivo

CSS- tiene que vivir dentro de public/ .

Ahora mismo, esto contiene exactamente un archivo: index.php , que se llama "controlador

frontal"

public/index.php

1

2

3

4

5

6

7

8

9

Ooo. Es una palabra elegante que significa que, independientemente de la URL a la que vaya

el usuario, éste es el script que siempre se ejecuta primero. Su trabajo es arrancar Symfony y

ejecutar nuestra aplicación. Y ahora que lo hemos visto, probablemente no tengamos que

pensar ni abrirlo nunca más.

config/ & src/

<?php

use App\Kernel;

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

return function (array $context) {

 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);

};

Y, realmente, aparte de poner archivos CSS o de imagen en public/ , este no es un directorio

con el que vayas a tratar en el día a día. Lo que significa... Que en realidad sólo hay dos

directorios en los que tenemos que pensar: config/ y src/ .

El directorio config/ contiene... ¡gatos! Ya me gustaría. No, contiene archivos de

configuración. Y src/ contiene el 100% de tus clases PHP. Pasaremos el 95% de nuestro

tiempo dentro del directoriosrc/ .

composer.json & vendor/

Bien... ¿dónde está "Symfony"? Nuestro proyecto comenzó con un archivo composer.json .

En él se enumeran todas las librerías de terceros que necesita nuestra aplicación. El comando

"symfony new" que ejecutamos en secreto utilizó "composer" -es decir, el gestor de paquetes

de PHP- para instalar estas librerías... que en realidad es sólo una forma de decir que

Composer descargó estas librerías en el directorio vendor/ .

El propio Symfony es en realidad una colección de un montón de pequeñas bibliotecas que

resuelven cada una un problema específico. En el directorio vendor/symfony/ , parece que ya

tenemos unas 25 de ellas. Técnicamente, nuestra aplicación sólo requiere estos seis paquetes,

pero algunos de ellos requieren otros paquetes... y Composer es lo suficientemente inteligente

como para descargar todo lo que necesitamos.

De todos modos, "Symfony", o en realidad, un conjunto de bibliotecas de Symfony, vive en el

directorio vendor/y nuestra nueva aplicación aprovecha ese código para hacer su trabajo.

Más adelante hablaremos de Composer y de la instalación de paquetes de terceros. Pero en su

mayor parte, vendor/ es otro directorio del que... ¡no tenemos que preocuparnos!

bin/ y var/

Entonces, ¿qué queda? Bueno, bin/ contiene exactamente un archivo... y siempre contendrá

sólo este archivo. Hablaremos de lo que hace bin/console un poco más tarde. Y el directorio

var/contiene archivos de caché y de registro. Esos archivos son importantes... pero nunca

necesitaremos mirar o pensar en esas cosas.

Sí, vamos a vivir casi exclusivamente dentro de los directorios config/ y src/ .

Configuración de PhpStorm

Bien, una última tarea antes de empezar a codificar. Siéntete libre de utilizar el editor de código

que quieras: PhpStorm, VS Code, code carrier pigeon, lo que sea. Pero recomiendo

encarecidamente PhpStorm. Hace que desarrollar con Symfony sea un sueño... ¡y ni siquiera

me pagan por decir eso! Aunque, si quieren empezar a pagarme, acepto el pago en

stroopwafels.

Parte de lo que hace que PhpStorm sea tan bueno es un plugin diseñado específicamente para

Symfony. Voy a mis preferencias de PhpStorm y, dentro, busco Plugins, Marketplace y luego

busco Symfony. Aquí está. ¡Este plugin es increíble.... lo que puedes ver porque ha sido

descargado 5,4 millones de veces! Añade toneladas de locas funciones de autocompletado que

son específicas de Symfony.

Si aún no lo tienes, instálalo. Una vez instalado, vuelve a Configuración y busca aquí arriba

"Symfony" para encontrar una nueva área de Symfony. El único truco de este plugin es que

tienes que activarlo para cada proyecto. Así que haz clic en esa casilla. Además, no es

demasiado importante, pero cambia el directorio web a public/ .

Pulsa Ok y... ¡estamos listos! Vamos a dar vida a nuestra aplicación creando nuestra primera

página a continuación.

Chapter 3: Rutas, controladores y respuestas

Tengo que decir que echo de menos los años 90. Bueno, no los beanie babies y...

definitivamente no la forma de vestir de entonces, pero... las cintas de mezclas. Si no eras un

niño en los 80 o los 90, quizá no sepas lo difícil que era compartir tus canciones favoritas con

tus amigos. Oh sí, estoy hablando de un mashup de Michael Jackson, Phil Collins y Paula

Abdul. La perfección.

Para aprovechar esa nostalgia, pero con un toque hipster, vamos a crear una nueva aplicación

llamada Mixed Vinyl: una tienda en la que los usuarios pueden crear cintas de mezclas, con

Boyz || Men, Mariah Carey y Smashing Pumpkins... sólo que prensadas en un disco de vinilo.

Hmm, puede que tenga que poner un tocadiscos en mi coche.

La página que estamos viendo, que es súper bonita y cambia de color cuando refrescamos...

no es una página real. Es sólo una forma de que Symfony nos diga "hola" y nos enlace a la

documentación. Y por cierto, la documentación de Symfony es genial, así que no dudes en

consultarla mientras aprendes.

Rutas y controladores

Vale: todo framework web en cualquier lenguaje tiene el mismo trabajo: ayudarnos a crear

páginas, ya sean páginas HTML, respuestas JSON de la API o arte ASCII. Y casi todos los

marcos lo hacen de la misma manera: mediante un sistema de rutas y controladores. La ruta

define la URL de la página y apunta a un controlador. El controlador es una función PHP que

construye esa página.

Así que ruta + controlador = página. Son matemáticas, gente.

Crear el controlador

Vamos a construir estas dos cosas... un poco al revés. Así que primero, vamos a crear la

función del controlador. En Symfony, la función del controlador es siempre un método dentro de

una clase PHP. Te lo mostraré: en el directorio src/Controller/ , crea una nueva clase PHP.

Vamos a llamarla VinylController , pero el nombre puede ser cualquier cosa.

src/Controller/VinylController.php

1

2

3

4

5

6

7

Y, ¡felicidades! ¡Es nuestra primera clase PHP! ¿Y adivina dónde vive? En el directorio src/ ,

donde vivirán todas las clases PHP. Y en general, no importa cómo organices las cosas dentro

de src/ : normalmente puedes poner las cosas en el directorio que quieras y nombrar las

clases como quieras. Así que da rienda suelta a tu creatividad.

 Tip

En realidad, los controladores deben vivir en src/Controller/ , a menos que cambies

alguna configuración. La mayoría de las clases de PHP pueden vivir en cualquier lugar de

src/ .

Pero hay dos reglas importantes. En primer lugar, fíjate en el espacio de nombres que

PhpStorm ha añadido sobre la clase: App\Controller . Independientemente de cómo decidas

organizar tu directorio src/ , el espacio de nombres de una clase debe coincidir con la

estructura del directorio... empezando por App . Puedes imaginar que el espacio de nombres

App\ apunta al directoriosrc/ . Entonces, si pones un archivo en un subdirectorio

Controller/ , necesita una parte Controller en su espacio de nombres.

Si alguna vez metes la pata, por ejemplo, si escribes algo mal o te olvidas de esto, lo vas a

pasar mal. PHP no podrá encontrar la clase: obtendrás un error de "clase no encontrada". Ah, y

la otra regla es que el nombre de un archivo debe coincidir con el nombre de la clase dentro de

él, más .php . Por lo tanto, VinylController.php . Seguiremos esas dos reglas para todos

los archivos que creemos en src/ .

Crear el controlador

<?php

namespace App\Controller;

class VinylController

{

}

Volvemos a nuestra tarea de crear una función de controlador. Dentro, añade un nuevo método

público llamado homepage() . Y no, el nombre de este método tampoco importa: prueba a

ponerle el nombre de tu gato: ¡funcionará!

Por ahora, sólo voy a poner una declaración die() con un mensaje.

src/Controller/VinylController.php

1

2

3

4

5

6

7

8

9

10

11

Crear la ruta

¡Buen comienzo! Ahora que tenemos una función de controlador, vamos a crear una ruta, que

define la URL de nuestra nueva página y apunta a este controlador. Hay varias formas de crear

rutas en Symfony, pero casi todo el mundo utiliza atributos.

Así es como funciona. Justo encima de este método, decimos #[] . Esta es la sintaxis de

atributos de PHP 8, que es una forma de añadir configuración a tu código. Empieza a escribir

Route . Pero antes de que termines, fíjate en que PhpStorm lo está autocompletando. Pulsa el

tabulador para dejar que termine.

Eso, muy bien, completó la palabra Route para mí. Pero lo más importante es que ha añadido

una declaración use en la parte superior. Siempre que utilices un atributo, debes tener una

declaración use correspondiente en la parte superior del archivo.

Dentro de Route , pasa / , que será la URL de nuestra página.

<?php

namespace App\Controller;

class VinylController

{

 public function homepage()

 {

 die('Vinyl: Definitely NOT a fancy-looking frisbee!');

 }

}

src/Controller/VinylController.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Y... ¡listo! Esta ruta define la URL y apunta a este controlador... simplemente porque está justo

encima de este controlador.

¡Vamos a probarlo! Refresca y... ¡felicidades! ¡Symfony miró la URL, vio que coincidía con la

ruta - / o sin barra es lo mismo para la página de inicio - ejecutó nuestro controlador y golpeó

la declaración die !

Ah, y por cierto, sigo diciendo función del controlador. Comúnmente se llama simplemente

"controlador" o "acción"... sólo para confundir.

Devolver una respuesta

Bien, dentro del controlador -o acción- podemos escribir el código que queramos para construir

la página, como hacer consultas a la base de datos, llamadas a la API, renderizar una plantilla,

lo que sea. Al final vamos a hacer todo eso.

Lo único que le importa a Symfony es que tu controlador devuelva un objetoResponse .

Compruébalo: escribe return y luego empieza a escribir Response . Woh: hay bastantes

clases Response ya en nuestro código... ¡y dos son de Symfony! Queremos la de HTTP

foundation. HTTP foundation es una de esas librerías de Symfony... y nos da bonitas clases

para cosas como la Petición, la Respuesta y la Sesión. Pulsa el tabulador para autocompletar y

termina eso.

Oh, debería haber dicho devolver una nueva respuesta. Así está mejor. Ahora dale al tabulador.

Cuando dejé que Response autocompletara la primera vez, muy importante, PhpStorm añadió

<?php

namespace App\Controller;

use Symfony\Component\Routing\Annotation\Route;

class VinylController

{

 #[Route('/')]

 public function homepage()

 {

 die('Vinyl: Definitely NOT a fancy-looking frisbee!');

 }

}

esta declaración de uso en la parte superior. Cada vez que hagamos referencia a una clase o

interfaz, tendremos que añadir una sentencia use al principio del archivo en el que estemos

trabajando.

Al dejar que PhpStorm autocompletara eso por mí, añadió la declaración use

automáticamente. Lo haré cada vez que haga referencia a una clase. Ah, y si todavía eres un

poco nuevo en lo que respecta a los espacios de nombres de PHP y las declaraciones use ,

echa un vistazo a nuestro breve y gratuito tutorial sobre espacios de nombres de PHP.

De todos modos, dentro de Response , podemos poner lo que queramos devolver al usuario:

HTML, JSON o, por ahora, un simple mensaje, como el título del vinilo Mixto en el que estamos

trabajando: PB y jams.

src/Controller/VinylController.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bien, equipo, ¡vamos a ver qué pasa! Actualiza y... ¡PB y mermeladas! Puede que no parezca

gran cosa, ¡pero acabamos de construir nuestra primera página Symfony totalmente funcional!

¡Ruta + controlador = beneficio!

Y acabas de aprender la parte más fundamental de Symfony... y sólo estamos empezando. Ah,

y como nuestros controladores siempre devuelven un objeto Response , es opcional, pero

puedes añadir un tipo de retorno a esta función si lo deseas. Pero eso no cambia nada: sólo es

una forma agradable de codificar.

<?php

namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

class VinylController

{

 #[Route('/')]

 public function homepage()

 {

 return new Response('Title: "PB and Jams"');

 }

}

src/Controller/VinylController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 16

A continuación me siento bastante seguro. Así que vamos a crear otra página, pero con una

ruta mucho más elegante que coincide con un patrón comodín.

 #[Route('/')]

 public function homepage(): Response

Chapter 4: Rutas comodín

La página de inicio será el lugar donde el usuario podrá diseñar y construir su próxima cinta de

mezclas. Pero además de crear nuevas cintas, los usuarios también podrán explorar las

creaciones de otras personas.

Crear una segunda página

Vamos a crear una segunda página para eso. ¿Cómo? Añadiendo un segundo controlador:

función pública, qué tal browse : el nombre no importa realmente. Y para ser responsable,

añadiré un tipo de retorno Response .

Por encima de esto, necesitamos nuestra ruta. Ésta será exactamente igual, salvo que

pondremos la URL en /browse . Dentro del método, ¿qué es lo que siempre devolvemos de un

controlador? Así es: ¡un objeto Response ! Devuelve un nuevo Response ... con un mensaje

corto para empezar.

src/Controller/VinylController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

¡Vamos a probarlo! Si actualizamos la página de inicio, no cambia nada. Pero si vamos a

/browse ... ¡lo machacamos! ¡Una segunda página en menos de un minuto! ¡Caramba!

En esta página, acabaremos por listar las cintas de mezclas de otros usuarios. Para ayudar a

encontrar algo que nos guste, quiero que los usuarios también puedan buscar por género. Por

class VinylController

{

 #[Route('/browse')]

 public function browse(): Response

 {

 return new Response('Breakup vinyl? Angsty 90s rock? Browse the

collection!');

 }

}

ejemplo, si voy a /browse/death-metal , eso me mostraría todas las cintas de vinilo de death

metal. Hardcore.

Por supuesto, si probamos esta URL ahora mismo... no funciona.

“No se ha encontrado la ruta”

No se han encontrado rutas coincidentes para esta URL, por lo que nos muestra una página

404. Por cierto, lo que estás viendo es la elegante página de excepciones de Symfony, porque

estamos desarrollando. Nos da muchos detalles cuando algo va mal. Cuando finalmente

despliegues a producción, puedes diseñar una página de error diferente que verían tus

usuarios.

{Cartel de la muerte} Rutas

De todos modos, la forma más sencilla de hacer que esta URL funcione es simplemente...

cambiar la URL a/browse/death-metal

src/Controller/VinylController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

Pero... no es súper flexible, ¿verdad? Necesitaríamos una ruta para cada género... ¡que

podrían ser cientos! Y además, ¡acabamos de matar la URL /browse ! Ahora es 404.

Lo que realmente queremos es una ruta que coincida con /browse/<ANYTHING> . Y podemos

hacerlo con un comodín. Sustituye el código duro death-metal por {} y, dentro,slug . Slug es

sólo una palabra técnica para designar un "nombre seguro para la URL". En realidad,

podríamos haber puesto cualquier cosa dentro de las llaves, como {genre} o

{coolMusicCategory} : no hay ninguna diferencia. Pero sea lo que sea que pongamos dentro

de este comodín, se nos permite tener un argumento con ese mismo nombre: $slug .

class VinylController

{

 #[Route('/browse/death-metal')]

 public function browse(): Response

 {

 return new Response('Breakup vinyl? Angsty 90s rock? Browse the

collection!');

 }

}

src/Controller/VinylController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

Sí, si vamos a /browse/death-metal , coincidirá con esta ruta y pasará la

cadenadeath-metal a ese argumento. La coincidencia se hace por nombre: {slug} conecta

con $slug .

Para ver si funciona, devolvamos una respuesta diferente: Genre y luego la $slug .

src/Controller/VinylController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

22

 // ... lines 23 - 24

¡Hora de probar! Vuelve a /browse/death-metal y... ¡sí! Prueba con /browse/emo y ¡sí!

¡Estoy mucho más cerca de mi cinta de mezcla de Dashboard Confessional!

Ah, y es opcional, pero puedes añadir un tipo string al argumento $slug . Eso no cambia

nada... es sólo una bonita forma de programar: el $slug ya iba a ser siempre una cadena.

class VinylController

{

 #[Route('/browse/{slug}')]

 public function browse(): Response

 {

 return new Response('Breakup vinyl? Angsty 90s rock? Browse the

collection!');

 }

}

class VinylController

{

 #[Route('/browse/{slug}')]

 public function browse($slug): Response

 {

 return new Response('Genre: '.$slug);

 //return new Response('Breakup vinyl? Angsty 90s rock? Browse the

collection!');

 }

src/Controller/VinylController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

 // ... lines 19 - 21

22

 // ... lines 23 - 24

Un poco más adelante, aprenderemos cómo puedes convertir un comodín numérico -como el

número 5- en un número entero si así lo deseas.

Usando el componente de cadena de Symfony

Hagamos esta página un poco más elegante. En lugar de imprimir el slug exactamente, vamos

a convertirlo en un título. Digamos $title = str_replace() y sustituyamos los guiones por

espacios. Luego, aquí abajo, utiliza el título en la respuesta. En un futuro tutorial, vamos a

consultar la base de datos para estos géneros, pero, por ahora, al menos podemos hacer que

tenga un aspecto más agradable.

src/Controller/VinylController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

22

 // ... line 23

24

 // ... lines 25 - 26

Si lo probamos, el Emo no se ve diferente... pero el death metal sí. ¡Pero quiero que sea más

elegante! Añade otra línea con $title = y luego escribe u y autocompleta una función que se

llama literalmente... u .

class VinylController

{

 #[Route('/browse/{slug}')]

 public function browse(string $slug): Response

 {

 }

class VinylController

{

 #[Route('/browse/{slug}')]

 public function browse(string $slug): Response

 {

 $title = str_replace('-', ' ', $slug);

 return new Response('Genre: '.$title);

 }

No utilizamos muchas funciones de Symfony, pero éste es un ejemplo raro. Proviene de una

biblioteca de Symfony llamada symfony/string . Como he mencionado, Symfony tiene

muchas bibliotecas diferentes -también llamadas componentes- y vamos a aprovechar esas

bibliotecas todo el tiempo. Esta te ayuda a hacer transformaciones de cadenas... y resulta que

ya está instalada.

Mueve el str_replace() al primer argumento de u() . Esta función devuelve un objeto sobre

el que podemos hacer operaciones de cadena. Uno de los métodos se llama title() .

Digamos ->title(true) para convertir todas las palabras en mayúsculas y minúsculas.

src/Controller/VinylController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

17

18

19

20

21

22

 // ... lines 23 - 24

25

 // ... lines 26 - 27

Ahora, cuando lo probamos... ¡qué bien! ¡Pone las letras en mayúsculas! El componente de la

cadena no es especialmente importante, sólo quiero que veas cómo podemos aprovechar

partes de Symfony para hacer nuestro trabajo.

Hacer que el comodín sea opcional

Bien: un último reto. Ir a /browse/emo o /browse/death-metal funciona. Pero ir a

/browse ... no funciona. ¡Está roto! Un comodín puede coincidir con cualquier cosa, pero, por

defecto, se requiere un comodín. Tenemos que ir a/browse/<something> .

¿Podemos hacer que el comodín sea opcional? Por supuesto Y es deliciosamente sencillo: haz

que el argumento correspondiente sea opcional.

class VinylController

{

 #[Route('/browse/{slug}')]

 public function browse(string $slug): Response

 {

 $title = u(str_replace('-', ' ', $slug))->title(true);

 return new Response('Genre: '.$title);

 }

src/Controller/VinylController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

17

18

19

 // ... lines 20 - 24

25

 // ... lines 26 - 27

En cuanto lo hagamos, le dirá a la capa de enrutamiento de Symfony que no es necesario que

el {slug} esté en la URL. Así que ahora cuando refrescamos... funciona. Aunque no es un

buen mensaje para la página.

Veamos. Si hay un slug, pon el título como estábamos. Si no, pon$title a "Todos los

géneros". Ah, y mueve el "Género:" aquí arriba... para que abajo en el Response podamos

pasar simplemente $title .

src/Controller/VinylController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

17

18

19

20

21

22

23

24

25

26

 // ... lines 27 - 28

29

 // ... lines 30 - 31

Inténtalo. En /browse ... "Todos los géneros". En /browse/emo ... "Género: Emo".

class VinylController

{

 #[Route('/browse/{slug}')]

 public function browse(string $slug = null): Response

 {

 }

class VinylController

{

 #[Route('/browse/{slug}')]

 public function browse(string $slug = null): Response

 {

 if ($slug) {

 $title = 'Genre: '.u(str_replace('-', ' ', $slug))->title(true);

 } else {

 $title = 'All Genres';

 }

 return new Response($title);

 }

Siguiente: poner un texto como éste en un controlador.... no es muy limpio ni escalable,

especialmente si empezamos a incluir HTML. No, tenemos que hacer una plantilla. Para ello,

vamos a instalar nuestro primer paquete de terceros y seremos testigos del importantísimo

sistema de recetas de Symfony en acción.

Chapter 5: Symfony Flex: Aliases, Paquetes y

Recetas

Symfony es un conjunto de librerías que nos proporciona toneladas de herramientas:

herramientas para registrar, hacer consultas a la base de datos, enviar correos electrónicos,

renderizar plantillas y hacer llamadas a la API, por nombrar algunas. Si las cuentas, como hice

yo, Symfony consta de unas 100 bibliotecas distintas. ¡Vaya!

Ahora quiero empezar a convertir nuestras páginas en verdaderas páginas HTML... en lugar de

devolver sólo texto. Pero no vamos a meter un montón de HTML en nuestras clases de PHP,

qué asco. En su lugar, vamos a renderizar una plantilla.

La filosofía de Symfony de empezar poco a poco e instalar

funciones

Pero, ¿adivina qué? ¡No hay ninguna biblioteca de plantillas en nuestro proyecto! ¿Qué? Pero

yo creía que acababas de decir que Symfony tiene una herramienta para renderizar plantillas!?

¡Mentira!

Bueno... Symfony sí tiene una herramienta para eso. Pero nuestra aplicación utiliza

actualmente muy pocas de las bibliotecas de Symfony. Las herramientas que tenemos hasta

ahora no suponen mucho más que un sistema de ruta-controlador-respuesta. Si necesitas

renderizar una plantilla o hacer una consulta a la base de datos, no tenemos esas herramientas

instaladas en nuestra app... todavía.

De hecho, me encanta esto de Symfony. En lugar de empezar con un proyecto gigantesco, con

todo lo que necesitamos, más toneladas de cosas que no necesitamos, Symfony empieza de

forma diminuta. Luego, si necesitas algo, lo instalas

Pero antes de instalar una biblioteca de plantillas, en tu terminal, ejecuta

git status

Vamos a confirmar todo:

git add .

Puedo ejecutar con seguridad git add . -que añade todo lo que hay en mi directorio a git-

porque uno de los archivos con los que venía nuestro proyecto originalmente era un archivo

.gitignore , que ya ignora cosas como el directorio vendor/ , el directorio var/ y varias otras

rutas. Si te preguntas qué son estas cosas raras de los marcadores, está relacionado con el

sistema de recetas, del que vamos a hablar.

En cualquier caso, ejecuta git commit y añade un mensaje:

git commit -m "route -> controller -> response -> profit"

¡Perfecto! Y ahora, estamos limpios.

Instalar una biblioteca de plantillas (Twig)

Bien, ¿cómo podemos instalar una biblioteca de plantillas? ¿Y qué bibliotecas de plantillas

están disponibles para Symfony? ¿Y cuál es la recomendada? Bueno, por supuesto, una buena

manera de responder a estas preguntas sería consultar la documentación de Symfony.

Pero también podemos simplemente... ¡adivinar! En cualquier proyecto PHP, puedes añadir

nuevas bibliotecas de terceros a tu aplicación diciendo "composer require" y luego el nombre

del paquete. Todavía no sabemos el nombre del paquete que necesitamos, así que

simplemente lo adivinaremos:

composer require templates

Ahora bien, si has utilizado Composer antes, puede que ahora mismo estés gritando a tu

pantalla ¿Por qué? Porque en Composer, los nombres de los paquetes son siempre

something/something . No es posible, literalmente, tener un paquete llamado simplemente

templates .

Pero mira: cuando ejecutamos esto, ¡funciona! Y arriba dice que está usando la versión 1 para

symfony/twig-pack . Twig es el nombre del motor de plantillas de Symfony.

Alias de Flex

Para entender esto, vamos a dar un pequeño paso atrás. Nuestro proyecto comenzó con un

archivocomposer.json que contiene varias bibliotecas de Symfony. Una de ellas se

llamasymfony/flex . Flex es un plugin de Composer. En realidad, añade tres superpoderes a

Composer.

 Tip

El servidor flex.symfony.com se cerró a favor de un nuevo sistema. ¡Pero aún puede ver

una lista de todas las recetas disponibles en ¡ https://bit.ly/flex-recipes!

El primero, que acabamos de ver, se llama aliases de Flex. Dirígete a https://flex.symfony.com

para ver una página gigante llena de paquetes. Busca "plantillas". Aquí está. En

symfony/twig-pack , dice Aliases: template, templates, twig y twig-pack.

La idea que hay detrás de los alias de Flex es muy sencilla.

Escribimoscomposer require templates . Y luego, internamente, Flex lo cambia

porsymfony/twig-pack . En última instancia, ése es el paquete que Composer instala.

Esto significa que, la mayoría de las veces, puedes simplemente "composer require" lo que

quieras, como composer require logger , composer require orm ,

composer require icecream , lo que sea. Es sólo un sistema de acceso directo. Lo

importante es que, lo que realmente se instaló fue symfony/twig-pack .

Paquetes Flex

Y eso significa que, en nuestro archivo composer.json , deberíamos ver

ahorasymfony/twig-pack bajo la clave require . Pero si te das la vuelta, ¡no está ahí!

https://bit.ly/flex-recipes
https://flex.symfony.com/

¡Gracias! En su lugar, ha añadido symfony/twig-bundle , twig/extra-bundle , y

twig/twig .

Estamos asistiendo al segundo superpoder de Symfony Flex: desempaquetar paquetes.

Copiamos el nombre del paquete original y... podemos encontrar ese repositorio en GitHub

entrando en https://github.com/symfony/twig-pack.

Y... sólo contiene un archivo: composer.json . Y esto requiere otros tres paquetes: los tres que

acabamos de ver añadidos a nuestro proyecto.

Esto se llama paquete Symfony. Es... realmente un paquete falso que nos ayuda a instalar

otros paquetes. Resulta que, si quieres añadir un motor de plantillas rico a tu aplicación, es

recomendable instalar estos tres paquetes. Pero en lugar de hacer que los añadas

manualmente, puedes hacer que Composer requiera symfony/twig-pack y los obtenga

automáticamente. Cuando instalas un "paquete", como éste, Flex lo "desempaqueta"

automáticamente: encuentra los tres paquetes de los que depende el paquete y los añade a tu

archivo composer.json .

Así pues, los paquetes son un atajo para que puedas ejecutar un comando de

composer require y conseguir que se añadan varias bibliotecas a tu proyecto.

Bien, ¿cuál es el tercer y último superpoder de Flex? Me alegro de que lo preguntes Para

averiguarlo, en tu terminal, ejecuta

git status

Recetas de Flex

Vaya. Normalmente, cuando ejecutas composer require , los únicos archivos que debería

modificar -además de descargar paquetes en vendor/ - son composer.json

ycomposer.lock . El tercer superpoder de Flex es su sistema de recetas.

Siempre que instales un paquete, ese paquete puede tener una receta. Si la tiene, además de

descargar el paquete en el directorio vendor/ , Flex también ejecutará su receta. Las recetas

pueden hacer cosas como añadir nuevos archivos o incluso modificar algunos archivos

existentes.

https://github.com/symfony/twig-pack

Observa: si nos desplazamos un poco hacia arriba, ah sí: dice "configurando 2 recetas". Así

que aparentemente había una receta para symfony/twig-bundle y también una receta

paratwig/extra-bundle . Y estas recetas aparentemente actualizaron el archivo

config/bundles.phpy añadieron un nuevo directorio y archivo.

El sistema de recetas es genial. Todo lo que tenemos que hacer es que Composer requiera una

nueva biblioteca y su receta añadirá todos los archivos de configuración u otra configuración

necesaria para que podamos empezar a usar esa biblioteca inmediatamente Se acabó el seguir

5 pasos de "instalación" manual en un README. Cuando añades una biblioteca, funciona de

forma inmediata.

A continuación: Quiero profundizar un poco más en las recetas. Por ejemplo, ¿dónde viven?

¿Cuál es su color favorito? ¿Y qué ha añadido esta receta específicamente a nuestra aplicación

y por qué? También voy a contarte un pequeño secreto: todos los archivos de nuestro proyecto

-todos los archivos de config/ , el directorio public/ ... todas estas cosas- se añadieron

mediante una receta. Y lo demostraré.

Chapter 6: Recetas Flex

Acabamos de instalar un nuevo paquete ejecutando composer require templates .

Normalmente, al hacerlo, Composer actualizará los archivos composer.json y

composer.lock , pero nada más.

Pero cuando ejecutamos

git status

Hay otros cambios. Esto es gracias al sistema de recetas de Flex. Cada vez que instalamos un

nuevo paquete, Flex comprueba en un repositorio central si ese paquete tiene una receta. Y si

la tiene, la instala.

¿Dónde viven las recetas?

¿Dónde viven estas recetas? En la nube... o más concretamente en GitHub. Compruébalo.

Ejecutar:

composer recipes

Este es un comando añadido a Composer por Flex. Enumera todas las recetas que se han

instalado. Y si quieres más información sobre una, ejecútala:

composer recipes symfony/twig-bundle

Esta es una de las recetas que se acaba de ejecutar. Y... ¡guay! ¡Nos muestra un par de cosas

bonitas! La primera es un árbol de los archivos que ha añadido a nuestro proyecto. La segunda

es una URL de la receta que se instaló. Haré clic para abrirla.

¡Sí! Las recetas de Symfony viven en un repositorio especial llamado symfony/recipes . Se

trata de un gran directorio organizado por nombre de paquete. Hay un directorio symfony que

contiene las recetas de todos los paquetes que empiezan por symfony/ . El que acabamos de

ver... está aquí abajo: twig-bundle . Y luego hay diferentes versiones de la receta en función

de tu versión del paquete. Nosotros estamos utilizando la última versión 5.4.

Cada receta tiene un archivo manifest.json , que controla lo que hace. El sistema de recetas

sólo puede realizar un conjunto específico de operaciones, como añadir nuevos archivos a tu

proyecto y modificar algunos archivos concretos. Por ejemplo, esta sección bundles le dice a

flex que añada esta línea a nuestro archivo config/bundles.php .

Si volvemos a ejecutar git status ... ¡sí! Ese archivo ha sido modificado. Si lo difundimos:

git diff config/bundles.php

Ha añadido dos líneas, probablemente una para cada una de las dos recetas.

¿Bolsos Symfony?

Por cierto, config/bundles.php no es un archivo en el que tengas que pensar mucho. Un

bundle, en la tierra de Symfony, es básicamente un plugin. Así que si instalas un nuevo bundle

en tu aplicación, eso te da nuevas características de Symfony. Para activar ese bundle, su

nombre tiene que estar en este archivo.

Así que lo primero que hizo la receta para Twig-bundle, gracias a esta línea de aquí arriba, fue

activarse dentro de bundles.php ... para que no tuviéramos que hacerlo manualmente. Las

recetas son como una instalación automática.

Archivos nuevos y copiados

La segunda sección del manifiesto se llama copy-from-recipe . Es sencillo: dice que hay que

copiar los directorios config/ y templates/ de la receta en el proyecto. Si nos fijamos... la

receta contiene un archivo config/packages/twig.yaml ... y también un archivo

templates/base.html.twig .

De vuelta al terminal, ejecuta de nuevo git status . Vemos estos dos archivos en la parte

inferior:config/packages/twig.yaml ... y dentro de templates/ , base.html.twig .

Esto me encanta. Piénsalo: si instalas una herramienta de plantillas en tu aplicación, vamos a

necesitar alguna configuración en algún lugar que le diga a esa herramienta de plantillas en

qué directorio debe buscar nuestras plantillas. Ve a ver ese

archivoconfig/packages/twig.yaml . Hablaremos más de estos archivos Yaml en el próximo

tutorial. Pero a alto nivel, este archivo controla cómo se comporta Twig, el motor de plantillas de

Symfony. Y fíjate en la clave default_path establecida en

%kernel.project_dir%/templates . No te preocupes por esta sintaxis porcentual: es una

forma elegante de referirse a la raíz de nuestro proyecto.

La cuestión es que esta configuración dice

“¡Hey Twig! Cuando busques plantillas, búscalas en el directorio templates/ .”

Y la receta incluso ha creado ese directorio con un archivo de diseño dentro. Lo usaremos en

unos minutos.

symfony.lock y el compromiso de los archivos

El último archivo no explicado que se ha modificado es symfony.lock . Esto no es importante:

sólo mantiene un registro de las recetas que se han instalado... y deberías confirmarlo.

De hecho, deberíamos confirmar todo esto. La receta puede darnos archivos, pero luego son

nuestros para modificarlos. Ejecuta:

git add .

Entonces:

git status

Genial. ¡Vamos a confirmarlo!

git commit -m "Adding Twig and its beautiful recipe"

Actualizar las recetas

¡Ya está! Por cierto, es posible que dentro de unos meses haya cambios en algunas de las

recetas que has instalado. Y si los hay, cuando ejecutes

composer recipes

verás un pequeño "actualización disponible" junto a ellas. Ejecuta

composer recipes:updatepara actualizar a la última versión.

Ah, y antes de que se me olvide, además de symfony/recipes , también hay un

repositoriosymfony/recipes-contrib . Así que las recetas pueden vivir en cualquiera de

estos dos lugares. Las recetas de symfony/recipes están aprobadas por el equipo central de

Symfony, por lo que su calidad está un poco más controlada. Aparte de eso, no hay ninguna

diferencia.

Nuestro proyecto comenzó como un archivo

Ahora, el sistema de recetas es tan potente que cada uno de los archivos de nuestro proyecto

se añadió mediante una receta Puedo demostrarlo. Ve a https://github.com/symfony/skeleton.

Cuando ejecutamos originalmente ese comando symfony new para iniciar nuestro proyecto, lo

que realmente hizo fue clonar este repositorio... y luego ejecutó composer install dentro de

él, que descarga todo en el directorio vendor/ .

Sí Nuestro proyecto -el que vemos aquí- era originalmente un único archivo: composer.json .

Pero luego, cuando se instalaron los paquetes, las recetas de esos paquetes añadieron todo lo

que vemos. Ejecuta:

https://github.com/symfony/skeleton

composer recipes

de nuevo. Una de las recetas es para algo llamado symfony/console . Comprueba sus

detalles:

composer recipes symfony/console

Y... ¡sí! ¡La receta de symfony/console añadió el archivo bin/console ! La receta de

symfony/framework-bundle -uno de los otros paquetes que se instaló originalmente- añadió

casi todo lo demás, incluido el archivo public/index.php . ¿No es genial?

Bien, a continuación: ¡hemos instalado Twig! ¡Así que volvamos al trabajo y utilicémoslo para

renderizar algunas plantillas! Te va a encantar Twig.

Chapter 7: Twig ❤️

Las clases de controlador de Symfony no necesitan extender una clase base. Mientras tu

función de controlador devuelva un objeto Response , a Symfony no le importa el aspecto de tu

controlador. Pero normalmente, extenderás una clase llamadaAbstractController .

¿Por qué? Porque nos da métodos de acceso directo.

Renderización de una plantilla

Y el primer atajo es render() : el método para renderizar una plantilla. Así que devuelve

$this->render() y le pasa dos cosas. La primera es el nombre de la plantilla. ¿Qué tal

vinyl/homepage.html.twig .

No es necesario, pero es habitual tener un directorio con el mismo nombre que la clase de tu

controlador y un nombre de archivo que sea el mismo que el de tu método, pero puedes hacer

lo que quieras. El segundo argumento es un array con las variables que quieras pasar a la

plantilla. Vamos a pasar una variable llamadatitle y a ponerle el título de nuestra cinta de

mezclas: "PB and Jams".

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 34

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class VinylController extends AbstractController

{

 #[Route('/')]

 public function homepage(): Response

 {

 return $this->render('vinyl/homepage.html.twig', [

 'title' => 'PB & Jams',

]);

 }

Hecho aquí. Ah, pero, ¡examen sorpresa! ¿Qué crees que devuelve el método render()? Sí,

es lo que siempre repito: un controlador siempre debe devolver un objeto Response . render()

es sólo un atajo para renderizar una plantilla, obtener esa cadena y ponerla en un objeto

Response . render() devuelve un objeto Response .

Crear la plantilla

Sabemos por lo que hemos dicho antes, que cuando renderizas una plantilla, Twig busca en el

directorio templates/ . Así que crea un nuevo subdirectorio vinyl/ ... y dentro de él, un

archivo llamado homepage.html.twig . Para empezar, añade un h1 y luego imprime la

variable title con una sintaxis especial de Twig: {{ title }} . Y... Añadiré un texto TODO

codificado.

templates/vinyl/homepage.html.twig

1

2

3

4

5

6

7

¡Vamos a ver si esto funciona! Estábamos trabajando en nuestra página web, así que ve allí y...

¡hola Twig!

Sintaxis de Twigs 3

Twig es una de las partes más bonitas de Symfony, y también una de las más fáciles. Vamos a

repasar todo lo que necesitas saber... básicamente en los próximos diez minutos.

Twig tiene exactamente tres sintaxis diferentes. Si necesitas imprimir algo, utiliza {{ . A esto lo

llamo la sintaxis "decir algo". Si digo {{ saySomething }}se imprimiría una variable llamada

saySomething . Una vez que estás dentro de Twig, se parece mucho a JavaScript. Por

ejemplo, si lo encierro entre comillas, ahora estoy imprimiendo la cadena saySomething . Twig

tiene funciones... por lo que llamaría a la función e imprimiría el resultado.

Así que la sintaxis nº 1 -la de "decir algo"- es {{

<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>

 Our schweet track list: TODO

</div>

La segunda sintaxis... no cuenta realmente. Es {# para crear un comentario... y ya está.

templates/vinyl/homepage.html.twig

1

2

3

4

5

6

7

La tercera y última sintaxis la llamo "hacer algo". Esto es cuando no estás imprimiendo, estás

haciendo algo en el lenguaje. Ejemplos de "hacer algo" serían las sentencias if, los bucles for o

la configuración de variables.

El bucle for

Vamos a probar un bucle for . Vuelve al controlador. Voy a pegar una lista de pistas... y luego

pasaré una variable tracks a la plantilla ajustada a esa matriz.

<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>

 Our schweet track list: TODO

</div>

src/Controller/VinylController.php

1

 // ... lines 2 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 42

43

Ahora, a diferencia de title , tracks es una matriz... así que no podemos imprimirla. Pero,

¡podemos intentarlo! ¡Ja! Eso nos da una conversión de matriz a cadena. No, tenemos que

hacer un bucle sobre las pistas.

Añade una cabecera y un ul . Para hacer el bucle, usaremos la sintaxis "hacer algo", que es{%

y luego la cosa que quieras hacer, como for , if o set . Te mostraré la lista completa de

etiquetas de hacer algo en un minuto. Un bucle for tiene este aspecto:for track in tracks ,

donde pistas es la variable sobre la que hacemos el bucle y trackserá la variable dentro del

bucle.

Después de esto, añade {% endfor %} : la mayoría de las etiquetas "hacer algo" tienen una

etiqueta de fin. Dentro del bucle, añade un li y luego utiliza la sintaxis de decir algo para

imprimir track .

<?php

class VinylController extends AbstractController

{

 #[Route('/')]

 public function homepage(): Response

 {

 $tracks = [

 'Gangsta\'s Paradise - Coolio',

 'Waterfalls - TLC',

 'Creep - Radiohead',

 'Kiss from a Rose - Seal',

 'On Bended Knee - Boyz II Men',

 'Fantasy - Mariah Carey',

];

 return $this->render('vinyl/homepage.html.twig', [

 'title' => 'PB & Jams',

 'tracks' => $tracks,

]);

 }

}

templates/vinyl/homepage.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Uso de Sub.keys

Cuando lo probemos... ¡qué bien! Pero vamos a ponernos más complicados. De vuelta en el

controlador, en lugar de utilizar un simple array, lo reestructuraré para que cada pista sea un

array asociativo con las claves song y artist . Pondré ese mismo cambio para el resto.

src/Controller/VinylController.php

1

 // ... lines 2 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 27

28

 // ... lines 29 - 42

43

<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>

 Tracks:

 {% for track in tracks %}

 {{ track }}

 {% endfor %}

</div>

<?php

class VinylController extends AbstractController

{

 #[Route('/')]

 public function homepage(): Response

 {

 $tracks = [

 ['song' => 'Gangsta\'s Paradise', 'artist' => 'Coolio'],

 ['song' => 'Waterfalls', 'artist' => 'TLC'],

 ['song' => 'Creep', 'artist' => 'Radiohead'],

 ['song' => 'Kiss from a Rose', 'artist' => 'Seal'],

 ['song' => 'On Bended Knee', 'artist' => 'Boyz II Men'],

 ['song' => 'Fantasy', 'artist' => 'Mariah Carey'],

];

 }

}

¿Qué ocurre si lo probamos? Ah, volvemos a la conversión de "matriz a cadena". Cuando

hacemos el bucle, cada pista es ahora una matriz. ¿Cómo podemos leer las claves songy

artist?

¿Recuerdas cuando dije que Twig se parece mucho a JavaScript? Pues bien, no debería

sorprender que la respuesta sea track.song y track.artist .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 16

Y... eso hace que nuestra lista funcione.

Ahora que ya tenemos lo básico de Twig, vamos a ver la lista completa de etiquetas "hacer

algo", a conocer los "filtros" de Twig y a abordar el importantísimo sistema de herencia de

plantillas.

 {% for track in tracks %}

 {{ track.song }} - {{ track.artist }}

 {% endfor %}

Chapter 8: Herencia Twig

Dirígete a https://twig.symfony.com... y haz clic para consultar su documentación. Hay mucho

material bueno aquí. Pero lo que quiero que hagas es que te desplaces hasta la referencia a

Twig. ¡Sí!

Etiquetas

Lo primero que debes mirar, a la izquierda, son estas cosas llamadas etiquetas. Esta lista

representa todas las cosas posibles que puedes utilizar con la sintaxis de hacer algo. Sí,

siempre será {% y luego una de estas cosas, como for o if . Y sinceramente, sólo vas a

utilizar unas 5 de ellas en el día a día. Si quieres saber la sintaxis de uno de ellos, sólo tienes

que hacer clic para ver su documentación.

Filtros

Además de las 20 etiquetas, Twig también tiene algo llamado filtros. Los filtros son básicamente

funciones, pero con una sintaxis más moderna. Twig también tiene funciones, pero son menos:

Twig prefiere los filtros: ¡son mucho más chulos!

Por ejemplo, hay un filtro llamado upper . Usar un filtro es como usar la tecla| en la línea de

comandos. Tienes un valor y luego lo "canalizas" en el filtro que quieres, como upper .

¡Vamos a probar esto! Imprime track.artist|upper .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 10

11

 // ... lines 12 - 16

Y ahora... ¡está en mayúsculas! Si quieres confundir a tus compañeros de trabajo, puedes

canalizarlo a lower ... que devuelve las cosas a minúsculas. No hay ninguna razón real para

hacer esto, pero los filtros pueden encadenarse así.

 {{ track.song }} - {{ track.artist|upper }}

https://twig.symfony.com/

templates/vinyl/homepage.html.twig

 // ... lines 1 - 10

11

 // ... lines 12 - 16

De todos modos, echa un vistazo a la lista de filtros porque probablemente haya algo que te

resulte útil.

Y... ¡eso es todo! Además de las funciones, también hay algo llamado "pruebas", que son útiles

en las sentencias if: puedes decir cosas como "si el número es divisible por 5".

Herencia de Plantillas

Vale, sólo una cosa más que aprender sobre Twig, y es genial.

Mira el código fuente HTML de la página. Fíjate en que no hay estructura HTML: no hay

etiquetas html , head o body . Literalmente el HTML que tenemos dentro de nuestra plantilla,

es lo que obtenemos. Nada más.

Entonces, ¿hay... algún tipo de sistema de diseño en Twig en el que podamos añadir un diseño

base a nuestro alrededor? Por supuesto. Y es increíble. Se llama herencia de plantillas. Si

tienes una plantilla y quieres que utilice algún diseño base, en la parte superior del archivo,

utiliza una etiqueta "hacer algo" llamada extends . Pásale el nombre del archivo de diseño:

base.html.twig .

templates/vinyl/homepage.html.twig

1

 // ... lines 2 - 18

Esto se refiere a esta plantilla de aquí. Antes de comprobarlo, si lo intentamos ahora, ¡vaya!

Gran error:

“Una plantilla que extiende otra no puede incluir contenido fuera de los bloques Twig.”

Para saber qué significa esto, abre base.html.twig . Este es tu archivo de diseño base... y

eres totalmente libre de personalizarlo como quieras. Ahora mismo... es en su mayor parte sólo

etiquetas HTML aburridas... excepto por una serie de estos "bloques".

 {{ track.song }} - {{ track.artist|upper|lower }}

{% extends 'base.html.twig' %}

Los bloques son básicamente "agujeros" en los que una plantilla hija puede colocar contenido.

Permíteme explicarlo de otra manera. Cuando decimos extends 'base.html.twig' , eso dice

básicamente:

“¡Yo Twig! Cuando renderices esta plantilla, quiero que realmente renderices

base.html.twig ... y luego pongas mi contenido dentro de ella.”

Twig responde educadamente:

“Vale, genial... Puedo hacerlo. Pero, ¿en qué parte de base.html.twig quieres que ponga

todo tu contenido? ¿Quieres que lo ponga al final de la página? ¿En la parte parte superior?

¿En algún lugar al azar en el medio?”

La forma de decirle a Twig dónde poner nuestro contenido dentro de base.html.twig es

anulando un bloque. Fíjate en que base.html.twig ya tiene un bloque llamado body ... y ahí

es justo donde queremos poner el HTML de nuestra plantilla.

Para ponerlo ahí, en nuestra plantilla, rodea todo el contenido con{% block body %} ... y

luego {% endblock %} .

templates/vinyl/homepage.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

{% extends 'base.html.twig' %}

{% block body %}

<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>

 Tracks:

 {% for track in tracks %}

 {{ track.song }} - {{ track.artist }}

 {% endfor %}

</div>

{% endblock %}

A esto se le llama herencia de la plantilla porque estamos sobrescribiendo ese bloque body

con este nuevo contenido. Así que ahora, cuando Twig renderice base.html.twig ... y llegue a

esta parte block body , va a imprimir el HTML block body de nuestra plantilla

Observa: actualiza y... el error ha desaparecido. Y si ves el código fuente de la página,

¡tenemos una página HTML completa!

Nombres de los bloques

Ah, y los nombres de estos bloques no son importantes. Si quieres cambiarles el nombre por el

de tu personaje favorito de una sitcom de los 90, hazlo. Sólo recuerda actualizar también su

nombre en cualquier plantilla hija.

También puedes añadir más bloques. Cada bloque que añadas es otro punto de anulación

potencial.

Contenido del bloque por defecto

Ah, y habrás notado que los bloques pueden tener contenido por defecto. Mira la página ahora

mismo: el título dice "Bienvenido". Eso es porque el bloque title tiene un contenido por

defecto... y no lo vamos a anular. Vamos a cambiar el título por defecto a "Vinilo mixto".

templates/base.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 20

Así que ahora ese será el título de todas las páginas de nuestro sitio... a menos que lo

anulemos. En nuestra plantilla, ya sea por encima del cuerpo del bloque o por debajo -el orden

de los bloques no importa-, añade {% block title %} , {% endblock %} y, en medio, "Crear

un nuevo disco".

 <title>{% block title %}Mixed Vinyl{% endblock %}</title>

templates/vinyl/homepage.html.twig

1

2

3

4

5

 // ... lines 6 - 20

21

Y ahora... ¡sí! Esta página tiene un título personalizado.

Añadir al bloque padre (en lugar de sustituirlo)

Ah, y puede que te preguntes

“¿Qué pasa si no quiero sustituir un bloque por completo.... sino que quiero añadir a un

bloque?”

Eso es totalmente posible. En base.html.twig , el bloque title está configurado como

"Vinilo mixto". Si quisiéramos añadirle nuestro título personalizado, podríamos decir "Crear un

nuevo disco" y luego utilizar la etiqueta "decir algo" para imprimir una función llamada

parent() .

templates/vinyl/homepage.html.twig

1

2

3

4

5

 // ... lines 6 - 20

21

Eso hace exactamente lo que esperarías: encuentra el contenido de la plantilla padre para este

bloque... y lo imprime. Actualiza y... eso es muy bonito.

La herencia de plantillas es la herencia de clases

Si alguna vez estás confundido sobre cómo funciona la herencia de plantillas, es útil, al menos

para mí, pensar en ella exactamente como en la herencia orientada a objetos. Cada plantilla es

como una clase y cada bloque es como un método. Así, la "clase" de la página de inicio

{% extends 'base.html.twig' %}

{% block title %}Create a new Record{% endblock %}

{% block body %}

{% endblock %}

{% extends 'base.html.twig' %}

{% block title %}Create a new Record | {{ parent() }}{% endblock %}

{% block body %}

{% endblock %}

extiende la "clase" de base.html.twig , pero anula dos de sus métodos. Si eso sólo te ha

confundido, no te preocupes.

Así que... eso es todo para Twig. Básicamente eres un experto en Twig, lo que me han dicho

que es un tema popular en las fiestas.

A continuación: una de las características más destacadas de Symfony son sus herramientas

de depuración. Vamos a instalarlas y a comprobarlas.

Chapter 9: Perfilador: Tu mejor amigo para la

depuración

Es hora de instalar nuestro segundo paquete. Y éste es divertido. Vamos a confirmar nuestros

cambios primero: así será más fácil comprobar los cambios que hace la receta del nuevo

paquete.

Añade todo:

git add .

Parece que está bien, así que... confirma:

git commit -m "Added some Tiwggy goodness"

Bonito.

El paquete de depuración

Ahora ejecuta:

composer require debug

Así que sí, este es otro alias de Flex... y aparentemente es un alias desymfony/debug-pack . Y

sabemos que un paquete es una colección de paquetes. Así que, en lugar de añadir esta única

línea a nuestro archivo composer.json , si lo comprobamos, parece que ha añadido un nuevo

paquete en la sección require -se trata de una biblioteca de registro- y... al final, ha añadido

una nueva secciónrequire-dev con otras tres bibliotecas.

La diferencia entre require y require-dev no es demasiado importante: todos estos

paquetes se descargaron en nuestra aplicación, pero como mejor práctica, si instalas una

biblioteca que sólo está pensada para el desarrollo local, deberías ponerla enrequire-dev . ¡El

pack lo hizo por nosotros! ¡Gracias pack!

Cambios en la receta

De vuelta al terminal, ¡esto también instaló tres recetas! Ooh. Veamos qué han hecho. Limpio la

pantalla y corro:

git status

Esto me resulta familiar: modificó config/bundles.php para activar tres nuevos bundles. De

nuevo, los bundles son plugins de Symfony, que añaden más funciones a nuestra aplicación.

También añadió varios archivos de configuración al directorio config/packages/ . Hablaremos

más de estos archivos en el próximo tutorial, pero, a alto nivel, controlan el comportamiento de

esos bundles.

La barra de herramientas de depuración web y el perfilador

¿Qué nos aportan estos nuevos paquetes? Para averiguarlo, dirígete a tu navegador y

actualiza la página de inicio. ¡Santo cielo, Batman! Es la barra de herramientas de depuración

web. Esto es una locura de depuración: una barra de herramientas llena de buena información.

A la izquierda, puedes ver el controlador al que se ha llamado junto con el código de estado

HTTP. También está la cantidad de tiempo que tardó la página, la memoria que utilizó y también

cuántas plantillas se renderizaron a través de Twig: este es el bonito icono de Twig.

En el lado derecho, tenemos detalles sobre el servidor web local Symfony que se está

ejecutando e información sobre PHP.

Pero aún no has visto la mejor parte: haz clic en cualquiera de estos iconos para saltar al

perfilador. Esta es la barra de herramientas de depuración web... enloquecida. Está llena de

datos sobre esa petición, como la petición y la respuesta, todos los mensajes de registro que se

produjeron durante esa petición, información sobre las rutas y la ruta a la que se respondió,

Twig te muestra qué plantillas se renderizaron y cuántas veces se renderizaron... y hay

información de configuración aquí abajo. ¡Uf!

Pero mi sección favorita es la de Rendimiento. Muestra una línea de tiempo de todo lo que ha

ocurrido durante la petición. Esto es genial por dos razones. La primera es bastante obvia:

puedes usarla para encontrar qué partes de tu página son lentas. Así, por ejemplo, nuestro

controlador tardó 20,4 milisegundos. Y dentro de la ejecución del controlador, la plantilla de la

página de inicio se renderizó en 3,9 milisegundos y base.html.twigse renderizó en 2,8

milisegundos.

La segunda razón por la que esto es realmente genial es que descubre todas las capas ocultas

de Symfony. Ajusta este umbral a cero. Antes, esto sólo mostraba las cosas que tardaban más

de un milisegundo. Ahora lo muestra todo. No tienes que preocuparte por la gran mayoría de

las cosas, pero es superguay ver las capas de Symfony: las cosas que ocurren antes y

después de que se ejecute tu controlador. Tenemos un tutorial de inmersión profunda para

Symfony si quieres aprender más sobre estas cosas.

La barra de herramientas de depuración web y el perfilador también crecerán con nuestra

aplicación. En un futuro tutorial, cuando instalemos una librería para hablar con la base de

datos, de repente tendremos una nueva sección que enumera todas las consultas a la base de

datos que hizo una página y el tiempo que tardó cada una.

funciones dump() y dd()

Bien, el paquete de depuración instaló la barra de herramientas de depuración web. También

ha instalado una biblioteca de registro que utilizaremos más adelante. Y ha instalado un

paquete que nos proporciona dos fantásticas funciones de depuración.

Dirígete a VinylController . Imagina que estamos haciendo un desarrollo y necesitamos ver

cómo es esta variable $tracks . En este caso es bastante obvio, pero a veces querrás ver lo

que hay dentro de un objeto complejo.

Para ello, digamos dd($tracks) , donde "dd" significa "dump" y "die".

src/Controller/VinylController.php

 // ... lines 1 - 9

10

11

12

13

14

 // ... lines 15 - 22

23

 // ... lines 24 - 28

29

 // ... lines 30 - 43

44

Así que si refrescamos... ¡sí! Eso vuelca la variable y mata la página. Y esto es mucho más

potente -y más bonito- que usar var_dump() : podemos ampliar secciones y ver datos

profundos con mucha facilidad.

En lugar de dd() , también puedes utilizar dump() .. para volcar y vivir. Pero esto podría no

aparecer donde esperas. En lugar de imprimirse en el centro de la página, aparece abajo en la

barra de herramientas de depuración de la web, bajo el icono del objetivo.

src/Controller/VinylController.php

 // ... lines 1 - 9

10

11

12

13

14

 // ... lines 15 - 22

23

 // ... lines 24 - 28

29

 // ... lines 30 - 43

44

Si es demasiado pequeño, haz clic para ver una versión más grande en el perfilador.

Volcado en Twig

También puedes utilizar este dump() en Twig. Elimina el volcado del controlador... y luego en la

plantilla, justo antes del ul , dump(tracks) .

class VinylController extends AbstractController

{

 #[Route('/')]

 public function homepage(): Response

 {

 dd($tracks);

 }

}

class VinylController extends AbstractController

{

 #[Route('/')]

 public function homepage(): Response

 {

 dump($tracks);

 }

}

templates/vinyl/homepage.html.twig

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 20

21

 // ... lines 22 - 23

Y esto... se ve exactamente igual. Excepto que cuando haces el volcado en Twig, sí que se

vuelca justo en el centro de la página

Y aún más útil, sólo en Twig, puedes utilizar dump() sin argumentos.

templates/vinyl/homepage.html.twig

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 20

21

 // ... lines 22 - 23

Esto volcará todas las variables a las que tengamos acceso. Así que aquí está la variable

title ,tracks y, ¡sorpresa! Hay una tercera variable llamada app . Es una variable global que

tenemos en todas las plantillas... y nos da acceso a cosas como la sesión y los datos del

usuario. Y... ¡lo hemos descubierto por curiosidad!

Así que ahora que tenemos estas increíbles herramientas de depuración, pasemos a nuestro

siguiente trabajo... que es hacer este sitio menos feo. ¡Es hora de añadir CSS y un diseño

adecuado para dar vida a nuestro sitio!

<div>

 Tracks:

 {{ dump(tracks) }}

</div>

<div>

 Tracks:

 {{ dump() }}

</div>

Chapter 10: Activos, CSS, imágenes, etc

Si descargas el código del curso desde la página en la que estás viendo este vídeo, después

de descomprimirlo, encontrarás un directorio start/ que contiene la misma aplicación nueva

de Symfony 6 que hemos creado antes. En realidad no necesitas ese código, pero contiene un

directorio extra llamado tutorial/ , como el que tengo aquí. Este contiene algunos archivos

que vamos a utilizar.

Así que hablemos de nuestro siguiente objetivo: hacer que este sitio parezca un sitio real... en

lugar de parecer algo que he diseñado yo mismo. Y eso significa que necesitamos un

verdadero diseño HTML que incluya algo de CSS.

Añadir un diseño y archivos CSS

Sabemos que nuestro archivo de diseño es base.html.twig ... y también hay un

archivobase.html.twig en el nuevo directorio tutorial/ . Copia eso... pégalo en las

plantillas, y anula el original.

Antes de ver eso, copia también los tres archivos .png y ponlos en el directorio public/ ...

para que nuestros usuarios puedan acceder a ellos.

Muy bien. Abre el nuevo archivo base.html.twig . Aquí no hay nada especial. Traemos

algunos archivos CSS externos de algunos CDN para Bootstrap y FontAwesome. Al final de

este tutorial, refactorizaremos esto para que sea una forma más elegante de manejar el CSS...

pero por ahora, esto funcionará bien.

Por lo demás, todo sigue estando codificado. Tenemos una navegación codificada, el mismo

bloque body ... y un pie de página codificado. Vamos a ver cómo queda. ¡Refresca y woo!

Bueno, no es perfecto, pero es mejor

Añadir un archivo CSS personalizado

El directorio tutorial/ también contiene un archivo app.css con CSS personalizado. Para

que esté disponible públicamente, de modo que el navegador de nuestro usuario pueda

descargarlo, tiene que estar en algún lugar del directorio public/ . Pero no importa dónde o

cómo organices las cosas dentro.

Creemos un directorio styles/ ... y luego copiamos app.css ... y lo pegamos allí.

De vuelta en base.html.twig , dirígete a la parte superior. Después de todos los archivos CSS

externos, vamos a añadir una etiqueta de enlace para nuestro app.css . Así que

<link rel="stylesheet"y href="" . Como el directorio public/ es la raíz de nuestro

documento, para referirse a un archivo CSS o de imagen allí, la ruta debe ser con respecto a

ese directorio. Así que esto será /styles/app.css .

templates/base.html.twig

1

2

3

 // ... lines 4 - 15

16

 // ... lines 17 - 25

26

 // ... lines 27 - 85

86

Vamos a comprobarlo. Actualiza ahora y... ¡aún mejor!

La función asset()

Quiero que te des cuenta de algo. Hasta ahora, Symfony no interviene para nada en cómo

organizamos o utilizamos las imágenes o los archivos CSS. No. Nuestra configuración es muy

sencilla: ponemos las cosas en el directorio public/ ... y luego nos referimos a ellas con sus

rutas.

Pero, ¿tiene Symfony alguna función interesante para ayudar a trabajar con CSS y JavaScript?

Por supuesto. Se llaman Webpack Encore y Stimulus. Y hablaremos de ambas hacia el final del

tutorial.

Pero incluso en esta sencilla configuración -en la que sólo ponemos archivos en public/ y

apuntamos a ellos- Symfony tiene una característica menor: la función asset() .

Funciona así: en lugar de usar /styles/app.css , decimos {{ asset() }} y luego, entre

comillas, movemos nuestra ruta allí... pero sin la apertura "/".

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="/styles/app.css">

 </head>

</html>

templates/base.html.twig

1

2

3

 // ... lines 4 - 15

16

 // ... lines 17 - 25

26

 // ... lines 27 - 85

86

Así, la ruta sigue siendo relativa al directorio public/ ... sólo que no necesitas incluir el primer

"/".

Antes de hablar de lo que hace esto... vamos a ver si funciona. Actualiza y... ¡no lo hace! Error:

“Función desconocida: ¿te has olvidado de ejecutar composer require symfony/asset .”

Sigo diciendo que Symfony empieza con algo pequeño... y luego vas instalando cosas a

medida que las necesitas. ¡Aparentemente, esta función asset() viene de una parte de

Symfony que aún no tenemos! Pero conseguirla es fácil. Copia este comando composer

require, pásalo a tu terminal y ejecútalo:

composer require symfony/asset

Se trata de una instalación bastante sencilla: sólo descarga este paquete... y no hay recetas.

Pero cuando probamos la página ahora... ¡funciona! Comprueba el código fuente HTML.

Interesante: la etiqueta link href sigue siendo, literalmente, /styles/app.css . ¡Es

exactamente lo que teníamos antes! Entonces, ¿qué diablos hace esta función asset()?

La respuesta es... no mucho. Pero sigue siendo una buena idea utilizarla. La función asset()

te ofrece dos características. En primer lugar, imagina que te despliegas en un subdirectorio de

un dominio. Por ejemplo, la página de inicio vive en https://example.com/mixed-vinyl.

Si ese fuera el caso, para que nuestro CSS funcione, el href tendría que ser

/mixed-vinyl/styles/app.css . En esta situación, la función asset()detectaría el

subdirectorio automáticamente y añadiría ese prefijo por ti.

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="{{ asset('styles/app.css') }}">

 </head>

</html>

https://example.com/mixed-vinyl

Lo segundo -y más importante- que hace la función asset() es permitirte cambiar fácilmente a

una CDN más adelante. Como esta ruta pasa ahora por la funciónasset() , podríamos, a

través de un archivo de configuración, decir:

“¡Hey Symfony! Cuando emitas esta ruta, por favor ponle el prefijo de la URL a mi CDN.”

Esto significa que, cuando carguemos la página, en lugar de href="/styles/app.css , sería

algo como https://mycdn.com/styles/app.css .

Así que la función asset() puede que no haga nada que necesites hoy, pero siempre que

hagas referencia a un archivo estático, ya sea un archivo CSS, un archivo JavaScript, una

imagen, lo que sea, utiliza esta función.

De hecho, aquí arriba, estoy haciendo referencia a tres imágenes. Usemos asset :

{{ asset() ... ¡y entonces se autocompleta la ruta! ¡Gracias plugin Symfony! Repite esto para

la segunda imagen... y la tercera.

templates/base.html.twig

1

2

3

 // ... lines 4 - 6

7

8

9

 // ... lines 10 - 15

16

 // ... lines 17 - 25

26

 // ... lines 27 - 85

86

Sabemos que esto no supondrá ninguna diferencia hoy... podemos refrescar el código fuente

HTML para ver las mismas rutas... pero estamos preparados para una CDN en el futuro.

HTML de la página de inicio y de navegación

<!DOCTYPE html>

<html>

 <head>

 <link rel="apple-touch-icon" sizes="180x180" href="{{ asset('apple-touch-

icon.png') }}">

 <link rel="icon" type="image/png" sizes="32x32" href="{{ asset('favicon-

32x32.png') }}">

 <link rel="icon" type="image/png" sizes="16x16" href="{{ asset('favicon-

16x16.png') }}">

 <link rel="stylesheet" href="{{ asset('styles/app.css') }}">

 </head>

</html>

¡Así que el diseño ahora se ve muy bien! Pero el contenido de nuestra página de inicio está...

como colgando... con un aspecto raro... como yo en la escuela secundaria. De vuelta al

directorio tutorial/ , copia la plantilla de la página de inicio... y sobrescribe nuestro archivo

original.

Ábrelo. Esto sigue extendiendo base.html.twig ... y sigue anulando el bloquebody . Y

además, tiene un montón de HTML completamente codificado. Vamos a ver qué aspecto tiene.

Actualiza y... ¡se ve genial!

Excepto que... está 100% codificado. Vamos a arreglarlo. En la parte superior, aquí está el

nombre de nuestro disco, imprime la variable title .

Y luego, abajo para las canciones... tenemos una larga lista de HTML codificado. Convirtamos

esto en un bucle. Añade {% for track in tracks %} como teníamos antes. Y... al final,

endfor .

Para los detalles de la canción, utiliza track.song ... y track.artist . Y ahora podemos

eliminar todas las canciones codificadas.

templates/vinyl/homepage.html.twig

1

 // ... lines 2 - 4

5

6

7

8

 // ... lines 9 - 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

¡Genial! Vamos a probarlo. ¡Hey! ¡Está cobrando vida gente!

¡Falta una página más! La página /browse . Ya sabes lo que hay que hacer: copiar

browse.html.twig , y pegar en nuestro directorio. Esto se parece mucho a la página de inicio:

extiendebase.html.twig y anula el bloque body .

En VinylController , no hemos renderizado antes una plantilla... así que hagámoslo ahora:

return $this->render('vinyl/browse.html.twig') y pasemos el género. Añade una

variable para ello: $genre = y si tenemos un slug... utiliza nuestro elegante código de

mayúsculas y minúsculas, si no, ponlo en null. Luego borra lo de $title ... y pasagenre a

Twig.

{% extends 'base.html.twig' %}

{% block body %}

<div class="container">

 <h1 class="d-inline me-3">{{ title }}</h1> <i class="fas fa-edit"></i>

 <div class="row mt-5">

 <div class="col-12 col-md-8 ps-5">

 <h2 class="mb-4">10 songs (30 minutes of 60 still available)</h2>

 {% for track in tracks %}

 <div class="song-list">

 <div class="d-flex mb-3">

 <i class="fas fa-play me-3"></i>

 {{ track.song }} - {{ track.artist

}}

 <i class="fas fa-bars mx-3"></i>

 <i class="fas fa-times"></i>

 </div>

 </div>

 {% endfor %}

 <button type="button" class="btn btn-success"><i class="fas fa-plus">

</i> Add a song</button>

 </div>

 </div>

</div>

{% endblock %}

src/Controller/VinylController.php

1

2

 // ... lines 3 - 9

10

11

 // ... lines 12 - 29

30

31

32

33

34

35

36

37

38

39

De vuelta a la plantilla, utiliza esto en el h1 . En Twig, también podemos utilizar una sintaxis de

fantasía. Así que si tenemos un genre , imprime genre , si no imprime All Genres .

templates/vinyl/browse.html.twig

1

2

3

4

5

 // ... lines 6 - 45

46

47

Es hora de probar. Dirígete a /browse : "Navega por todos los géneros" Y

luego/browse/death-metal : Navega por el Death Metal. Amigos, ¡esto empieza a parecerse

a un sitio real!

Excepto que estos enlaces en el navegador... ¡no van a ninguna parte! Vamos a arreglar eso

aprendiendo a generar URLs. También vamos a conocer la mega-poderosa herramienta de

línea de comandosbin/console .

<?php

class VinylController extends AbstractController

{

 #[Route('/browse/{slug}')]

 public function browse(string $slug = null): Response

 {

 $genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) : null;

 return $this->render('vinyl/browse.html.twig', [

 'genre' => $genre

]);

 }

}

{% extends 'base.html.twig' %}

{% block body %}

<div class="container">

 <h1>Browse {{ genre ? genre : 'All Genres' }}</h1>

</div>

{% endblock %}

Chapter 11: Generar Urls y bin/console

Hay dos formas diferentes de interactuar con nuestra aplicación. La primera es a través del

servidor web... ¡y eso es lo que hemos hecho! Llegamos a una URL y... entre bastidores, se

ejecuta public/index.php , que arranca Symfony, llama al enrutamiento y ejecuta nuestro

controlador.

Hola bin/console

¿Cuál es la segunda forma de interactuar con nuestra aplicación? Todavía no la hemos visto:

es a través de una herramienta de línea de comandos llamada bin/console . En tu terminal

ejecuta:

php bin/console

... para ver un montón de comandos dentro de este script. Me encanta esta cosa. Está lleno de

cosas que nos ayudan a depurar, con el tiempo tendrá comandos de generación de código,

comandos para establecer secretos: todo tipo de cosas buenas que iremos descubriendo poco

a poco.

Pero quiero señalar que... ¡no hay nada especial en este script de bin/console ! Es sólo un

archivo: hay literalmente un directorio bin/ con un archivo consoledentro. Probablemente

nunca necesitarás abrir este archivo ni pensar en él, pero es útil. Ah, y en la mayoría de los

sistemas, puedes simplemente ejecutar:

./bin/console

... que se ve mejor. O a veces puedes ver que ejecute:

symfony console

... que no es más que otra forma de ejecutar este archivo. Hablaremos más de esto en un

futuro tutorial.

bin/consola debug:router

El primer comando que quiero comprobar dentro de bin/console es debug:router :

php bin/console debug:router

Esto es impresionante. Nos muestra todas las rutas de nuestra aplicación, como nuestras dos

rutas para / y /browse/{slug} . ¿Qué son estas otras rutas? Vienen de la barra de

herramientas de depuración web y del sistema de perfilado... y sólo están aquí mientras

desarrollamos localmente.

Bien, de vuelta a nuestro sitio.... en la parte superior de la página, tenemos dos enlaces no

funcionales a la página de inicio y a la página de navegación. Vamos a conectarlos. Abre

templates/ base.html.twig ... y busca las etiquetas a . Ya está.

Así que sería muy fácil hacer que esto funcionara con sólo href="/" . Pero en lugar de eso,

cada vez que enlacemos una página en Symfony, vamos a pedir al sistema de enrutamiento

que nos genere una URL. Diremos

“Por favor, genera la URL de la ruta de la página de inicio, o de la ruta de la página de

navegación.”

Así, si alguna vez cambiamos la URL de una ruta, todos nuestros enlaces se actualizarán

instantáneamente. Magia.

Cómo nombrar tu ruta

Empecemos por la página de inicio. ¿Cómo le pedimos a Symfony que genere una URL para

esta ruta? Bueno, primero tenemos que dar un nombre a la ruta. ¡Sorpresa! Cada ruta tiene un

nombre interno. Puedes verlo en debug:router . Nuestras rutas se llaman

app_vinyl_homepage y app_vinyl_browse . Huh, esos son los nombres exactos de mis

tortugas mascota cuando era niño.

¿De dónde vienen estos nombres? Por defecto, Symfony nos genera automáticamente un

nombre, lo cual está bien. El nombre no se utiliza en absoluto hasta que generamos una URL a

la misma. Y en cuanto necesitemos generar una URL a una ruta, recomiendo encarecidamente

tomar el control de este nombre... sólo para asegurarnos de que nunca cambia

accidentalmente.

Para ello, busca la ruta y añade un argumento: name ajustado a, qué tal,app_homepage . Me

gusta utilizar el prefijo app_ : facilita la búsqueda del nombre de la ruta más adelante.

src/Controller/VinylController.php

1

2

 // ... lines 3 - 9

10

11

12

13

14

 // ... lines 15 - 27

28

 // ... lines 29 - 38

39

Por cierto, los atributos de PHP 8 -como este atributo Route - están representados por clases

PHP reales y físicas. Si mantienes pulsado command o ctrl, puedes abrirlo y mirar dentro. Esto

es genial: el método __construct() muestra todas las diferentes opciones que puedes pasar

al atributo.

Por ejemplo, hay un argumento name ... y entonces estamos utilizando la sintaxis de

argumentos con nombre de PHP para pasar esto al atributo. Abrir un atributo es una buena

manera de conocer sus opciones.

Generar una URL desde Twig

<?php

class VinylController extends AbstractController

{

 #[Route('/', name: 'app_homepage')]

 public function homepage(): Response

 {

 }

}

De todos modos, ahora que le hemos dado un nombre, vuelve a nuestro terminal y ejecuta de

nuevodebug:router :

php bin/console debug:router

Esta vez... ¡sí! ¡La ruta se llama app_homepage ! Cópialo y vuelve a base.html.twig . Para

generar una URL dentro de twig, di {{ -porque vamos a imprimir algo- y luego utiliza una

función Twig llamada path() . Pásale el nombre de la ruta.

templates/base.html.twig

1

2

 // ... lines 3 - 26

27

 // ... lines 28 - 31

32

33

34

35

 // ... lines 36 - 84

85

86

Ya está Actualiza... ¡y el enlace de aquí arriba funciona!

Falta un enlace más. Ya conocemos el primer paso: dar un nombre a la ruta. Así que name: y,

qué tal, app_browse .

src/Controller/VinylController.php

1

2

 // ... lines 3 - 9

10

11

 // ... lines 12 - 29

30

31

32

 // ... lines 33 - 37

38

39

<!DOCTYPE html>

<html>

 <body>

 <i class="fas fa-record-vinyl"></i>

 Mixed Vinyl

 </body>

</html>

<?php

class VinylController extends AbstractController

{

 #[Route('/browse/{slug}', name: 'app_browse')]

 public function browse(string $slug = null): Response

 {

 }

}

Copia eso, y... desplázate un poco hacia abajo. Aquí está: "Examinar mezclas". Cámbialo por

{{ path('app_browse') }} .

templates/base.html.twig

1

2

 // ... lines 3 - 26

27

 // ... lines 28 - 40

41

42

43

 // ... lines 44 - 84

85

86

Y ahora... ¡ese enlace también funciona!

Generar URLs con comodines

Pero en esta página, tenemos algunos enlaces rápidos para ir a la página de exploración de un

género específico. Y éstos aún no funcionan.

Esto es interesante. Queremos generar una URL como antes... pero esta vez necesitamos

pasar algo al comodín {slug} . Abre browse.html.twig . Así es como lo hacemos. La primera

parte es la misma: {{ path() }} y luego el nombre de la ruta: app_browse .

Si nos detuviéramos aquí, se generaría /browse . Para pasar valores a cualquier comodín de

una ruta, path() tiene un segundo argumento: una matriz asociativa de esos valores. Y, de

nuevo, al igual que en JavaScript, para crear una "matriz asociativa", utilizas{ y } . Voy a pulsar

intro para dividir esto en varias líneas... sólo para que sea legible. Dentro añade una clave

slug a la matriz... y como este es el género "Pop", ponla en pop .

¡Genial! Repitamos esto dos veces más: {{ path('app_browse') }} pasar las llaves para un

array asociativo, con slug fijado en rock . Y luego una vez más aquí abajo... que haré muy

rápidamente.

<!DOCTYPE html>

<html>

 <body>

 <li class="nav-item">

 <a class="nav-link" style="margin-top: 20px;" href="

{{ path('app_browse') }}">Browse Mixes

 </body>

</html>

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 52

53

¡Vamos a ver si funciona! Actualiza. ¡Ah! La variable rock no existe. Seguro que alguno de

vosotros me ha visto hacer eso. Me olvidé de las comillas, así que esto parece una variable.

Inténtalo de nuevo. Ya está. Y prueba los enlaces... ¡sí! ¡Funcionan!

Siguiente: hemos creado dos páginas HTML. Ahora vamos a ver cómo queda la creación de

una ruta de la API JSON.

{% block body %}

 <ul class="genre-list ps-0 mt-2 mb-3">

 <li class="d-inline">

 <a class="btn btn-primary btn-sm" href="{{ path('app_browse', {

 slug: 'pop'

 }) }}">Pop

 <li class="d-inline">

 <a class="btn btn-primary btn-sm" href="{{ path('app_browse', {

 slug: 'rock'

 }) }}">Rock

 <li class="d-inline">

 <a class="btn btn-primary btn-sm" href="{{ path('app_browse', {

 slug: 'heavy-metal'

 }) }}">Heavy Metal

{% endblock %}

Chapter 12: Ruta de la API JSON

En un futuro tutorial, vamos a crear una base de datos para gestionar las canciones, los

géneros y los discos de vinilo mezclados que nuestros usuarios están creando. Ahora mismo,

estamos trabajando completamente con datos codificados... pero nuestros controladores -y-

especialmente las plantillas no serán muy diferentes una vez que hagamos todo esto dinámico.

Así que este es nuestro nuevo objetivo: quiero crear una ruta de la API que devuelva los datos

de una sola canción como JSON. Vamos a usar esto en unos minutos para dar vida a este

botón de reproducción. Por el momento, ninguno de estos botones hace nada, pero tienen un

aspecto bonito.

Crear el controlador JSON

Los dos pasos para crear un punto final de la API son... exactamente los mismos que para

crear una página HTML: necesitamos una ruta y un controlador. Como esta ruta de la API

devolverá datos de canciones, en lugar de añadir otro método dentro de VinylController ,

vamos a crear una clase de controlador totalmente nueva. La forma en que organices este

material depende enteramente de ti.

Crea una nueva clase PHP llamada SongController ... o SongApiController también sería

un buen nombre. En su interior, ésta comenzará como cualquier otro controlador,

extendiendoAbstractController . Recuerda: esto es opcional... pero nos proporciona

métodos de acceso directo sin inconvenientes.

A continuación, crea un public function llamado, qué tal, getSong() . Añade la ruta... y

pulsa el tabulador para autocompletar esto de forma que PhpStorm añada la declaración de

uso en la parte superior. Establece la URL como /api/songs/{id} , donde id será finalmente

el id de la base de datos de la canción.

Y como tenemos un comodín en la ruta, se nos permite tener un argumento $id . Por último,

aunque no necesitamos hacerlo, como sabemos que nuestro controlador devolverá un objeto

Response , podemos establecerlo como tipo de retorno. Asegúrate de autocompletar el del

componente HttpFoundation de Symfony.

Dentro del método, para empezar, dd($id) ... sólo para ver si todo funciona.

src/Controller/SongController.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

¡Vamos a hacerlo! Dirígete a /api/songs/5 y... ¡lo tienes! Otra página nueva.

De vuelta a ese controlador, voy a pegar algunos datos de la canción: finalmente, esto vendrá

de la base de datos. Puedes copiarlo del bloque de código de esta página. Nuestro trabajo es

devolverlo como JSON.

Entonces, ¿cómo devolvemos JSON en Symfony? Devolviendo un nuevo JsonResponse y

pasándole los datos.

<?php

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

class SongController extends AbstractController

{

 #[Route('/api/songs/{id}')]

 public function getSong($id): Response

 {

 dd($id);

 }

}

src/Controller/SongController.php

1

2

 // ... lines 3 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Lo sé... ¡demasiado fácil! Refresca y... ¡hola JSON! Ahora puedes estar pensando:

“¡Ryan! Nos has estado diciendo -repetidamente- que un controlador debe devolver siempre

un objeto Symfony Response , que es lo que devuelve render() . ¿Ahora devuelve otro tipo

de objeto Response?”

Vale, es justo... pero esto funciona porque JsonResponse es una Respuesta. Me explico: a

veces es útil saltar a las clases principales para ver cómo funcionan. Para ello, en PHPStorm -

si estás en un Mac mantén pulsado comando, si no, mantén pulsado control- y luego haz clic

en el nombre de la clase a la que quieras saltar. Y... ¡sorpresa! JsonResponse extiende

Response . Sí, seguimos devolviendo un Response . Pero esta subclase está bien porque

codifica automáticamente JSON nuestros datos y establece la cabeceraContent-Type en

application/json .

El método abreviado ->json()

Ah, y de vuelta a nuestro controlador, podemos ser aún más perezosos

diciendoreturn $this->json($song) ... donde json() es otro método abreviado que viene

de AbstractController .

<?php

use Symfony\Component\HttpFoundation\JsonResponse;

class SongController extends AbstractController

{

 #[Route('/api/songs/{id}')]

 public function getSong($id): Response

 {

 // TODO query the database

 $song = [

 'id' => $id,

 'name' => 'Waterfalls',

 'url' => 'https://symfonycasts.s3.amazonaws.com/sample.mp3',

];

 return new JsonResponse($song);

 }

}

src/Controller/SongController.php

1

2

 // ... lines 3 - 9

10

11

12

13

14

 // ... lines 15 - 20

21

22

23

24

Hacer esto no supone ninguna diferencia, porque sólo es un atajo para devolver ... ¡un

JsonResponse !

Si estás construyendo una API seria, Symfony tiene un componenteserializer que es

realmente bueno para convertir objetos en JSON... y luego JSON de nuevo en objetos.

Hablamos mucho de él en nuestro tutorial de la Plataforma API, que es una potente biblioteca

para crear APIs en Symfony.

A continuación, vamos a aprender cómo hacer que nuestras rutas sean más inteligentes, por

ejemplo, haciendo que un comodín sólo coincida con un número, en lugar de coincidir con

cualquier cosa.

<?php

class SongController extends AbstractController

{

 #[Route('/api/songs/{id}')]

 public function getSong($id): Response

 {

 return $this->json($song);

 }

}

Chapter 13: Rutas inteligentes: Sólo GET y Validar

{Comodines}

Ahora que tenemos una nueva página, en tu terminal, ejecuta de nuevo debug:router .

php bin/console debug:router

Sí, ¡ahí está nuestra nueva ruta! Observa que la tabla tiene una columna llamada "Método" que

dice "cualquiera". Esto significa que puedes hacer una petición a esta URL utilizando cualquier

método HTTP -como GET o POST- y coincidirá con esa ruta.

Restringir las rutas sólo a GET o POST

Pero el objetivo de nuestra nueva ruta API es permitir a los usuarios hacer una petición GET

para obtener datos de la canción. Técnicamente, ahora mismo, también podrías hacer una

petición POST a esto... y funcionaría perfectamente. Puede que no nos importe, pero a menudo

con las APIs, querrás restringir una ruta para que sólo funcione con un método específico como

GET, POST o PUT. ¿Podemos hacer que esta ruta, de alguna manera, sólo funcione con

peticiones GET?

Sí! Añadiendo otra opción a la Route . En este caso, se llama methods , ¡incluso se

autocompleta! Establece esto como un array y, pon GET .

src/Controller/SongController.php

1

2

 // ... lines 3 - 9

10

11

12

13

14

 // ... lines 15 - 22

23

24

Voy a mantener pulsado Comando y a hacer clic en la clase Route de nuevo... para que

podamos ver que... ¡sí! methods es uno de los argumentos.

Volvemos a debug:router :

php bin/console debug:router

Bien. La ruta ahora sólo coincidirá con las peticiones GET. Es... un poco difícil probar esto, ya

que un navegador siempre hace peticiones GET si vas directamente a una URL... pero aquí es

donde otro comando de bin/console resulta útil: router:match .

Si lo ejecutamos sin argumentos

php bin/console router:match

Nos da un error, ¡pero muestra cómo se utiliza! Inténtalo:

php bin/console router:match /api/songs/11

Y... ¡eso coincide con nuestra nueva ruta! Pero ahora pregúntate qué pasaría si hiciéramos una

petición POST a esa URL con --method=POST :

<?php

class SongController extends AbstractController

{

 #[Route('/api/songs/{id}', methods: ['GET'])]

 public function getSong($id): Response

 {

 }

}

php bin/console router:match /api/songs/11 --method=POST

¡Ninguna ruta coincide con esta ruta con ese método! Pero dice que casi coincide con nuestra

ruta.

Restringir los comodines de ruta mediante Regex

Vamos a hacer una cosa más para restringir nuestra nueva ruta. Voy a añadir una pista de tipo

int al argumento $id .

src/Controller/SongController.php

1

2

 // ... lines 3 - 9

10

11

12

13

14

 // ... lines 15 - 22

23

24

Eso... no cambia nada, excepto que ahora PHP tomará la cadena id de la URL que Symfony

pasa a este método y la convertirá en un int , lo cual es... agradable porque entonces estamos

tratando con un verdadero número entero en nuestro código.

Puedes ver la sutil diferencia en la respuesta. Ahora mismo, el campo id es una cadena.

Cuando actualizamos, id es ahora un número verdadero en JSON.

Pero... si alguien se hiciera el remolón... y pasara a /api/songs/apple ... ¡vaya! ¡Un error

PHP, que, en producción, sería una página de error 500! Eso no me gusta.

Pero... ¿qué podemos hacer? El error se produce cuando Symfony intenta llamar a nuestro

controlador y le pasa ese argumento. Así que no podemos poner código en el controlador para

comprobar si $id es un número: ¡es demasiado tarde!

<?php

class SongController extends AbstractController

{

 #[Route('/api/songs/{id}', methods: ['GET'])]

 public function getSong(int $id): Response

 {

 }

}

¿Y si, en cambio, pudiéramos decirle a Symfony que esta ruta sólo debe coincidir si el comodín

id es un número? ¿Es posible? Totalmente

Por defecto, cuando tienes un comodín, coincide con cualquier cosa. Pero puedes cambiarlo

para que coincida con una expresión regular personalizada. Dentro de las llaves, justo después

del nombre, añade un < , luego > y, entre medias, \d+ . Es una expresión regular que significa

"un dígito de cualquier longitud".

src/Controller/SongController.php

1

2

 // ... lines 3 - 9

10

11

12

13

14

 // ... lines 15 - 22

23

24

¡Pruébalo! Actualiza y... ¡sí! A 404. No se ha encontrado ninguna ruta: simplemente no ha

coincidido con esta ruta. Un 404 está muy bien... pero un error 500... eso es algo que queremos

evitar. Y si volvemos a /api/songs/5 ... eso sigue funcionando.

A continuación: si me preguntaras cuál es la parte más central e importante de Symfony, no lo

dudaría: son los servicios. Descubramos qué es un servicio y cómo es la clave para liberar el

potencial de Symfony.

<?php

class SongController extends AbstractController

{

 #[Route('/api/songs/{id<\d+>}', methods: ['GET'])]

 public function getSong(int $id): Response

 {

 }

}

Chapter 14: Objetos de servicio

Veo a Symfony como dos grandes partes. La primera parte es el sistema de ruta, controlador y

respuesta. Es muy simple y bueno... ¡ya eres un experto en ello! La segunda mitad de Symfony

se trata de los muchos objetos útiles que están flotando por ahí... ¡sólo esperando a que los

usemos!

Objetos de servicio Hola

Por ejemplo, cuando renderizamos una plantilla, lo que estamos haciendo en realidad es

aprovechar un objeto Twig y pedirle que renderice una plantilla. También hay un objeto

registrador, un objeto caché, un objeto de conexión a la base de datos, un objeto que ayuda a

hacer peticiones a la API, ¡y muchos, muchos más! Y cuando instalas un nuevo paquete, eso te

da aún más objetos útiles.

La verdad es que todo lo que hace Symfony lo hace... uno de estos objetos útiles. Diablos, ¡hay

incluso un objeto router que se encarga de encontrar la ruta adecuada para la página dada!

En el mundo de Symfony, y realmente en el mundo de la programación orientada a objetos en

general, estos "objetos que hacen trabajo" tienen un nombre especial: servicios. Pero no dejes

que esa palabra te confunda. Cuando oigas servicio, piensa: ¡es un objeto que hace trabajo!

Como un objeto de plantilla que representa una plantilla o un objeto de conexión a la base de

datos que realiza consultas.

Y como los objetos de servicio hacen trabajo, son básicamente... ¡herramientas que te ayudan

a hacer tu trabajo! La segunda mitad de Symfony consiste en descubrir qué servicios están

disponibles y cómo utilizarlos.

El comando debug:autowiring

Vamos a probar algo. En nuestro controlador, quiero registrar un mensaje... quizás algún

mensaje de depuración. Como registrar un mensaje es un trabajo, lo hace un servicio.

¿Nuestra aplicación ya tiene un servicio de registro? Y si es así, ¿cómo lo conseguimos?

Para averiguarlo, ve a tu terminal y ejecuta otro comando bin/console :

php bin/console debug:autowiring

Saluda a uno de los comandos más potentes de bin/console . Me encanta esta cosa! Esta

lista todos los servicios que existen en nuestra aplicación. De acuerdo, en realidad no es la lista

completa, pero esto muestra los servicios que probablemente necesites. Y aunque nuestra

aplicación es pequeña, ¡hay muchas cosas aquí! Hay un servicio de sistema de archivos... y

aquí abajo un servicio de caché. ¡Incluso hay un servicio Twig!

¿Hay un servicio de registro? Puedes mirar en esta lista... o puedes volver a ejecutar este

comando y buscar la palabra log:

php bin/console debug:autowiring log

¡Excelente! Por ahora, ignora todo excepto la primera línea. Esta línea nos dice que hay un

servicio de registro y que este objeto implementa una interfaz llamada

Psr\Log\LoggerInterface .

Obtención de un servicio mediante autoconexión

Vale, ¿y por qué nos ayuda saber eso? Porque si quieres un servicio, lo pides utilizando la

sugerencia de tipo que se muestra en este comando. Se llama autoconexión.

Vamos a probarlo. Dirígete a nuestro controlador y añade un segundo argumento. En realidad,

el orden de los argumentos no importa. Lo que importa es que el nuevo argumento se indique

con LoggerInterface . Pulsaré el tabulador para autocompletarlo... para que PhpStorm añada

la declaración de uso en la parte superior.

En este caso, el argumento puede llamarse como sea, como $logger . Cuando Symfony ve

esta sugerencia de tipo, busca dentro de la lista debug:autowiring ... y como hay una

coincidencia, nos pasará el servicio de registro.

Así que ahora conocemos dos tipos diferentes de argumentos que podemos tener en el

controlador: puedes tener un argumento cuyo nombre coincida con un comodín de la ruta o un

argumento cuyo tipo-hint coincida con uno de los servicios de nuestra app.

Utilizar el registrador

Bien, ahora que sabemos que Symfony nos pasará el objeto de servicio logger, ¡vamos a

utilizarlo! No sé, todavía, qué métodos puedo llamar en él pero... si decimos$logger-> ...

PhpStorm... ¡nos lo dice! ¡Ha sido fácil!

Voy a registrar algo en un nivel de prioridad info() . Digamos:

“Devolución de la respuesta de la API para la canción”

Y luego el $id .

src/Controller/SongController.php

1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 10

11

12

13

14

15

 // ... lines 16 - 22

23

 // ... lines 24 - 25

26

27

En realidad, podemos hacer algo aún más genial con este servicio de registro. Añade {song}

al mensaje... y añade un segundo argumento, que es una matriz de información extra que

quieres adjuntar al mensaje de registro. Pasa songajustado a $id . En un minuto, verás que el

registrador imprimirá el id real en lugar de {song} .

<?php

use Psr\Log\LoggerInterface;

class SongController extends AbstractController

{

 #[Route('/api/songs/{id<\d+>}', methods: ['GET'])]

 public function getSong(int $id, LoggerInterface $logger): Response

 {

 $logger->info('Returning API response for song '.$id);

 }

}

src/Controller/SongController.php

1

2

 // ... lines 3 - 10

11

12

13

14

15

 // ... lines 16 - 22

23

24

25

 // ... lines 26 - 27

28

29

En cualquier caso, este controlador es para nuestra ruta de la API. Así que vamos a refrescarlo.

¡Um... ok! Así que no hay error, ¡eso es bueno! ¿Pero ha funcionado? ¿Dónde se registra

realmente el servicio de registro?

Averigüémoslo a continuación, aprendamos un truco para ver el perfilador incluso para las

peticiones de la API y luego aprovechemos nuestro segundo servicio directamente.

<?php

class SongController extends AbstractController

{

 #[Route('/api/songs/{id<\d+>}', methods: ['GET'])]

 public function getSong(int $id, LoggerInterface $logger): Response

 {

 $logger->info('Returning API response for song {song}', [

 'song' => $id,

]);

 }

}

Chapter 15: El servicio Twig y el perfilador de

peticiones de la API

Como esta página acaba de cargarse sin ningún error, pensamos que acabamos de registrar

con éxito un mensaje a través del servicio de registro. Pero... ¿dónde van los mensajes de

registro? ¿Cómo podemos comprobarlo?

El servicio de registro lo proporciona una biblioteca que hemos instalado antes, llamada

monolog, que forma parte del paquete de depuración. Y puedes controlar su configuración

dentro del archivoconfig/packages/monolog.yaml , incluyendo dónde se registran los

mensajes de registro, por ejemplo, en qué archivo. Nos centraremos más en la configuración

en el siguiente tutorial.

El perfilador de peticiones de la API

Pero una forma de ver siempre los mensajes de registro de una petición es a través del

perfilador Esto es muy útil. Ve a la página de inicio, haz clic en cualquier enlace de la barra de

herramientas de depuración web... y luego ve a la sección Registros. Ahora veremos todos los

mensajes de registro que se hicieron sólo durante esa última petición a la página de inicio.

¡Genial! Excepto que... nuestro mensaje de registro se hace en una ruta de la API... ¡y las rutas

de la API no tienen una barra de herramientas de depuración web en la que podamos hacer

clic! ¿Estamos atascados? No! Actualiza esta página una vez más... y luego ve manualmente a

/_profiler . Esta es... una especie de puerta secreta al sistema de perfiles... y esta página

muestra las últimas diez peticiones realizadas en nuestro sistema. La segunda en la parte

superior es la petición de la API que acabamos de hacer. Haz clic en el pequeño enlace del

token para ver... ¡sí! ¡Estamos viendo el perfil de esa petición de la API! En la sección de

Registros... ¡ahí está!

“Respuesta de la API para la canción 5”

... e incluso puedes ver la información extra que hemos pasado.

Renderizar una plantilla Twig manualmente

Vale, los servicios son tan importantes que... Quiero hacer un ejemplo rápido más. Vuelve a

VinylController . El método render() es realmente un atajo para obtener el servicio "Twig",

llamar a algún método de ese objeto para renderizar la plantilla... y luego poner la cadena

HTML final en un objeto Response . Es un gran atajo y deberías utilizarlo.

Pero! Como reto, ¿podríamos renderizar una plantilla sin usar ese método? ¡Por supuesto!

Hagámoslo.

Primer paso: encontrar el servicio que hace el trabajo que necesitas hacer. Así que tenemos

que encontrar el servicio Twig. Volvamos a hacer nuestro truco:

php bin/console debug:autowiring twig

Y... ¡sí! Al parecer, el tipo de pista que tenemos que utilizar es Twig\Environment .

¡De acuerdo! Vuelve a nuestro método, añade un argumento, escribe Environment , y pulsa el

tabulador para autocompletarlo y que PhpStorm añada la sentencia use . Vamos a llamarlo

$twig .

A continuación, en lugar de usar render , digamos $html = y luego $twig-> . Al igual que con

el registrador, no necesitamos saber qué métodos tiene esta clase, porque, gracias a la

sugerencia de tipo, PhpStorm puede decirnos todos los métodos. El método render() parece

que es probablemente lo que queremos. El primer argumento es el nombre de la cadena de la

plantilla a renderizar y el argumento $context contiene las variables. Así que... tiene los

mismos argumentos que ya estábamos pasando.

Para ver si funciona, dd($html) .

src/Controller/VinylController.php

1

2

 // ... lines 3 - 10

11

12

13

14

15

 // ... lines 16 - 24

25

26

27

28

29

30

 // ... lines 31 - 40

41

¡Hora de probar! Dirígete a la página de inicio... ¡y sí! ¡Acabamos de renderizar una plantilla

manualmente! ¡Increíble! Y podemos terminar esta página envolviendo eso en una

respuesta:return new Response($html) .

src/Controller/VinylController.php

1

2

 // ... lines 3 - 10

11

12

13

14

15

 // ... lines 16 - 24

25

26

27

28

29

30

31

 // ... lines 32 - 41

42

Y ahora... ¡la página funciona! Y entendemos que la verdadera forma de renderizar una plantilla

es a través del servicio Twig. Algún día te encontrarás en una situación en la que necesites

<?php

class VinylController extends AbstractController

{

 #[Route('/', name: 'app_homepage')]

 public function homepage(Environment $twig): Response

 {

 $html = $twig->render('vinyl/homepage.html.twig', [

 'title' => 'PB & Jams',

 'tracks' => $tracks,

]);

 dd($html);

 }

}

<?php

class VinylController extends AbstractController

{

 #[Route('/', name: 'app_homepage')]

 public function homepage(Environment $twig): Response

 {

 $html = $twig->render('vinyl/homepage.html.twig', [

 'title' => 'PB & Jams',

 'tracks' => $tracks,

]);

 return new Response($html);

 }

}

renderizar una plantilla pero no estés en un controlador... y por tanto no tengas el método

abreviado $this->render() . Saber que hay un servicio Twig que puedes recuperar será la

clave para resolver ese problema. Más sobre esto en el próximo tutorial.

Pero en una aplicación real, en un controlador, no hay razón para hacer todo este trabajo extra.

Así que voy a revertir esto... y volver a usar render() . Y... entonces ya no necesitamos

autocablear ese argumento... e incluso podemos limpiar la declaraciónuse .

Aquí están los tres grandes, gigantescos e importantes puntos de partida. En primer lugar,

Symfony está repleto de objetos que hacen su trabajo... a los que llamamos servicios. Los

servicios son herramientas. Segundo, todo el trabajo en Symfony lo hace un servicio... incluso

cosas como el enrutamiento. Y en tercer lugar, podemos utilizar los servicios para ayudarnos a

realizar nuestro trabajo mediante la autoconexión de los mismos.

En el próximo tutorial de esta serie, profundizaremos en este concepto tan importante.

Pero antes de que terminemos este tutorial, quiero hablar de otra cosa increíble y asombrosa:

Webpack Encore, la clave para escribir CSS y JavaScript de forma profesional. A lo largo de

estos últimos capítulos, vamos a dar vida a nuestro sitio e incluso a hacerlo tan responsivo

como una aplicación de una sola página.

Chapter 16: Configuración de Webpack Encore

Nuestra configuración de CSS está bien. Ponemos los archivos en el directorio public/ y

luego... apuntamos a ellos desde dentro de nuestras plantillas. Podríamos añadir archivos de

JavaScript de la misma manera.

Pero si queremos tomarnos realmente en serio la escritura de CSS y JavaScript, tenemos que

llevar esto al siguiente nivel. E incluso si te consideras un desarrollador principalmente de

backend, las herramientas de las que vamos a hablar te permitirán escribir CSS y JavaScript de

forma más fácil y menos propensa a errores que a lo que probablemente estés acostumbrado.

La clave para llevar nuestra configuración al siguiente nivel es aprovechar una biblioteca de

nodos llamada Webpack. Webpack es la herramienta estándar de la industria para empaquetar,

minificar y analizar tu CSS, JavaScript y otros archivos del frontend. Pero no te preocupes:

Node es sólo JavaScript. Y su papel en nuestra aplicación será bastante limitado.

Configurar Webpack puede ser complicado. Por eso, en el mundo Symfony, utilizamos una

herramienta ligera llamada Webpack Encore. Sigue siendo Webpack... ¡sólo lo hace más fácil!

Y tenemos un tutorial gratuito sobre ello si quieres profundizar.

Instalar Encore

Pero vamos a hacer un curso intensivo ahora mismo. Primero, en tu línea de comandos,

asegúrate de que tienes instalado Node:

node -v

También necesitarás npm -que viene con Node automáticamente- o yarn :

yarn --version

Npm y yarn son gestores de paquetes de Node: son el Compositor para el mundo de Node... y

puedes usar cualquiera de los dos. Si decides usar yarn - que es lo que yo usaré - asegúrate

de instalar la versión 1.

Estamos a punto de instalar un nuevo paquete... así que vamos a confirmar todo:

git add .

Y... se ve bien:

git status

Así que confirma todo:

git commit -m "Look mom! A real app"

Para instalar Encore, ejecuta:

composer require encore

Esto instala WebpackEncoreBundle. Recuerda que un bundle es un plugin de Symfony. Y este

paquete tiene una receta: una receta muy importante. Ejecuta:

git status

La receta de Encore

Por primera vez, la receta ha modificado el archivo .gitignore . Vamos a comprobarlo. Abre

.gitignore . Lo de arriba es lo que teníamos originalmente... y lo de abajo es lo nuevo que ha

añadido WebpackEncoreBundle. Está ignorando el directorionode_modules/ , que es

básicamente el directorio vendor/ para Node. No necesitamos confirmarlo porque esas

bibliotecas de proveedores se describen en otro archivo nuevo de la receta: package.json .

Este es el archivo composer.jsonde Node: describe los paquetes de Node que necesita

nuestra aplicación. El más importante es el propio Webpack Encore, que es una biblioteca de

Node. También tiene algunos otros paquetes que nos ayudarán a realizar nuestro trabajo.

La receta también ha añadido un directorio assets/ ... y un archivo de configuración para

controlar Webpack: webpack.config.js . El directorio assets/ ya contiene un pequeño

conjunto de archivos para que podamos empezar.

Instalar las dependencias de Node

Bien, con Composer, si no tuviéramos este directorio vendor/ , podríamos

ejecutarcomposer install que le diría que leyera el archivo composer.json y volviera a

descargar todos los paquetes en vendor/ . Lo mismo ocurre con Node: tenemos un archivo

package.json . Para descargarlo, ejecuta

yarn install

O:

npm install

¡Go node go! Esto tardará unos instantes mientras se descarga todo. Probablemente recibirás

algunas advertencias como ésta, que puedes ignorar.

¡Genial! Esto hizo dos cosas. En primer lugar, descargó un montón de archivos en el

directorionode_modules/ : el directorio de "proveedores" de Node. También creó un

archivoyarn.lock ... o package-lock.json si estás usando npm. Esto sirve para el mismo

propósito de composer.lock : almacena las versiones exactas de todos los paquetes para que

obtengas las mismas versiones la próxima vez que instales tus dependencias.

En su mayor parte, no necesitas preocuparte por estos archivos de bloqueo... excepto que

debes confirmarlos. Hagámoslo. Ejecuta:

git status

Entonces:

git add .

Hermoso:

git status

Y confirma:

git commit -m "Adding Webpack Encore"

¡Hey! ¡Ya está instalado Webpack Encore! Pero... ¡todavía no hace nada! Aprovechado. A

continuación, vamos a utilizarlo para llevar nuestro JavaScript al siguiente nivel.

Chapter 17: Empaquetar JS y CSS con Encore

Cuando instalamos Webpack Encore, su receta nos dio este nuevo directorio assets/ . Mira el

archivo app.js . Es interesante. Observa cómo importa este archivo bootstrap . En realidad

es bootstrap.js : este archivo de aquí. La extensión .js es opcional.

Importaciones de JavaScript

Esta es una de las cosas más importantes que nos da Webpack: la capacidad de importar un

archivo JavaScript de otro. Podemos importar funciones, objetos... realmente cualquier cosa

desde otro archivo. Vamos a hablar más sobre este archivobootstrap.js dentro de un rato.

Esto también importa un archivo CSS? Si no has visto esto antes, puede parecer... raro:

¿JavaScript importando CSS?

Para ver cómo funciona todo esto, en app.js , añade un console.log() .

assets/app.js

 // ... lines 1 - 12

13

14

Y app.css ya tiene un fondo de cuerpo... pero añade un !important para que podamos ver

definitivamente si se está cargando.

assets/styles/app.css

1

2

3

Vale... ¿entonces quién lee estos archivos? Porque... no viven en el directorio public/ ... así

que no podemos crear etiquetas script o link que apunten directamente a ellos.

webpack.config.js

console.log('Hi! My name is app.js!');

body {

 background-color: lightgray !important;

}

Para responder a esto, abre webpack.config.js . Webpack Encore es un binario ejecutable:

vamos a ejecutarlo en un minuto. Cuando lo hagamos, cargará este archivo para obtener su

configuración.

Y aunque hay un montón de funciones dentro de Webpack, lo único en lo que tenemos que

centrarnos ahora es en esta: addEntry() . Este app puede ser cualquier cosa... como

dinosaur , no importa. Te mostraré cómo se utiliza en un minuto. Lo importante es que apunta

al archivo assets/app.js . Por ello,app.js será el primer y único archivo que Webpack

analizará.

Esto es bastante bueno: Webpack leerá el archivo app.js y luego seguirá todas las

declaraciones deimport recursivamente hasta que finalmente tenga una colección gigante de

todo el JavaScript y el CSS que nuestra aplicación necesita. Entonces, lo escribirá en el

directorio public/ .

Ejecutando Webpack Encore

Vamos a verlo en acción. Busca tu terminal y ejecuta:

yarn watch

Esto es, como dice, un atajo para ejecutar encore dev --watch . Si miras tu archivo

package.json , viene con una sección script con algunos atajos.

En cualquier caso, yarn watch hace dos cosas. En primer lugar, crea un nuevo directorio

public/build/y, dentro, los archivos app.css y app.js Pero no dejes que los nombres te

engañen: app.js contiene mucho más que lo que hay dentro de assets/app.js : contiene

todo el JavaScript de todas las importaciones que encuentra. app.css contiene todo el CSS de

todas las importaciones.

La razón por la que estos archivos se llaman app.css y app.js es por el nombre de la

entrada.

Así que la conclusión es que, gracias a Encore, de repente tenemos nuevos archivos en el

directoriopublic/build/ que contienen todo el JavaScript y el CSS que necesita nuestra

aplicación

Las funciones Twig de Encore

Y si te diriges a tu página de inicio y la actualizas... ¡woh! Ha funcionado al instante!? El fondo

ha cambiado... y en mi inspector... ¡está el registro de la consola! ¿Cómo diablos ha ocurrido

eso?

Abre tu diseño base: templates/base.html.twig . El secreto está en las

funcionesencore_entry_link_tags() y encore_entry_script_tags() . Apuesto a que

puedes adivinar lo que hacen: añadir la etiqueta link a build/app.css y la etiqueta

scripta build/app.js .

Puedes ver esto en tu navegador. Mira la fuente de la página y... ¡sí! La etiqueta link para

/build/app.css ... y la etiqueta script para /build/app.js . Ah, pero también ha

renderizado otras dos etiquetas script . Eso es porque Webpack es muy inteligente. Por

motivos de rendimiento, en lugar de volcar un gigantesco archivo app.js , a veces Webpack lo

divide en varios archivos más pequeños. Afortunadamente, estas funciones Twig de Encore son

lo suficientemente inteligentes como para manejar eso: incluirá todas las etiquetas de enlace o

de script necesarias.

Lo más importante es que el código que tenemos en nuestro archivo assets/app.js -

incluyendo todo lo que importa- ¡ahora funciona y aparece en nuestra página!

Vigilancia de los cambios

Ah, y como hemos ejecutado yarn watch , Encore sigue funcionando en segundo plano en

busca de cambios. Compruébalo: entra en app.css ... y cambia el color de fondo. Guarda,

pasa y actualiza

assets/styles/app.css

1

2

3

¡Se actualiza instantáneamente! Eso es porque Encore se ha dado cuenta del cambio y ha

recompilado el archivo construido muy rápidamente.

A continuación: vamos a trasladar nuestro CSS existente al nuevo sistema y a aprender cómo

podemos instalar e importar bibliotecas de terceros -mira Bootstrap o FontAwesome-

body {

 background-color: maroon !important;

}

directamente en nuestra configuración de Encore.

Chapter 18: Instalación de código de terceros en

nuestro JS/CSS

Ahora tenemos un nuevo y bonito sistema de JavaScript y CSS que vive completamente dentro

del directorioassets/ . Vamos a trasladar nuestros estilos públicos a éste.

Abrepublic/styles/app.css , copia todo esto, borra todo el directorio... y pégalo en el nuevo

app.css . Gracias a encore_entry_link_tags() enbase.html.twig , el nuevo CSS se está

incluyendo... y ya no necesitamos la antigua etiquetalink .

Ve a comprobarlo. Refresca y... ¡todavía se ve muy bien!

Instalación de bibliotecas JavaScript/CSS de terceros

Vuelve a base.html.twig . ¿Qué pasa con estas etiquetas de enlace externo para bootstrap y

FontAwesome? Bueno, puedes mantener totalmente estos enlaces CDN. Pero también

podemos procesar estas cosas a través de Encore. ¿Cómo? Instalando Bootstrap y

FontAwesome como bibliotecas de proveedor e importándolas.

Elimina todas estas etiquetas de enlace... y luego actualiza. ¡Vaya! Vuelve a parecer que he

diseñado este sitio. Vamos... primero a volver a añadir bootstrap. Busca tu terminal. Ya que el

comando watch se está ejecutando, abre una nueva pestaña de terminal y ejecútalo:

yarn add bootstrap --dev

Esto hace tres cosas. Primero, añade bootstrap a nuestro archivo package.json . Segundo,

descarga bootstrap en nuestro directorio node_modules/ ... lo encontrarías aquí abajo. Y

tercero, actualiza el archivo yarn.lock con la versión exacta de bootstrap que acaba de

descargar.

Si nos detuviéramos ahora... ¡esto no supondría ninguna diferencia! Hemos descargado

bootstrap -yay- pero no lo estamos utilizando.

Para usarlo, tenemos que importarlo. Entra en app.css . Al igual que en los archivos

JavaScript, podemos importar desde dentro de los archivos CSS diciendo @import y luego el

archivo. Podemos hacer referencia a un archivo en el mismo directorio con

./other-file.css . O, si quieres importar algo del directorio node_modules/ en CSS, hay un

truco: un ~ y luego el nombre del paquete: bootstrap .

assets/styles/app.css

1

 // ... lines 2 - 34

Eso es todo En cuanto hicimos eso, la función de vigilancia de Encore reconstruyó nuestro

archivo app.css ... ¡que ahora incluye Bootstrap! Observa: actualiza la página y... ¡volvemos a

estar de vuelta! ¡Qué bien!

Las otras dos cosas que nos faltan son FontAwesome y una fuente específica. Para añadirlas,

vuelve al terminal y ejecútalas:

yarn add @fontsource/roboto-condensed --dev

Revelación completa: hice algunas búsquedas antes de grabar para saber los nombres de

todos los paquetes que necesitamos. Puedes buscar los paquetes en https://npmjs.com.

Añadamos también el último que necesitamos:

yarn add @fortawesome/fontawesome-free --dev

De nuevo, esto descargó las dos bibliotecas en nuestro proyecto... pero no las utiliza

automáticamente todavía. Como esas bibliotecas contienen archivos CSS, vuelve a nuestro

archivoapp.css e impórtalos: @import '~' y luego @fortawesome/fontawesome-free . Y

@import '~@fontsource/roboto-condensed' .

assets/styles/app.css

1

2

3

4

 // ... lines 5 - 34

@import '~bootstrap';

@import '~bootstrap';

@import '~@fortawesome/fontawesome-free';

@import '~@fontsource/roboto-condensed';

https://npmjs.com/

El primer paquete debería arreglar este icono... y el segundo debería hacer que la fuente

cambie en toda la página. Observa el tipo de letra cuando refrescamos... ¡ha cambiado! Pero...

los iconos siguen estando algo rotos.

Importar archivos específicos de node_modules/

Para ser totalmente honesto, no estoy seguro de por qué esto no funciona fuera de la caja.

Pero la solución es bastante interesante. Mantén pulsado command en un Mac -o ctrl en caso

contrario- y haz clic en esta cadena fontawesome-free .

Cuando usas esta sintaxis, va a tu directorio node_modules/ ,

a@fortawesome/fontawesome-free ... y entonces, si no pones ningún nombre de archivo

después de esto, hay un mecanismo en el que esta biblioteca le dice a Webpack qué archivo

CSS debe importar. Por defecto, importa este archivo fontawesome.css . Por alguna razón...

eso no funciona. Lo que queremos es este all.css .

Y podemos importarlo añadiendo la ruta: /css/all.css . No necesitamos el archivo minificado

porque Encore se encarga de minificar por nosotros.

assets/styles/app.css

1

2

3

4

 // ... lines 5 - 34

Y ahora... ¡estamos de vuelta!

La principal razón por la que me encanta Webpack Encore y este sistema es que nos permite

utilizar importaciones adecuadas. Incluso podemos organizar nuestro JavaScript en pequeños

archivos -poniendo clases o funciones en cada uno- y luego importarlos cuando los

necesitemos. Ya no son necesarias las variables globales.

Webpack también nos permite utilizar cosas más serias como React o Vue: incluso puedes ver,

en webpack.config.js , los métodos para activarlos.

Pero, por lo general, me gusta utilizar una encantadora biblioteca de JavaScript llamada

Stimulus. Y quiero hablarte de ella a continuación.

@import '~bootstrap';

@import '~@fortawesome/fontawesome-free/css/all.css';

@import '~@fontsource/roboto-condensed';

Chapter 19: Stimulus: Un JavaScript Sensato y

Bonito

Quiero hablar de Stimulus. Stimulus es una pequeña pero encantadora biblioteca de JavaScript

que me encanta. Y Symfony tiene un soporte de primera clase para ella. También es muy

utilizada por la comunidad de Ruby on Rails.

SPA vs. Aplicaciones "tradicionales"

Hay dos filosofías en el desarrollo web. La primera es que devuelves el HTML de tu sitio, como

hemos hecho en nuestra página de inicio y de navegación, y luego añades el comportamiento

de JavaScript a ese HTML. La segunda filosofía es utilizar un marco de trabajo de JavaScript

para construir todo tu HTML y JavaScript, lo que supone una aplicación de una sola página.

La solución correcta depende de tu aplicación, pero a mí me gusta mucho el primer enfoque. Y

utilizando Stimulus -así como otra herramienta de la que hablaremos en unos minutos llamada

Turbo- podemos crear aplicaciones altamente interactivas que se ven y se sienten tan

responsivas como una aplicación de una sola página.

Tenemos un tutorial completo sobre Stimulus, pero vamos a probarlo. Ya puedes ver cómo

funciona en el ejemplo de su documentación. Creas una pequeña clase JavaScript llamada

controlador... y luego adjuntas ese controlador a uno o más elementos de la página. Y ya está

Stimulus te permite adjuntar escuchas de eventos -como eventos de clic- y tiene otras cosas

buenas.

Controladores Stimulus en nuestra aplicación

 Tip

En versiones recientes de Symfony (y, especificamente, WebpackEncoreBundle v2),

Stimulus ya no viene instalado con symfony/webpack-encore-bundle . Para instalarlo,

ejecuta:

composer require symfony/stimulus-bundle

En nuestra aplicación, cuando instalamos Encore, nos dio un directorio controllers/ . Aquí es

donde vivirán nuestros controladores Stimulus. Y en app.js , importamosbootstrap.js . No

es un archivo que tengas que mirar mucho, pero es súper útil. Esto pone en marcha Stimulus -

sí, ya está instalado- y registra todo lo que hay en el directorio controllers/ como un

controlador Stimulus. Esto significa que si quieres crear un nuevo controlador Stimulus, ¡sólo

tienes que añadir un archivo a este directorio controllers/ !

Y obtenemos un controlador de Estímulos fuera de la caja llamado hello_controller.js .

Todos los controladores de Estímulos siguen la práctica de nombrar algo con "guión

bajo"controller.js o algo con guión controller.js . La parte que precede a _controller

-por tanto, hello - se convierte en el nombre del controlador.

Adjuntar un controlador a un elemento

Adjuntemos esto a un elemento. Abre templates/vinyl/homepage.html.twig . Veamos... en

la parte principal de la página, voy a añadir un div... y luego para adjuntar el controlador a este

elemento, añade data-controller="hello" .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 35

36

 // ... lines 37 - 59

¡Vamos a probarlo! Actualiza y... ¡sí! ¡Ha funcionado! El estímulo ha visto este elemento, ha

instanciado el controlador... y luego nuestro código ha cambiado el contenido del elemento. El

elemento al que está unido este controlador está disponible como this.element .

¡El estímulo ve dinámicamente nuevos elementos!

 <div data-controller="hello"></div>

Así que... esto ya es muy bonito... porque conseguimos trabajar dentro de un objeto JavaScript

ordenado... que está ligado a un elemento específico.

Pero déjame mostrarte la parte más genial de Stimulus: lo que hace que cambie el juego.

Inspecciona el elemento en las herramientas de tu navegador cerca del elemento. Voy a

modificar el HTML del elemento padre. Justo encima de éste -aunque no importa dónde- añade

otro elemento con data-controller="hello" .

Y... ¡boom! ¡Vemos el mensaje! Esta es la característica estrella de Stimulus: puedes añadir

estos elementos data-controller a la página cuando quieras. Por ejemplo, si haces una

llamada Ajax... que añade HTML fresco a tu página, Stimulus se dará cuenta de ello y ejecutará

los controladores a los que el nuevo HTML deba estar unido. Si alguna vez has tenido

problemas en los que has añadido HTML a tu página mediante Ajax... pero el JavaScript de ese

nuevo HTML está roto porque le faltan algunos escuchadores de eventos, pues Stimulus acaba

de resolverlo.

La función stimulus_controller ()

Cuando usas Stimulus dentro de Symfony, obtenemos unas cuantas funciones de ayuda para

hacernos la vida más fácil. Así, en lugar de escribir data-controller="hello" a mano,

podemos decir{{ stimulus_controller('hello') }} .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 35

36

 // ... lines 37 - 59

Pero eso es sólo un atajo para renderizar ese atributo exactamente igual que antes.

Bien, ahora que tenemos lo básico de Stimulus, vamos a utilizarlo para hacer algo real, como

hacer una petición Ajax cuando hagamos clic en este icono de reproducción. Eso es lo

siguiente.

 <div {{ stimulus_controller('hello') }}></div>

Chapter 20: Ejemplo de Stimulus en el mundo real

Pongamos a prueba a Stimulus. Éste es nuestro objetivo: cuando hagamos clic en el icono de

reproducción, haremos una petición Ajax a nuestra ruta de la API... la que está en

SongController . Esto devuelve la URL donde se puede reproducir esta canción. Entonces

usaremos eso en JavaScript para... ¡reproducir la canción!

Toma hello_controller.js y cámbiale el nombre a, qué tal

song-controls_controller.js . Dentro, sólo para ver si esto funciona, en connect() ,

registra un mensaje. El métodoconnect() se llama cada vez que Stimulus ve un nuevo

elemento coincidente en la página.

assets/controllers/song-controls_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ahora, en la plantilla, hola ya no va a funcionar, así que quita eso. Lo que quiero hacer es

rodear cada fila de canciones con este controlador.... así que es este elementosong-list .

Después de la clase, añade {{ stimulus_controller('song-controls') }} .

import { Controller } from '@hotwired/stimulus';

/*

 * This is an example Stimulus controller!

 *

 * Any element with a data-controller="hello" attribute will cause

 * this controller to be executed. The name "hello" comes from the filename:

 * hello_controller.js -> "hello"

 *

 * Delete this file or adapt it for your use!

 */

export default class extends Controller {

 connect() {

 console.log('I just appeared into existence!');

 }

}

templates/vinyl/homepage.html.twig

1

2

3

4

5

6

 // ... lines 7 - 36

37

38

 // ... lines 39 - 50

51

52

 // ... lines 53 - 55

56

57

Vamos a probarlo Actualiza, comprueba la consola y... ¡sí! Golpeó nuestro código seis veces!

Una vez por cada uno de estos elementos. Y cada elemento recibe su propia instancia de

controlador, por separado.

Añadir acciones de Stimulus

Bien, a continuación, cuando hagamos clic en reproducir, queremos ejecutar algún código. Para

ello, podemos añadir una acción. Tiene este aspecto: en la etiqueta a , añade

{{ stimulus_action() }} -otra función de acceso directo- y pásale el nombre del

controlador al que estás adjuntando la acción - song-controls - y luego un método dentro de

ese controlador que debe ser llamado cuando alguien haga clic en este elemento. ¿Qué te

parece play .

{% extends 'base.html.twig' %}

{% block title %}Create a new Record | {{ parent() }}{% endblock %}

{% block body %}

<div class="container">

 {% for track in tracks %}

 <div class="song-list" {{ stimulus_controller('song-controls') }}>

 </div>

 {% endfor %}

</div>

{% endblock %}

templates/vinyl/homepage.html.twig

1

2

3

4

5

6

 // ... lines 7 - 36

37

38

39

40

41

42

 // ... lines 43 - 49

50

51

52

 // ... lines 53 - 55

56

57

Genial, ¿no? De vuelta en el controlador de la canción, ya no necesitamos el método

connect() : no tenemos que hacer nada cada vez que veamos otra fila song-list . Pero sí

necesitamos un método play() .

Y al igual que con los escuchadores de eventos normales, éste recibirá un objeto event ... y

entonces podremos decir event.preventDefault() para que nuestro navegador no intente

seguir el clic del enlace. Para probar, console.log('Playing!') .

assets/controllers/song-controls_controller.js

1

 // ... lines 2 - 11

12

13

14

15

16

17

18

¡Vamos a ver qué pasa! Actualiza y... haz clic. Ya funciona. Así de fácil es enganchar un oyente

de eventos en Stimulus. Ah, y si inspeccionas este elemento... esa

{% extends 'base.html.twig' %}

{% block title %}Create a new Record | {{ parent() }}{% endblock %}

{% block body %}

<div class="container">

 {% for track in tracks %}

 <div class="song-list" {{ stimulus_controller('song-controls') }}>

 <div class="d-flex mb-3">

 <i class="fas fa-play me-3"></i>

 </div>

 </div>

 {% endfor %}

</div>

{% endblock %}

import { Controller } from '@hotwired/stimulus';

export default class extends Controller {

 play(event) {

 event.preventDefault();

 console.log('Playing!');

 }

}

funciónstimulus_action() es sólo un atajo para añadir un atributo especial

data-actionque Stimulus entiende.

Instalar e importar Axios

Bien, ¿cómo podemos hacer una llamada Ajax desde dentro del método play()? Bueno,

podríamos utilizar la función integrada fetch() de JavaScript. Pero en su lugar, voy a instalar

una biblioteca de terceros llamada Axios. En tu terminal, instálala diciendo:

yarn add axios --dev

Ahora sabemos lo que hace: descarga este paquete en nuestro directorio node_modules , y

añade esta línea a nuestro archivo package.json .

Ah, y nota al margen: puedes utilizar absolutamente jQuery dentro de Stimulus. No lo haré,

pero funciona muy bien - y puedes instalar - e importar - jQuery como cualquier otro paquete.

Hablamos de ello en nuestro tutorial de Stimulus.

Bien, ¿cómo utilizamos la biblioteca axios? Importándola

Al principio de este archivo, ya hemos importado la clase base Controller destimulus .

Ahora import axios from 'axios' . En cuanto lo hagamos, Webpack Encore cogerá el

código fuente de axios y lo incluirá en nuestros archivos JavaScript construidos.

assets/controllers/song-controls_controller.js

 // ... lines 1 - 11

12

 // ... lines 13 - 21

Ahora, aquí abajo, podemos decir axios.get() para hacer una petición GET. Pero... ¿qué

debemos pasar para la URL? Tiene que ser algo como /api/songs/5 ... pero ¿cómo sabemos

cuál es el "id" de esta fila?

Valores de Stimulus

import axios from 'axios';

Una de las cosas más interesantes de Stimulus es que te permite pasar valores de Twig a tu

controlador Stimulus. Para ello, declara qué valores quieres permitir que se pasen a través de

una propiedad estática especial: static values = {} . Dentro, vamos a permitir que se pase

un valor de infoUrl . Me acabo de inventar ese nombre: creo que pasaremos la URL completa

a la ruta de la API. Establece esto como el tipo que será. Es decir, un String .

Aprenderemos cómo pasamos este valor desde Twig a nuestro controlador en un minuto. Pero

como tenemos esto, abajo, podemos referenciar el valor diciendo this.infoUrlValue .

assets/controllers/song-controls_controller.js

 // ... lines 1 - 11

12

 // ... line 13

14

15

16

17

 // ... line 18

19

 // ... lines 20 - 21

22

23

24

25

Entonces, ¿cómo lo pasamos? De vuelta en homepage.html.twig , añade un segundo

argumento a stimulus_controller() . Este es un array de los valores que quieres pasar al

controlador. Pasa a infoUrl el conjunto de la URL.

Hmm, pero tenemos que generar esa URL. ¿Esa ruta tiene ya un nombre? No, añade

name: 'api_songs_get_one' .

src/Controller/SongController.php

1

2

 // ... lines 3 - 10

11

12

13

14

15

 // ... lines 16 - 27

28

29

import axios from 'axios';

export default class extends Controller {

 static values = {

 infoUrl: String

 }

 play(event) {

 console.log(this.infoUrlValue);

 //axios.get()

 }

}

<?php

class SongController extends AbstractController

{

 #[Route('/api/songs/{id<\d+>}', methods: ['GET'], name: 'api_songs_get_one')]

 public function getSong(int $id, LoggerInterface $logger): Response

 {

 }

}

Perfecto. Copia eso... y de nuevo en la plantilla, establece infoURl a path() , el nombre de la

ruta... y luego una matriz con cualquier comodín. Nuestra ruta tiene un comodínid .

En una aplicación real, estas rutas probablemente tendrían cada una un id de base de datos

que podríamos pasar. Todavía no lo tenemos... así que para, en cierto modo, falsear esto, voy a

utilizarloop.index . Esta es una variable mágica de Twig: si estás dentro de un bucle de Twig

for , puedes acceder al índice -como 1, 2, 3, 4- utilizando loop.index . Así que vamos a usar

esto como una identificación falsa. Ah, y no olvides decir id: y luegoloop.index .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 36

37

38

39

40

 // ... lines 41 - 52

53

54

 // ... lines 55 - 57

58

59

¡Hora de probar! Refresca. Lo primero que quiero que veas es que, cuando pasamosinfoUrl

como segundo argumento a stimulus_controller , lo único que hace es dar salida a un

atributo muy especial data que Stimulus sabe leer. Así es como se pasa un valor a un

controlador.

Haz clic en uno de los enlaces de reproducción y... lo tienes. ¡A cada objeto controlador se le

pasa su URL correcta!

Hacer la llamada Ajax

¡Vamos a celebrarlo haciendo la llamada Ajax! Hazlo con axios.get(this.infoUrlValue) -

sí, acabo de escribirlo-, .then() y una devolución de llamada utilizando una función de flecha

que recibirá un argumento response . Esto se llamará cuando termine la llamada Ajax. Registra

la respuesta para empezar. Ah, y corrige para usar this.infoUrlValue .

{% block body %}

<div class="container">

 {% for track in tracks %}

 <div class="song-list" {{ stimulus_controller('song-controls', {

 infoUrl: path('api_songs_get_one', { id: loop.index })

 }) }}>

 </div>

 {% endfor %}

</div>

{% endblock %}

assets/controllers/song-controls_controller.js

1

2

 // ... lines 3 - 11

12

 // ... line 13

14

 // ... lines 15 - 18

19

20

21

22

23

24

25

26

27

Muy bien, actualiza... ¡y haz clic en el enlace de reproducción! ¡Sí! Ha volcado la respuesta... y

una de sus claves es data ... ¡que contiene el url !

¡Es hora de dar la vuelta de la victoria! De vuelta a la función, podemos reproducir ese audio

creando un nuevo objeto Audio -es un objeto JavaScript normal-,

pasándoleresponse.data.url ... y llamando a continuación a play() .

assets/controllers/song-controls_controller.js

1

 // ... lines 2 - 11

12

13

14

 // ... lines 15 - 18

19

20

21

22

23

24

25

26

27

28

Y ahora... cuando le demos al play... ¡por fin! Música para mis oídos.

import { Controller } from '@hotwired/stimulus';

import axios from 'axios';

export default class extends Controller {

 play(event) {

 event.preventDefault();

 axios.get(this.infoUrlValue)

 .then((response) => {

 console.log(response);

 });

 }

}

import { Controller } from '@hotwired/stimulus';

import axios from 'axios';

export default class extends Controller {

 play(event) {

 event.preventDefault();

 axios.get(this.infoUrlValue)

 .then((response) => {

 const audio = new Audio(response.data.url);

 audio.play();

 });

 }

}

Si quieres aprender más sobre Stimulus - esto ha sido un poco rápido - tenemos un tutorial

entero sobre ello... y es genial.

Para terminar este tutorial, vamos a instalar otra biblioteca de JavaScript. Ésta hará que

nuestra aplicación se sienta instantáneamente como una aplicación de una sola página. Eso a

continuación.

Chapter 21: Turbo: Supercarga tu aplicación

Bienvenido al último capítulo de nuestro tutorial de introducción a Symfony 6. Si estás viendo

esto, ¡lo estás petando! Y es hora de celebrarlo instalando un paquete más de Symfony. Pero

antes de hacerlo, como sabes, me gusta confirmar todo primero... por si el nuevo paquete

instala una receta interesante:

git add .

git commit -m "Never gonna let you go..."

Instalando symfony/ux-turbo

Bien, vamos a instalar el nuevo paquete:

composer require symfony/ux-turbo

¿Ves ese "ux" en el nombre del paquete? Symfony UX es un conjunto de bibliotecas que

añaden funcionalidad JavaScript a tu aplicación... a menudo con algo de código PHP para

ayudar. Por ejemplo, hay una biblioteca para renderizar gráficos... y otra para usar un Cropper

de imágenes con el sistema de formularios.

Recetas UX de Symfony

Así que, como puedes ver, esto instaló una receta. OoOOo. Ejecuta

git status

para que podamos ver lo que ha hecho. La mayor parte es normal, como

config/bundles.phpque significa que habilitó el nuevo bundle. Los dos cambios interesantes

sonassets/controllers.json y package.json . Comprobemos primero package.json .

Cuando instalas un paquete UX, lo que suele significar es que te estás integrando con una

biblioteca JavaScript de terceros. Y así, la receta de ese paquete añade esa biblioteca a tu

código. En este caso, la biblioteca JavaScript con la que nos estamos integrando se llama

@hotwired/turbo . Además, el propio paquete PHP symfony/ux-turbo viene con algo de

JavaScript adicional. Esta línea especial dice

“¡Hey Node! Quiero incluir un paquete llamado @symfony/ux-turbo ... pero en lugar de de

descargarlo, puedes encontrar su código en el directorio directorio

vendor/symfony/ux-turbo/Resources/assets .”

Puedes buscar literalmente en esa ruta vendor/symfony/ux-turbo/Resources/assets para

encontrar un mini paquete JavaScript. Ahora, debido a que esto actualizó nuestro archivo

package.json , tenemos que volver a instalar nuestras dependencias para descargarlo y

tenerlo todo listo.

De hecho, busca tu terminal que está ejecutando yarn watch . Tenemos un error! Dice que no

se puede encontrar el archivo @symfony/ux-turbo/package.json , intenta

ejecutaryarn install --force .

¡Vamos a hacerlo! Pulsa control+C para detener esto... y luego ejecuta

yarn install --force

o npm install --force . Luego, reinicia Encore con:

yarn watch

El otro archivo que la receta modificó fue assets/controllers.json . Vamos a echarle un

vistazo: assets/controllers.json . Esta es otra cosa que es exclusiva de Symfony UX.

Normalmente, si queremos añadir un controlador Stimulus, lo ponemos en el

directoriocontrollers/ . Pero a veces, puede que instalemos un paquete PHP y que

queramos añadir su propio controlador Stimulus en nuestra aplicación. Esta sintaxis dice

básicamente

“¡Hey Stimulus! Ve a cargar este controlador Stimulus desde ese nuevo

@symfony/ux-turbo paquete.”

Ahora bien, este controlador Stimulus en particular es un poco raro. No es uno que vayamos a

utilizar directamente dentro de la función stimulus_controller() Twig. Es una especie de

controlador falso. ¿Qué hace? Sólo con que se cargue, va a activar la biblioteca Turbo.

¡Hola Turbo! Por la actualización de la página completa

Sigo hablando de Turbo. ¿Qué es Turbo? Bueno, al ejecutar ese comando composer require...

y luego reinstalar yarn, el JavaScript de Turbo está ahora activo y funcionando en nuestro sitio.

¿Qué hace? Es sencillo: convierte cada clic en un enlace y cada envío de un formulario de

nuestro sitio en una llamada Ajax. Y eso hace que nuestro sitio sea rápido como un rayo.

Compruébalo. Haz una última actualización completa. Y luego observa... si hago clic en

Examinar, ¡no hay actualización completa de la página! Si hago clic en estos iconos, ¡no hay

actualización! Turbo intercepta esos clics, hace una llamada Ajax a la URL, y luego pone ese

HTML en nuestro sitio. Esto es enorme porque, de repente, nuestra aplicación se ve y se siente

como una aplicación de una sola página... ¡sin que nosotros hagamos nada!

La barra de herramientas de depuración web y el perfilador de

peticiones Ajax

Ahora, otra cosa interesante que notarás es que, aunque las recargas de páginas completas

han desaparecido, estas llamadas Ajax aparecen en la barra de herramientas de depuración

web. Y puedes hacer clic para ir a ver el perfil de esa llamada Ajax muy fácilmente. Esta parte

de la barra de herramientas de depuración web es aún más útil con las llamadas Ajax para una

ruta de la API. Si pulsamos el icono de reproducción... ese 7 acaba de subir a 8... ¡y aquí está

el perfilador de esa petición de la API! Abriré ese enlace en una nueva ventana. Esa es una

forma súper fácil de llegar al perfilador de cualquier petición Ajax.

Así que Turbo es increíble... y puede hacer más. Hay algunas cosas que debes saber sobre él

antes de enviarlo a producción, y si te interesa, ¡sí! tenemos un tutorial completo sobre Turbo.

Quería mencionarlo en este tutorial porque Turbo es más fácil si lo añades a tu aplicación

desde el principio.

Muy bien, ¡felicidades! ¡El primer tutorial de Symfony 6 está en los libros! Date una palmadita

en la espalda... o mejor, busca a un amigo y choca los cinco.

¡Y sigue adelante! Acompáñanos en el siguiente tutorial de esta serie, que te hará pasar de ser

un desarrollador de Symfony en ciernes a alguien que realmente entiende lo que está pasando.

Cómo funcionan los servicios, el sentido de todos estos archivos de configuración, los entornos

Symfony, las variables de entorno y mucho más. Básicamente todo lo que necesitarás para

hacer lo que quieras con Symfony.

Y si tienes alguna pregunta o idea, estamos aquí para ti en la sección de comentarios debajo

del vídeo.

Muy bien amigos, ¡hasta la próxima!

With <3 from SymfonyCasts

