Desarrollo Armonioso con
Symfony 6

=,

Chapter 1: Hola Symfony

Bienvenido. Hola. Hola, mi nombre es Ryan y tengo el absoluto placer de presentarte el
hermoso y fascinante y productivo mundo de Symfony 6. En serio, me siento como Willie
Wonka invitdndote a mi fabrica de chocolate, excepto que, con suerte, con menos lesiones
relacionadas con el azucar. De todos modos, si eres nuevo en Symfony, estoy... jsinceramente
un poco celoso! Te va a encantar el viaje... y espero que te conviertas en un desarrollador aun

mejor por el camino: definitivamente vas a construir cosas geniales.

La salsa secreta de Symfony es que empieza siendo diminuto, lo que hace que sea facil de
aprender. Pero luego, amplia sus caracteristicas automaticamente a través de un sistema de
recetas unico. En Symfony 6, esas caracteristicas incluyen nuevas herramientas de JavaScript

y un nuevo sistema de seguridad... s6lo por nombrar dos de las muchas cosas nuevas.

Symfony también es rapido como un rayo, con un gran enfoque en la creacion de una
experiencia alegre para el desarrollador, pero sin sacrificar las mejores practicas de
programacion. Si: consigues amar la codificacién y amar tu cédigo. Lo sé... ha sonado cursi,

pero es cierto.
Asi que ven conmigo y estaras en un mundo de pura elucidacion.

Es la primera vez que canto en estos tutoriales... y quiza la ultima. Empecemos.

Instalar el binario "symfony

Dirigete a https://symfony.com/download. En esta pagina, encontraras algunas instrucciones -

que variaran en funcion de tu sistema operativo- sobre cémo descargar algo llamado el binario

de Symfony.

Esto... no es realmente Symfony. Es sélo una herramienta de linea de comandos que nos
ayudara a iniciar nuevos proyectos Symfony y nos dara algunas buenas herramientas de

desarrollo local. Es opcional, pero lo recomiendo encarecidamente

Una vez que hayas instalado esto - yo ya lo he hecho - abre tu aplicacion de terminal favorita.

Yo estoy usando iTerm para mac, pero no importa. Si lo has configurado todo correctamente,

https://symfony.com/download

deberias poder ejecutarlo:

symfony

O incluso mejor

symfony list

para ver una lista de todas las "cosas" que puede hacer este binario de symfony. Hay muchas
cosas aqui: cosas que ayudan al desarrollo "local"... y también algunos servicios opcionales

para el despliegue. Vamos a repasar las cosas que necesitas saber a lo largo del camino.

jlniciemos una aplicacién Symfony!

Bien, queremos iniciar una nueva y brillante aplicacion Symfony. Para ello, ejecuta:

symfony new mixed_vinyl

Donde "mixed_vinyl" es el directorio en el que se descargara la nueva app. Se trata de nuestro
proyecto secreto para combinar la mejor parte de los afios 90 -no, no el Internet de acceso
telefénico, hablo de las cintas de mezcla- con el deleite auditivo de los discos. Mas adelante

hablaremos de ello.

Entre bastidores, este comando utiliza Composer -el gestor de paquetes de PHP- para crear el

nuevo proyecto. Mas adelante hablaremos de ello.

El resultado final es que podemos pasar a nuestro nuevo directorio mixed _vinyl. Abre esta

carpeta en tu editor favorito. Yo estoy usando PhpStorm y lo recomiendo encarecidamente.

Conociendo nuestro nuevo Proyecto

¢ Qué ha hecho ese comando symfony new? Ha arrancado un nuevo proyecto Symfony! Ooh.

Y ya tenemos un repositorio git. Ejecuta:

git status

Si: en la rama principal, nada que confirmar. Prueba:

git log

Genial. Después de descargar el nuevo proyecto, el comando confirmé todos los archivos
originales automaticamente... lo cual fue muy agradable. Aunque me gustaria que el primer

mensaje de confirmacion fuera un poco mas rockero.

iLo que realmente quiero mostrarte es que nuestro nuevo proyecto es super pequefio! Prueba

este comando:

git show --name-only

iSi! Todo nuestro proyecto es... unos 17 archivos. Y aprenderemos sobre todos ellos a lo largo

del camino. Pero quiero que te sientas comodo: no hay mucho codigo aqui.

Vamos a anadir funciones poco a poco. Pero si quieres empezar con un proyecto mas grande y

con mas funciones, puedes hacerlo ejecutando el comando symfony new con --webapp.

@ Tip

Si quieres una nueva aplicacion Symfony con todas las funciones, echa un vistazo a

https://github.com/dunglas/symfony-docker

Comprobacion de los requisitos del sistema

Antes de saltar a la codificacion, vamos a asegurarnos de que nuestro sistema esta listo.

Ejecuta otro comando del binario de symfony:

https://github.com/dunglas/symfony-docker

symfony check:req

iParece que esta bien! Si a tu instalacion de PHP le falta alguna extension... o hay algun otro

problema... como que tu ordenador es en realidad una tetera, esto te lo hara saber.

Iniciar el servidor web de desarrollo

Entonces: tenemos una nueva aplicacion Symfony aqui... jy nuestro sistema esta listo! Todo lo
que necesitamos ahora es un subwoofer. Es decir, jun servidor web! Puedes configurar un
servidor web real como Nginx o algo moderno como Caddy. Pero para el desarrollo local, el

binario de Symfony puede ayudarnos. Corre:

symfony serve -d

Y... jtenemos un servidor web funcionando! jVuelve!

La primera vez que ejecutes esto, es posible que te pida que ejecutes otro comando para

configurar un certificado SSL, lo cual esta bien porque entonces el servidor soporta https.

iMomento de la verdad! Copia la URL, gira hacia tu navegador, aguanta la respiracion y jwoo!
Hola pagina de bienvenida de Symfony 6... completa con extravagantes cambios de color cada

Vez que recargamos.

A continuacién: conozcamos -y hagamonos amigos- del codigo dentro de nuestra aplicacion,

para poder desmitificar lo que hace cada parte. Luego codificaremos.

Chapter 2: Conoce nuestra Diminuta App

Vamos a conocer nuestro nuevo proyecto porque mi objetivo final es que entiendas realmente
cémo funcionan las cosas. Como he mencionado, no hay mucho aqui todavia... unos 15
archivos. Y realmente sélo hay tres directorios en los que tengamos que pensar o

preocuparnos.

El directorio public/

El primero es public/ ... y esto es sencillo: es la raiz del documento. En otras palabras, si
necesitas que un archivo sea accesible publicamente -como un archivo de imagen o un archivo

CSS- tiene que vivir dentro de public/.

Ahora mismo, esto contiene exactamente un archivo: index.php, que se llama "controlador

frontal"
1 <?php
2
3 use App\Kernel;
4
5 require_once dirname(__DIR__).'/vendor/autoload_runtime.php';
6
7 return function (array $context) {
8 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);
9 5

Ooo. Es una palabra elegante que significa que, independientemente de la URL a la que vaya
el usuario, éste es el script que siempre se ejecuta primero. Su trabajo es arrancar Symfony y
ejecutar nuestra aplicacion. Y ahora que lo hemos visto, probablemente no tengamos que

pensar ni abrirlo nunca mas.

config/ & src/

Y, realmente, aparte de poner archivos CSS o de imagen en public/, este no es un directorio
con el que vayas a tratar en el dia a dia. Lo que significa... Que en realidad so6lo hay dos

directorios en los que tenemos que pensar: config/ y src/.

El directorio config/ contiene... jgatos! Ya me gustaria. No, contiene archivos de
configuracion. Y src/ contiene el 100% de tus clases PHP. Pasaremos el 95% de nuestro

tiempo dentro del directoriosrc/ .

composer.json & vendor/

Bien... ;dénde esta "Symfony"? Nuestro proyecto comenzo con un archivo composer.json.
En él se enumeran todas las librerias de terceros que necesita nuestra aplicacion. El comando
"symfony new" que ejecutamos en secreto utilizé "composer" -es decir, el gestor de paquetes
de PHP- para instalar estas librerias... que en realidad es s6lo una forma de decir que

Composer descargo estas librerias en el directorio vendor/ .

El propio Symfony es en realidad una coleccidon de un montéon de pequenas bibliotecas que

resuelven cada una un problema especifico. En el directorio vendor/symfony/, parece que ya
tenemos unas 25 de ellas. Técnicamente, nuestra aplicacion solo requiere estos seis paquetes,
pero algunos de ellos requieren otros paquetes... y Composer es lo suficientemente inteligente

como para descargar todo lo que necesitamos.

De todos modos, "Symfony", o en realidad, un conjunto de bibliotecas de Symfony, vive en el
directorio vendor/y nuestra nueva aplicacion aprovecha ese codigo para hacer su trabajo.
Mas adelante hablaremos de Composer y de la instalacion de paquetes de terceros. Pero en su

mayor parte, vendor/ es otro directorio del que... jno tenemos que preocuparnos!

bin/ y var/

Entonces, ¢qué queda? Bueno, bin/ contiene exactamente un archivo... y siempre contendra
s6lo este archivo. Hablaremos de lo que hace bin/console un poco mas tarde. Y el directorio
var/ contiene archivos de caché y de registro. Esos archivos son importantes... pero nunca

necesitaremos mirar o pensar en esas Cosas.

Si, vamos a vivir casi exclusivamente dentro de los directorios config/ y src/.

Configuracion de PhpStorm

Bien, una ultima tarea antes de empezar a codificar. Siéntete libre de utilizar el editor de codigo
que quieras: PhpStorm, VS Code, code carrier pigeon, lo que sea. Pero recomiendo
encarecidamente PhpStorm. Hace que desarrollar con Symfony sea un suefio... jy ni siquiera
me pagan por decir eso! Aunque, si quieren empezar a pagarme, acepto el pago en

stroopwafels.

Parte de lo que hace que PhpStorm sea tan bueno es un plugin disefiado especificamente para
Symfony. Voy a mis preferencias de PhpStorm y, dentro, busco Plugins, Marketplace y luego
busco Symfony. Aqui esta. jEste plugin es increible.... lo que puedes ver porque ha sido
descargado 5,4 millones de veces! Ahade toneladas de locas funciones de autocompletado que

son especificas de Symfony.

Si aun no lo tienes, instalalo. Una vez instalado, vuelve a Configuracion y busca aqui arriba
"Symfony" para encontrar una nueva area de Symfony. El unico truco de este plugin es que
tienes que activarlo para cada proyecto. Asi que haz clic en esa casilla. Ademas, no es

demasiado importante, pero cambia el directorio web a public/.

Pulsa Ok y... jestamos listos! Vamos a dar vida a nuestra aplicacién creando nuestra primera

pagina a continuacion.

Chapter 3: Rutas, controladores y respuestas

Tengo que decir que echo de menos los afos 90. Bueno, no los beanie babies vy...
definitivamente no la forma de vestir de entonces, pero... las cintas de mezclas. Si no eras un
nifio en los 80 o los 90, quiza no sepas lo dificil que era compartir tus canciones favoritas con
tus amigos. Oh si, estoy hablando de un mashup de Michael Jackson, Phil Collins y Paula

Abdul. La perfeccién.

Para aprovechar esa nostalgia, pero con un toque hipster, vamos a crear una nueva aplicacion
llamada Mixed Vinyl: una tienda en la que los usuarios pueden crear cintas de mezclas, con
Boyz || Men, Mariah Carey y Smashing Pumpkins... s6lo que prensadas en un disco de vinilo.

Hmm, puede que tenga que poner un tocadiscos en mi coche.

La pagina que estamos viendo, que es super bonita y cambia de color cuando refrescamos...
no es una pagina real. Es solo una forma de que Symfony nos diga "hola" y nos enlace a la
documentacion. Y por cierto, la documentacion de Symfony es genial, asi que no dudes en

consultarla mientras aprendes.

Rutas y controladores

Vale: todo framework web en cualquier lenguaje tiene el mismo trabajo: ayudarnos a crear
paginas, ya sean paginas HTML, respuestas JSON de la API o arte ASCII. Y casi todos los
marcos lo hacen de la misma manera: mediante un sistema de rutas y controladores. La ruta
define la URL de la pagina y apunta a un controlador. El controlador es una funcién PHP que

construye esa pagina.

Asi que ruta + controlador = pagina. Son matematicas, gente.

Crear el controlador

Vamos a construir estas dos cosas... un poco al revés. Asi que primero, vamos a crear la

funcién del controlador. En Symfony, la funcion del controlador es siempre un método dentro de

una clase PHP. Te lo mostraré: en el directorio src/Controller/, crea una nueva clase PHP.

Vamos a llamarla VinylController, pero el nombre puede ser cualquier cosa.

src/Controller/VinylController.php

1 <?php

namespace App\Controller;

class VinylController

{
}

N oo v b wN

Y, ifelicidades! jEs nuestra primera clase PHP! ;Y adivina donde vive? En el directorio src/,
donde viviran todas las clases PHP. Y en general, no importa como organices las cosas dentro

de src/: normalmente puedes poner las cosas en el directorio que quieras y nombrar las

clases como quieras. Asi que da rienda suelta a tu creatividad.

En realidad, los controladores deben vivir en src/Controller/, a menos que cambies
alguna configuracion. La mayoria de las clases de PHP pueden vivir en cualquier lugar de

src/.

Pero hay dos reglas importantes. En primer lugar, fijate en el espacio de nombres que
PhpStorm ha anadido sobre la clase: App\Controller. Independientemente de como decidas
organizar tu directorio src/, el espacio de nombres de una clase debe coincidir con la
estructura del directorio... empezando por App. Puedes imaginar que el espacio de nombres
App\ apunta al directoriosrc/. Entonces, si pones un archivo en un subdirectorio

Controller/, necesita una parte Controller en su espacio de nombres.

Si alguna vez metes la pata, por ejemplo, si escribes algo mal o te olvidas de esto, lo vas a
pasar mal. PHP no podra encontrar la clase: obtendras un error de "clase no encontrada". Ah, y
la otra regla es que el nombre de un archivo debe coincidir con el nombre de la clase dentro de
él, mas .php. Porlo tanto, VinylController.php. Seguiremos esas dos reglas para todos

los archivos que creemos en src/.

Crear el controlador

Volvemos a nuestra tarea de crear una funcidon de controlador. Dentro, afiade un nuevo método
publico llamado homepage() . Y no, el nombre de este método tampoco importa: prueba a

ponerle el nombre de tu gato: jfuncionara!

Por ahora, solo voy a poner una declaracién die() con un mensaje.

src/Controller/VinylController.php

=

<?php

namespace App\Controller;

class VinylController

{

public function homepage()

{

O 00 N O U1 b W N

die('Vinyl: Definitely NOT a fancy-looking frisbee!');

L

[
-

-

Crear la ruta

iBuen comienzo! Ahora que tenemos una funcion de controlador, vamos a crear una ruta, que
define la URL de nuestra nueva pagina y apunta a este controlador. Hay varias formas de crear

rutas en Symfony, pero casi todo el mundo utiliza atributos.

Asi es como funciona. Justo encima de este método, decimos #[] . Esta es la sintaxis de
atributos de PHP 8, que es una forma de anadir configuracion a tu coédigo. Empieza a escribir
Route. Pero antes de que termines, fijate en que PhpStorm lo esta autocompletando. Pulsa el

tabulador para dejar que termine.

Eso, muy bien, completd la palabra Route para mi. Pero lo mas importante es que ha anadido
una declaracion use en la parte superior. Siempre que utilices un atributo, debes tener una

declaraciéon use correspondiente en la parte superior del archivo.

Dentro de Route, pasa /, que sera la URL de nuestra pagina.

src/Controller/VinylController.php

=

<?php

namespace App\Controller;

use Symfony\Component\Routing\Annotation\Route;

class VinylController

{

O 00 N O U1 h W N

#[Route('/")]
public function homepage()

{

B R R
N R

die('Vinyl: Definitely NOT a fancy-looking frisbee!');

I
A W
—
-

Y... jlisto! Esta ruta define la URL y apunta a este controlador... simplemente porque esta justo

encima de este controlador.

iVamos a probarlo! Refresca y... jfelicidades! jSymfony mir6 la URL, vio que coincidia con la
ruta - / o sin barra es lo mismo para la pagina de inicio - ejecutd nuestro controlador y golped

la declaracion die!

Ah, y por cierto, sigo diciendo funcién del controlador. Comunmente se llama simplemente

"controlador" o "accion"... sélo para confundir.

Devolver una respuesta

Bien, dentro del controlador -0 accion- podemos escribir el codigo que queramos para construir
la pagina, como hacer consultas a la base de datos, llamadas a la API, renderizar una plantilla,

lo que sea. Al final vamos a hacer todo eso.

Lo unico que le importa a Symfony es que tu controlador devuelva un objetoResponse.
Compruébalo: escribe return y luego empieza a escribir Response . Woh: hay bastantes
clases Response ya en nuestro cédigo... jy dos son de Symfony! Queremos la de HTTP
foundation. HTTP foundation es una de esas librerias de Symfony... y nos da bonitas clases
para cosas como la Peticion, la Respuesta y la Sesién. Pulsa el tabulador para autocompletar y

termina eso.

Oh, deberia haber dicho devolver una nueva respuesta. Asi esta mejor. Ahora dale al tabulador.

Cuando dejé que Response autocompletara la primera vez, muy importante, PhpStorm afadio

esta declaracion de uso en la parte superior. Cada vez que hagamos referencia a una clase o
interfaz, tendremos que anadir una sentencia use al principio del archivo en el que estemos

trabajando.

Al dejar que PhpStorm autocompletara eso por mi, afiadio la declaracion use
automaticamente. Lo haré cada vez que haga referencia a una clase. Ah, y si todavia eres un
poco nuevo en lo que respecta a los espacios de nombres de PHP y las declaraciones use,

echa un vistazo a nuestro breve y gratuito tutorial sobre espacios de nombres de PHP.

De todos modos, dentro de Response, podemos poner [o que queramos devolver al usuario:
HTML, JSON o, por ahora, un simple mensaje, como el titulo del vinilo Mixto en el que estamos

trabajando: PB y jams.

src/Controller/VinylController.php

=

<?php

namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class VinylController

{

O 00 N O U1 h W N

Jany
[

#[Route('/")]
public function homepage()

{

[S =Y
w N R

return new Response('Title: "PB and Jams"');

R P

[02 BN N

—
—

Bien, equipo, jvamos a ver qué pasa! Actualiza y... jPB y mermeladas! Puede que no parezca
gran cosa, jpero acabamos de construir nuestra primera pagina Symfony totalmente funcional!

jRuta + controlador = beneficio!

Y acabas de aprender la parte mas fundamental de Symfony... y sélo estamos empezando. Ah,
y como nuestros controladores siempre devuelven un objeto Response, es opcional, pero
puedes anadir un tipo de retorno a esta funcién si lo deseas. Pero eso no cambia nada: sélo es

una forma agradable de codificar.

src/Controller/VinylController.php

T // ... lines 1 - 9

10 #[Route('/")]

11 public function homepage(): Response
T /7 ... lines 12 - 16

A continuacidon me siento bastante seguro. Asi que vamos a crear otra pagina, pero con una

ruta mucho mas elegante que coincide con un patron comodin.

Chapter 4: Rutas comodin

La pagina de inicio sera el lugar donde el usuario podra disefiar y construir su proxima cinta de
mezclas. Pero ademas de crear nuevas cintas, los usuarios también podran explorar las

creaciones de otras personas.

Crear una segunda pagina

Vamos a crear una segunda pagina para eso. ;Cémo? Afadiendo un segundo controlador:
funcion publica, qué tal browse: el nombre no importa realmente. Y para ser responsable,

afnadiré un tipo de retorno Response.

Por encima de esto, necesitamos nuestra ruta. Esta sera exactamente igual, salvo que
pondremos la URL en /browse. Dentro del método, ¢ qué es lo que siempre devolvemos de un
controlador? Asi es: jun objeto Response! Devuelve un nuevo Response... con un mensaje

corto para empezar.

src/Controller/VinylController.php

T // ... lines 1 - 7

8 class VinylController

9 {

$ // ... lines 10 - 15

16 #[Route('/browse")]

17 public function browse(): Response

18 {

19 return new Response('Breakup vinyl? Angsty 90s rock? Browse the
collection!");

20 }

21 }

iVamos a probarlo! Si actualizamos la pagina de inicio, no cambia nada. Pero si vamos a

/browse... lo machacamos! jUna segunda pagina en menos de un minuto! jCarambal

En esta pagina, acabaremos por listar las cintas de mezclas de otros usuarios. Para ayudar a

encontrar algo que nos guste, quiero que los usuarios también puedan buscar por género. Por

ejemplo, si voy a /browse/death-metal, eso me mostraria todas las cintas de vinilo de death

metal. Hardcore.

Por supuesto, si probamos esta URL ahora mismo... no funciona.

“No se ha encontrado la ruta”

No se han encontrado rutas coincidentes para esta URL, por lo que nos muestra una pagina
404. Por cierto, lo que estas viendo es la elegante pagina de excepciones de Symfony, porque
estamos desarrollando. Nos da muchos detalles cuando algo va mal. Cuando finalmente
despliegues a produccion, puedes disefar una pagina de error diferente que verian tus

usuarios.

{Cartel de la muerte} Rutas

De todos modos, la forma mas sencilla de hacer que esta URL funcione es simplemente...

cambiar la URL a /browse/death-metal

src/Controller/VinylController.php

T /... lines 1 - 7

8 class VinylController

9 {

T // ... lines 10 - 15

16 #[Route('/browse/death-metal')]

17 public function browse(): Response

18 {

19 return new Response('Breakup vinyl? Angsty 90s rock? Browse the
collection!");

20 }

21}

Pero... no es super flexible, ¢ verdad? Necesitariamos una ruta para cada género... jque

podrian ser cientos! Y ademas, jacabamos de matar la URL /browse! Ahora es 404.

Lo que realmente queremos es una ruta que coincida con /browse/<ANYTHING>. Y podemos
hacerlo con un comodin. Sustituye el codigo duro death-metal por {} y, dentro,slug. Slug es
s6lo una palabra técnica para designar un "nombre seguro para la URL". En realidad,
podriamos haber puesto cualquier cosa dentro de las llaves, como {genre} o
{coolMusicCategory}: no hay ninguna diferencia. Pero sea lo que sea que pongamos dentro

de este comodin, se nos permite tener un argumento con ese mismo nombre: $slug.

src/Controller/VinylController.php

T // ... lines 1 - 7

8 class VinylController

9 {

T // ... lines 10 - 15

16 #[Route('/browse/{slug}')]

17 public function browse(): Response
18 {
19 return new Response('Breakup vinyl? Angsty 90s rock? Browse the

collection!');

20 }
21 }

Si, sivamos a /browse/death-metal, coincidira con esta ruta y pasara la
cadenadeath-metal a ese argumento. La coincidencia se hace por nombre: {slug} conecta

con $slug.

Para ver si funciona, devolvamos una respuesta diferente: Genre y luego la $slug.

src/Controller/VinylController.php

T /7 ... lines 1 - 7

8 class VinylController

9 {

$ // ... lines 10 - 15

16 #[Route('/browse/{slug}')]

17 public function browse($slug): Response
18 {

19 return new Response('Genre: '.$slug);
20

21 //return new Response('Breakup vinyl? Angsty 90s rock? Browse the

collection!');

22 }

$ /7 ... lines 23 - 24

jHora de probar! Vuelve a /browse/death-metal y... jsi! Prueba con /browse/emo vy jsi!

jEstoy mucho mas cerca de mi cinta de mezcla de Dashboard Confessional!

Ah, y es opcional, pero puedes afadir un tipo string al argumento $slug. Eso no cambia

nada... es solo una bonita forma de programar: el $slug ya iba a ser siempre una cadena.

src/Controller/VinylController.php

T // ... lines 1 - 7

8 class VinylController

9 {

T // ... lines 10 - 15

16 #[Route('/browse/{slug}')]
17 public function browse(string $slug): Response
18 {

T // ... lines 19 - 21
22 }

$ // ... lines 23 - 24

Un poco mas adelante, aprenderemos cémo puedes convertir un comodin numérico -como el

numero 5- en un numero entero si asi lo deseas.

Usando el componente de cadena de Symfony

Hagamos esta pagina un poco mas elegante. En lugar de imprimir el slug exactamente, vamos
a convertirlo en un titulo. Digamos $title = str_replace() y sustituyamos los guiones por
espacios. Luego, aqui abajo, utiliza el titulo en la respuesta. En un futuro tutorial, vamos a

consultar la base de datos para estos géneros, pero, por ahora, al menos podemos hacer que

tenga un aspecto mas agradable.

src/Controller/VinylController.php

T // ... lines 1 - 7

8 class VinylController

9 {

$ // ... lines 10 - 15

16 #[Route('/browse/{slug}"')]

17 public function browse(string $slug): Response
18 {
19 $title = str_replace('-', ' ', $slug);
20
21 return new Response('Genre: '.$title);
22

T // ... line 23
24 }

T // ... lines 25 - 26

Si lo probamos, el Emo no se ve diferente... pero el death metal si. jPero quiero que sea mas
elegante! Ahade otra linea con $title = yluego escribe u y autocompleta una funcién que se

[lama literalmente... u.

No utilizamos muchas funciones de Symfony, pero éste es un ejemplo raro. Proviene de una
biblioteca de Symfony llamada symfony/string. Como he mencionado, Symfony tiene
muchas bibliotecas diferentes -también llamadas componentes- y vamos a aprovechar esas
bibliotecas todo el tiempo. Esta te ayuda a hacer transformaciones de cadenas... y resulta que

ya esta instalada.

Mueve el str_replace() al primer argumento de u() . Esta funcion devuelve un objeto sobre
el que podemos hacer operaciones de cadena. Uno de los métodos se llama title().

Digamos ->title(true) para convertir todas las palabras en mayusculas y minusculas.

src/Controller/VinylController.php

1 // ... lines 1 - 8

9 class VinylController

10 {

$ // ... lines 11 - 15

16

17 #[Route('/browse/{slug}')]

18 public function browse(string $slug): Response
19 {

20 $title = u(str_replace('-"', ' ', $slug))->title(true);
21

22 return new Response('Genre: '.$title);

$ // ... lines 23 - 24

25 }

T // ... lines 26 - 27

Ahora, cuando lo probamos... jqué bien! jPone las letras en mayusculas! El componente de la
cadena no es especialmente importante, solo quiero que veas como podemos aprovechar

partes de Symfony para hacer nuestro trabajo.

Hacer que el comodin sea opcional

Bien: un ultimo reto. Ir a /browse/emo o /browse/death-metal funciona. Peroir a
/browse... no funciona. jEsta roto! Un comodin puede coincidir con cualquier cosa, pero, por

defecto, se requiere un comodin. Tenemos que ir a /browse/<something>.

¢ Podemos hacer que el comodin sea opcional? Por supuesto Y es deliciosamente sencillo: haz

que el argumento correspondiente sea opcional.

src/Controller/VinylController.php

T // ... lines 1 - 8

9 class VinylController

10 {

$ /7 ... lines 11 - 15

16

17 #[Route('/browse/{slug}"')]
18 public function browse(string $slug = null): Response
19 {

T // ... lines 20 - 24

25 }

T // ... lines 26 - 27

En cuanto lo hagamos, le dira a la capa de enrutamiento de Symfony que no es necesario que
el {slug} esté enla URL. Asi que ahora cuando refrescamos... funciona. Aunque no es un

buen mensaje para la pagina.

Veamos. Si hay un slug, pon el titulo como estabamos. Si no, pon$title a "Todos los
géneros". Ah, y mueve el "Género:" aqui arriba... para que abajo en el Response podamos

pasar simplemente $title.

src/Controller/VinylController.php

$ // ... lines 1 - 8

9 class VinylController

10 {

T // ... lines 11 - 15

16

17 #[Route('/browse/{slug}')]

18 public function browse(string $slug = null): Response
19 {

20 if ($slug) {

21 $title = 'Genre: '.u(str_replace('-', ' ', $slug))->title(true);
22 } else {

23 $title = 'All Genres';

24 }

25

26 return new Response($title);

T // ... Llines 27 - 28

29 }

$ // ... lines 30 - 31

Inténtalo. En /browse... "Todos los géneros". En /browse/emo ... "Género: Emo".

Siguiente: poner un texto como éste en un controlador.... no es muy limpio ni escalable,
especialmente si empezamos a incluir HTML. No, tenemos que hacer una plantilla. Para ello,
vamos a instalar nuestro primer paquete de terceros y seremos testigos del importantisimo

sistema de recetas de Symfony en accion.

Chapter 5: Symfony Flex: Aliases, Paquetes y
Recetas

Symfony es un conjunto de librerias que nos proporciona toneladas de herramientas:
herramientas para registrar, hacer consultas a la base de datos, enviar correos electrénicos,
renderizar plantillas y hacer llamadas a la API, por nombrar algunas. Si las cuentas, como hice

yo, Symfony consta de unas 100 bibliotecas distintas. jVaya!

Ahora quiero empezar a convertir nuestras paginas en verdaderas paginas HTML... en lugar de
devolver sdlo texto. Pero no vamos a meter un montén de HTML en nuestras clases de PHP,

qué asco. En su lugar, vamos a renderizar una plantilla.

La filosofia de Symfony de empezar poco a poco e instalar
funciones

Pero, ¢ adivina qué? jNo hay ninguna biblioteca de plantillas en nuestro proyecto! ; Qué? Pero
yo creia que acababas de decir que Symfony tiene una herramienta para renderizar plantillas!?

iMentira!

Bueno... Symfony si tiene una herramienta para eso. Pero nuestra aplicacion utiliza
actualmente muy pocas de las bibliotecas de Symfony. Las herramientas que tenemos hasta
ahora no suponen mucho mas que un sistema de ruta-controlador-respuesta. Si necesitas
renderizar una plantilla o hacer una consulta a la base de datos, no tenemos esas herramientas

instaladas en nuestra app... todavia.

De hecho, me encanta esto de Symfony. En lugar de empezar con un proyecto gigantesco, con
todo lo que necesitamos, mas toneladas de cosas que no necesitamos, Symfony empieza de

forma diminuta. Luego, si necesitas algo, lo instalas

Pero antes de instalar una biblioteca de plantillas, en tu terminal, ejecuta

git status

Vamos a confirmar todo:

git add .

Puedo ejecutar con seguridad git add . -que afade todo lo que hay en mi directorio a git-
porque uno de los archivos con los que venia nuestro proyecto originalmente era un archivo
.gitignore, que ya ignora cosas como el directorio vendor/, el directorio var/ y varias otras
rutas. Si te preguntas qué son estas cosas raras de los marcadores, esta relacionado con el

sistema de recetas, del que vamos a hablar.

En cualquier caso, ejecuta git commit y aflade un mensaje:

git commit -m "route -> controller -> response -> profit"

jPerfecto! Y ahora, estamos limpios.

Instalar una biblioteca de plantillas (Twig)

Bien, ¢como podemos instalar una biblioteca de plantillas? ;Y qué bibliotecas de plantillas
estan disponibles para Symfony? ;Y cual es la recomendada? Bueno, por supuesto, una buena

manera de responder a estas preguntas seria consultar la documentacién de Symfony.

Pero también podemos simplemente... jadivinar! En cualquier proyecto PHP, puedes anadir
nuevas bibliotecas de terceros a tu aplicacion diciendo "composer require" y luego el nombre
del paquete. Todavia no sabemos el nombre del paquete que necesitamos, asi que

simplemente lo adivinaremos:

composer require templates

Ahora bien, si has utilizado Composer antes, puede que ahora mismo estés gritando a tu

pantalla ¢ Por qué? Porque en Composer, los nombres de los paquetes son siempre

something/something. No es posible, literalmente, tener un paquete llamado simplemente

templates.

Pero mira: cuando ejecutamos esto, jfunciona! Y arriba dice que esta usando la versién 1 para

symfony/twig-pack. Twig es el nombre del motor de plantillas de Symfony.

Alias de Flex

Para entender esto, vamos a dar un pequefio paso atras. Nuestro proyecto comenzé con un
archivo composer.json que contiene varias bibliotecas de Symfony. Una de ellas se
llama symfony/flex. Flex es un plugin de Composer. En realidad, afiade tres superpoderes a

Composer.

@ Tip

El servidor flex.symfony.com se cerr6 a favor de un nuevo sistema. jPero aun puede ver

una lista de todas las recetas disponibles en j https://bit.ly/flex-recipes!

El primero, que acabamos de ver, se llama aliases de Flex. Dirigete a https:/flex.symfony.com

para ver una pagina gigante llena de paquetes. Busca "plantillas". Aqui esta. En

symfony/twig-pack, dice Aliases: template, templates, twig y twig-pack.

La idea que hay detras de los alias de Flex es muy sencilla.
Escribimos composer require templates.Y luego, internamente, Flex lo cambia

por symfony/twig-pack. En ultima instancia, ése es el paquete que Composer instala.

Esto significa que, la mayoria de las veces, puedes simplemente "composer require" lo que
quieras, como composer require logger, composer require orm,
composer require icecream, lo que sea. Es s6lo un sistema de acceso directo. Lo

importante es que, lo que realmente se instalé fue symfony/twig-pack.

Pagquetes Flex

Y eso significa que, en nuestro archivo composer.json, deberiamos ver

ahorasymfony/twig-pack bajo la clave require. Pero si te das la vuelta, jno esta ahi!

https://bit.ly/flex-recipes
https://flex.symfony.com/

iGracias! En su lugar, ha afadido symfony/twig-bundle, twig/extra-bundle,y

twig/twig.

Estamos asistiendo al segundo superpoder de Symfony Flex: desempaquetar paquetes.
Copiamos el nombre del paquete original y... podemos encontrar ese repositorio en GitHub

entrando en https://github.com/symfony/twig-pack.

Y... s6lo contiene un archivo: composer.json. Y esto requiere otros tres paquetes: los tres que

acabamos de ver anadidos a nuestro proyecto.

Esto se llama paquete Symfony. Es... realmente un paquete falso que nos ayuda a instalar
otros paquetes. Resulta que, si quieres afadir un motor de plantillas rico a tu aplicacion, es
recomendable instalar estos tres paquetes. Pero en lugar de hacer que los anadas
manualmente, puedes hacer que Composer requiera symfony/twig-pack y los obtenga
automaticamente. Cuando instalas un "paquete", como éste, Flex lo "desempaqueta"
automaticamente: encuentra los tres paquetes de los que depende el paquete y los afiade a tu

archivo composer.json.

Asi pues, los paquetes son un atajo para que puedas ejecutar un comando de

composer require y conseguir que se anadan varias bibliotecas a tu proyecto.

Bien, ¢ cual es el tercer y ultimo superpoder de Flex? Me alegro de que lo preguntes Para

averiguarlo, en tu terminal, ejecuta

git status

Recetas de Flex

Vaya. Normalmente, cuando ejecutas composer require, los unicos archivos que deberia
modificar -ademas de descargar paquetes en vendor/ - son composer.json

y composer.lock. El tercer superpoder de Flex es su sistema de recetas.

Siempre que instales un paquete, ese paquete puede tener una receta. Si la tiene, ademas de
descargar el paquete en el directorio vendor/, Flex también ejecutara su receta. Las recetas
pueden hacer cosas como anadir nuevos archivos o incluso modificar algunos archivos

existentes.

https://github.com/symfony/twig-pack

Observa: si nos desplazamos un poco hacia arriba, ah si: dice "configurando 2 recetas". Asi
que aparentemente habia una receta para symfony/twig-bundle y también una receta
paratwig/extra-bundle. Y estas recetas aparentemente actualizaron el archivo

config/bundles.phpy afnadieron un nuevo directorio y archivo.

El sistema de recetas es genial. Todo lo que tenemos que hacer es que Composer requiera una
nueva biblioteca y su receta afiadira todos los archivos de configuracion u otra configuracion
necesaria para que podamos empezar a usar esa biblioteca inmediatamente Se acabd el seguir
5 pasos de "instalacion" manual en un README. Cuando afiades una biblioteca, funciona de

forma inmediata.

A continuacion: Quiero profundizar un poco mas en las recetas. Por ejemplo, ;dénde viven?

¢, Cual es su color favorito? Y qué ha anadido esta receta especificamente a nuestra aplicacion
y por qué? También voy a contarte un pequefo secreto: todos los archivos de nuestro proyecto
-todos los archivos de config/, el directorio public/ ... todas estas cosas- se afiadieron

mediante una receta. Y lo demostraré.

Chapter 6: Recetas Flex

Acabamos de instalar un nuevo paquete ejecutando composer require templates.
Normalmente, al hacerlo, Composer actualizara los archivos composer.json y

composer. lock, pero nada mas.

Pero cuando ejecutamos

git status

Hay otros cambios. Esto es gracias al sistema de recetas de Flex. Cada vez que instalamos un
nuevo paquete, Flex comprueba en un repositorio central si ese paquete tiene una receta. Y si

la tiene, la instala.

¢, Donde viven las recetas?

¢, Dbnde viven estas recetas? En la nube... 0 mas concretamente en GitHub. Compruébalo.

Ejecutar:

composer recipes

Este es un comando afiadido a Composer por Flex. Enumera todas las recetas que se han

instalado. Y si quieres mas informacion sobre una, ejecutala:

composer recipes symfony/twig-bundle

Esta es una de las recetas que se acaba de ejecutar. Y... jguay! Nos muestra un par de cosas
bonitas! La primera es un arbol de los archivos que ha afiadido a nuestro proyecto. La segunda

es una URL de la receta que se instal6. Haré clic para abrirla.

iSi! Las recetas de Symfony viven en un repositorio especial lamado symfony/recipes. Se

trata de un gran directorio organizado por nombre de paquete. Hay un directorio symfony que
contiene las recetas de todos los paquetes que empiezan por symfony/. El que acabamos de
ver... esta aqui abajo: twig-bundle. Y luego hay diferentes versiones de la receta en funcion

de tu version del paquete. Nosotros estamos utilizando la ultima version 5.4.

Cada receta tiene un archivo manifest. json, que controla lo que hace. El sistema de recetas
s6lo puede realizar un conjunto especifico de operaciones, como afadir nuevos archivos a tu
proyecto y modificar algunos archivos concretos. Por ejemplo, esta seccién bundlesle dice a

flex que anada esta linea a nuestro archivo config/bundles.php.

Si volvemos a ejecutar git status... jsi! Ese archivo ha sido modificado. Si lo difundimos:

git diff config/bundles.php

Ha afiadido dos lineas, probablemente una para cada una de las dos recetas.

¢ Bolsos Symfony?

Por cierto, config/bundles.php no es un archivo en el que tengas que pensar mucho. Un
bundle, en la tierra de Symfony, es basicamente un plugin. Asi que si instalas un nuevo bundle
en tu aplicacion, eso te da nuevas caracteristicas de Symfony. Para activar ese bundle, su

nombre tiene que estar en este archivo.

Asi que lo primero que hizo la receta para Twig-bundle, gracias a esta linea de aqui arriba, fue
activarse dentro de bundles.php... para que no tuviéramos que hacerlo manualmente. Las

recetas son como una instalacion automatica.

Archivos nuevos y copiados

La segunda seccién del manifiesto se llama copy-from-recipe. Es sencillo: dice que hay que
copiar los directorios config/ y templates/ de la receta en el proyecto. Si nos fijamos... la
receta contiene un archivo config/packages/twig.yaml... y también un archivo

templates/base.html.twig.

De vuelta al terminal, ejecuta de nuevo git status. Vemos estos dos archivos en la parte

inferior: config/packages/twig.yaml... y dentro de templates/, base.html.twig.

Esto me encanta. Piénsalo: si instalas una herramienta de plantillas en tu aplicacidén, vamos a
necesitar alguna configuracién en algun lugar que le diga a esa herramienta de plantillas en
qué directorio debe buscar nuestras plantillas. Ve a ver ese
archivoconfig/packages/twig.yaml. Hablaremos mas de estos archivos Yaml en el proximo
tutorial. Pero a alto nivel, este archivo controla como se comporta Twig, el motor de plantillas de
Symfony. Y fijate en la clave default_path establecida en
%kernel.project_dir%/templates. No te preocupes por esta sintaxis porcentual: es una

forma elegante de referirse a la raiz de nuestro proyecto.

La cuestion es que esta configuracion dice

“iHey Twig! Cuando busques plantillas, buscalas en el directorio templates/.”

Y la receta incluso ha creado ese directorio con un archivo de disefo dentro. Lo usaremos en

unos minutos.

symfony.lock y el compromiso de los archivos

El ultimo archivo no explicado que se ha modificado es symfony.lock. Esto no es importante:

s6lo mantiene un registro de las recetas que se han instalado... y deberias confirmarlo.

De hecho, deberiamos confirmar todo esto. La receta puede darnos archivos, pero luego son

nuestros para modificarlos. Ejecuta:

git add .

Entonces:

git status

Genial. jVamos a confirmarlo!

git commit -m "Adding Twig and its beautiful recipe"

Actualizar las recetas

iYa esta! Por cierto, es posible que dentro de unos meses haya cambios en algunas de las

recetas que has instalado. Y si los hay, cuando ejecutes

composer recipes

veras un pequefo "actualizacién disponible" junto a ellas. Ejecuta

composer recipes:updatepara actualizar a la ultima version.

Ah, y antes de que se me olvide, ademas de symfony/recipes, también hay un

repositorio symfony/recipes-contrib. Asi que las recetas pueden vivir en cualquiera de
estos dos lugares. Las recetas de symfony/recipes estan aprobadas por el equipo central de
Symfony, por lo que su calidad esta un poco mas controlada. Aparte de eso, no hay ninguna

diferencia.

Nuestro proyecto comenzd como un archivo

Ahora, el sistema de recetas es tan potente que cada uno de los archivos de nuestro proyecto

se afiadié mediante una receta Puedo demostrarlo. Ve a https://github.com/symfony/skeleton.

Cuando ejecutamos originalmente ese comando symfony new para iniciar nuestro proyecto, lo
que realmente hizo fue clonar este repositorio... y luego ejecutd composer install dentro de

él, que descarga todo en el directorio vendor/ .

Si Nuestro proyecto -el que vemos aqui- era originalmente un unico archivo: composer.json.

Pero luego, cuando se instalaron los paquetes, las recetas de esos paquetes afiadieron todo lo

que vemos. Ejecuta:

https://github.com/symfony/skeleton

composer recipes

de nuevo. Una de las recetas es para algo llamado symfony/console. Comprueba sus

detalles:

composer recipes symfony/console

Y... jsi! jLa receta de symfony/console afadio el archivo bin/console! La receta de
symfony/framework-bundle -uno de los otros paquetes que se instalé originalmente- anadio

casi todo lo demas, incluido el archivo public/index.php. ¢No es genial?

Bien, a continuacion: jhemos instalado Twig! jAsi que volvamos al trabajo y utilicémoslo para

renderizar algunas plantillas! Te va a encantar Twig.

Chapter 7: Twig €

Las clases de controlador de Symfony no necesitan extender una clase base. Mientras tu
funcién de controlador devuelva un objeto Response, a Symfony no le importa el aspecto de tu

controlador. Pero normalmente, extenderas una clase llamadaAbstractController.

¢ Por qué? Porque nos da métodos de acceso directo.

Renderizacion de una plantilla

Y el primer atajo es render() : el método para renderizar una plantilla. Asi que devuelve
$this->render() y le pasa dos cosas. La primera es el nombre de la plantilla. ; Qué tal

vinyl/homepage.html.twig.

No es necesario, pero es habitual tener un directorio con el mismo nombre que la clase de tu
controlador y un nombre de archivo que sea el mismo que el de tu método, pero puedes hacer
lo que quieras. El segundo argumento es un array con las variables que quieras pasar a la
plantilla. Vamos a pasar una variable llamadatitle y a ponerle el titulo de nuestra cinta de

mezclas: "PB and Jams".

src/Controller/VinylController.php

T // ... lines 1 - 4

5 wuse Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
T // ... lines 6 - 8

9

10 class VinylController extends AbstractController

11 {

12 #[Route('/")]

13 public function homepage(): Response

14 {

15 return $this->render('vinyl/homepage.html.twig', [
16 "title' => 'PB & Jams',

17 1)

18 }

$ // ... lines 19 - 34

Hecho aqui. Ah, pero, jexamen sorpresa! ;Qué crees que devuelve el método render() ? Si,
es lo que siempre repito: un controlador siempre debe devolver un objeto Response. render()
es solo un atajo para renderizar una plantilla, obtener esa cadena y ponerla en un objeto

Response. render() devuelve un objeto Response.

Crear la plantilla

Sabemos por lo que hemos dicho antes, que cuando renderizas una plantilla, Twig busca en el
directorio templates/. Asi que crea un nuevo subdirectorio vinyl/... y dentro de él, un
archivo llamado homepage.html.twig. Para empezar, afiade un hl y luego imprime la
variable title con una sintaxis especial de Twig: {{ title }}.Y... Aidadiré un texto TODO

codificado.

templates/vinyl/homepage.html. twig

1 <hl>{{ title }}</h1l>

2

3 {# TODO: add an image of the record #}
4

5 <div>

6 Our schweet track list: TODO

7 </div>

iVamos a ver si esto funciona! Estabamos trabajando en nuestra pagina web, asi que ve alli y...

jhola Twig!

Sintaxis de Twigs 3

Twig es una de las partes mas bonitas de Symfony, y también una de las mas faciles. Vamos a

repasar todo lo que necesitas saber... basicamente en los proximos diez minutos.

Twig tiene exactamente tres sintaxis diferentes. Si necesitas imprimir algo, utiliza {{. Aesto lo
llamo la sintaxis "decir algo". Si digo {{ saySomething }}se imprimiria una variable llamada
saySomething. Una vez que estas dentro de Twig, se parece mucho a JavaScript. Por

ejemplo, si lo encierro entre comillas, ahora estoy imprimiendo la cadena saySomething. Twig

tiene funciones... por lo que llamaria a la funcion e imprimiria el resultado.

Asi que la sintaxis n° 1 -la de "decir algo"- es {{

La segunda sintaxis... no cuenta realmente. Es {# para crear un comentario... y ya esta.

templates/vinyl/homepage.html. twig

1 <hi>{{ title }}</h1>

2

3 {# TODO: add an image of the record #}
4

5 «div>

6 Our schweet track list: TODO

7 </div>

La tercera y ultima sintaxis la llamo "hacer algo". Esto es cuando no estas imprimiendo, estas
haciendo algo en el lenguaje. Ejemplos de "hacer algo" serian las sentencias if, los bucles for o

la configuracion de variables.

El bucle for

Vamos a probar un bucle for. Vuelve al controlador. Voy a pegar una lista de pistas... y luego

pasaré una variable tracks a la plantilla ajustada a esa matriz.

src/Controller/VinylController.php

1 <?php

T // ... lines 2 - 8

9

10 class VinylController extends AbstractController
11 {

12 #[Route('/")]

13 public function homepage(): Response
14 {

15 $tracks = [

16 ‘Gangsta\'s Paradise - Coolio',
17 'Waterfalls - TLC',

18 'Creep - Radiohead',

19 'Kiss from a Rose - Seal',

20 'On Bended Knee - Boyz II Men',
21 'Fantasy - Mariah Carey',

22 15

23

24 return $this->render('vinyl/homepage.html.twig', [
25 'title' => 'PB & Jams',

26 "tracks' => $tracks,

27 1);

28 }

T // ... lines 29 - 42
43 '}

Ahora, a diferencia de title, tracks es una matriz... asi que no podemos imprimirla. Pero,

jpodemos

intentarlo! jJa! Eso nos da una conversion de matriz a cadena. No, tenemos que

hacer un bucle sobre las pistas.

Anade una cabecera y un ul. Para hacer el bucle, usaremos la sintaxis "hacer algo", que es{%

y luego la cosa que quieras hacer, como for, if o set. Te mostraré la lista completa de

etiquetas de hacer algo en un minuto. Un bucle for tiene este aspecto: for track in tracks,

donde pistas es la variable sobre la que hacemos el bucle y tracksera la variable dentro del

bucle.

Después de esto, afiade {% endfor %} :la mayoria de las etiquetas "hacer algo" tienen una

etiqueta de fin. Dentro del bucle, afiade un 1i y luego utiliza la sintaxis de decir algo para

imprimir track.

templates/vinyl/homepage.html. twig

1 <hi>{{ title }}</h1>

2

3 {# TODO: add an image of the record #}
4

5 <div>

6 Tracks:

7

8

9 {% for track in tracks %}
10 <1li>

11 {{ track }}

12 </1i>

13 {% endfor %}

14

15 </div>

Uso de Sub.keys

Cuando lo probemos... jqué bien! Pero vamos a ponernos mas complicados. De vuelta en el
controlador, en lugar de utilizar un simple array, lo reestructuraré para que cada pista sea un

array asociativo con las claves song y artist. Pondré ese mismo cambio para el resto.

src/Controller/VinylController.php

1 <?php

T // ... lines 2 - 8

9

10 class VinylController extends AbstractController

11 {

12 #[Route('/")]

13 public function homepage(): Response

14 {

15 $tracks = [

16 ["song' => 'Gangsta\'s Paradise', 'artist' => 'Coolio'],
17 ['song' => 'Waterfalls', 'artist' => 'TLC'],

18 ["song"' => 'Creep', 'artist' => 'Radiohead'],

19 ["song' => 'Kiss from a Rose', 'artist' => 'Seal'],

20 ["song"' => 'On Bended Knee', 'artist' => 'Boyz II Men'],
21 ["song"' => 'Fantasy', 'artist' => 'Mariah Carey'],

22 15

T // ... lines 23 - 27

28 }

T /7 ... lines 29 - 42

43 }

¢, Qué ocurre si lo probamos? Ah, volvemos a la conversion de "matriz a cadena". Cuando
hacemos el bucle, cada pista es ahora una matriz. ; Cédmo podemos leer las claves songy

artist?

¢ Recuerdas cuando dije que Twig se parece mucho a JavaScript? Pues bien, no deberia

sorprender que la respuesta sea track.song y track.artist.

templates/vinyl/homepage.html. twig

T // ... lines 1 - 7

8

9 {% for track in tracks %}

10 <1i>

11 {{ track.song }} - {{ track.artist }}
12 </1li>

13 {% endfor %}

14

$ // ... lines 15 - 16

Y... eso hace que nuestra lista funcione.

Ahora que ya tenemos lo basico de Twig, vamos a ver la lista completa de etiquetas "hacer
algo", a conocer los "filtros" de Twig y a abordar el importantisimo sistema de herencia de

plantillas.

Chapter 8: Herencia Twig

Dirigete a https://twig.symfony.com... y haz clic para consultar su documentacion. Hay mucho

material bueno aqui. Pero lo que quiero que hagas es que te desplaces hasta la referencia a
Twig. jSi!

Etiquetas

Lo primero que debes mirar, a la izquierda, son estas cosas llamadas etiquetas. Esta lista
representa todas las cosas posibles que puedes utilizar con la sintaxis de hacer algo. Si,
siempre sera {% y luego una de estas cosas, como for o if.Y sinceramente, solo vas a
utilizar unas 5 de ellas en el dia a dia. Si quieres saber la sintaxis de uno de ellos, sdlo tienes

que hacer clic para ver su documentacion.

Filtros

Ademas de las 20 etiquetas, Twig también tiene algo llamado filtros. Los filtros son basicamente
funciones, pero con una sintaxis mas moderna. Twig también tiene funciones, pero son menos:

Twig prefiere los filtros: json mucho mas chulos!

Por ejemplo, hay un filtro llamado upper. Usar un filtro es como usar la tecla | en la linea de

comandos. Tienes un valor y luego lo "canalizas" en el filtro que quieres, como upper.

iVamos a probar esto! Imprime track.artist|upper.

templates/vinyl/homepage.html. twig

T // ... lines 1 - 10
11 {{ track.song }} - {{ track.artist|upper }}
$ // ... lines 12 - 16

Y ahora... jestd en mayusculas! Si quieres confundir a tus compafieros de trabajo, puedes
canalizarlo a lower... que devuelve las cosas a minusculas. No hay ninguna razon real para

hacer esto, pero los filtros pueden encadenarse asi.

https://twig.symfony.com/

templates/vinyl/homepage.html. twig

T // ... lines 1 - 10
11 {{ track.song }} - {{ track.artist|upper|lower }}
T // ... lines 12 - 16

De todos modos, echa un vistazo a la lista de filtros porque probablemente haya algo que te

resulte util.

Y... jeso es todo! Ademas de las funciones, también hay algo llamado "pruebas", que son utiles

en las sentencias if: puedes decir cosas como "si el numero es divisible por 5".

Herencia de Plantillas

Vale, s6lo una cosa mas que aprender sobre Twig, y es genial.

Mira el codigo fuente HTML de la pagina. Fijate en que no hay estructura HTML: no hay
etiquetas html, head o body. Literalmente el HTML que tenemos dentro de nuestra plantilla,

es lo que obtenemos. Nada mas.

Entonces, ¢ hay... algun tipo de sistema de disefio en Twig en el que podamos afadir un disefio
base a nuestro alrededor? Por supuesto. Y es increible. Se llama herencia de plantillas. Si
tienes una plantilla y quieres que utilice algun disefo base, en la parte superior del archivo,
utiliza una etiqueta "hacer algo" llamada extends. Pasale el nombre del archivo de disefo:

base.html.twig.

templates/vinyl/homepage.html. twig

1 {% extends 'base.html.twig' %}
T // ... lines 2 - 18

Esto se refiere a esta plantilla de aqui. Antes de comprobarlo, si lo intentamos ahora, jvaya!

Gran error:
“Una plantilla que extiende otra no puede incluir contenido fuera de los bloques Twig.”

Para saber qué significa esto, abre base.html.twig. Este es tu archivo de disefo base... y
eres totalmente libre de personalizarlo como quieras. Ahora mismo... es en su mayor parte soélo

etiquetas HTML aburridas... excepto por una serie de estos "bloques".

Los bloques son basicamente "agujeros” en los que una plantilla hija puede colocar contenido.
Permiteme explicarlo de otra manera. Cuando decimos extends 'base.html.twig', eso dice

basicamente:

“iYo Twig! Cuando renderices esta plantilla, quiero que realmente renderices

base.htmlL. twig... y luego pongas mi contenido dentro de ella.”

Twig responde educadamente:

“Vale, genial... Puedo hacerlo. Pero, ;en qué parte de base.html.twig quieres que ponga
todo tu contenido? ¢;Quieres que lo ponga al final de la pagina? ¢;En la parte parte superior?

¢En algun lugar al azar en el medio?”

La forma de decirle a Twig dénde poner nuestro contenido dentro de base.html.twig es
anulando un bloque. Fijate en que base.html.twig ya tiene un bloque llamado body ... y ahi

es justo donde queremos poner el HTML de nuestra plantilla.

Para ponerlo ahi, en nuestra plantilla, rodea todo el contenido con{% block body %}...y
luego {% endblock %}.

templates/vinyl/homepage.html. twig

1 {% extends 'base.html.twig' %}

3 {% block body %}

4 <hl>{{ title }}</h1>

5

6 {# TODO: add an image of the record #}
7

8 «div>

9 Tracks:
10
11
12 {% for track in tracks %}
13
14 {{ track.song }} - {{ track.artist }}
15 </1i>
16 {% endfor %}
17
18 </div>

19 {% endblock %}

A esto se le llama herencia de la plantilla porque estamos sobrescribiendo ese bloque body
con este nuevo contenido. Asi que ahora, cuando Twig renderice base.html.twig... y lleque a

esta parte block body, va a imprimir el HTML block body de nuestra plantilla

Observa: actualiza y... el error ha desaparecido. Y si ves el codigo fuente de la pagina,

itenemos una pagina HTML completa!

Nombres de los bloques

Ah, y los nombres de estos bloques no son importantes. Si quieres cambiarles el nombre por el
de tu personaje favorito de una sitcom de los 90, hazlo. Sélo recuerda actualizar también su

nombre en cualquier plantilla hija.

También puedes afiadir mas bloques. Cada bloque que afiadas es otro punto de anulacion

potencial.

Contenido del bloque por defecto

Ah, y habras notado que los bloques pueden tener contenido por defecto. Mira la pagina ahora
mismo: el titulo dice "Bienvenido". Eso es porque el bloque title tiene un contenido por

defecto... y no lo vamos a anular. Vamos a cambiar el titulo por defecto a "Vinilo mixto".

templates/base.html. twig

T // ... lines 1 - 4
5 <title>{% block title %}Mixed Vinyl{% endblock %}</title>
T // ... lines 6 - 20

Asi que ahora ese sera el titulo de todas las paginas de nuestro sitio... a menos que lo
anulemos. En nuestra plantilla, ya sea por encima del cuerpo del bloque o por debajo -el orden
de los bloques no importa-, anade {% block title %}, {% endblock %} y, en medio, "Crear

un nuevo disco".

templates/vinyl/homepage.html. twig

1 {% extends 'base.html.twig' %}
{% block title %}Create a new Record{% endblock %}
{% block body %}

// ... lines 6 - 20
21 {% endblock %}

S v howoN

Y ahora... jsi! Esta pagina tiene un titulo personalizado.

Anadir al bloque padre (en lugar de sustituirlo)

Ah, y puede que te preguntes

“.Qué pasa si no quiero sustituir un bloque por completo.... sino que quiero afiadir a un

bloque?”

Eso es totalmente posible. En base.html.twig, el bloque title esta configurado como
"Vinilo mixto". Si quisiéramos anadirle nuestro titulo personalizado, podriamos decir "Crear un
nuevo disco" y luego utilizar la etiqueta "decir algo" para imprimir una funcion llamada

parent().

templates/vinyl/homepage.html. twig

1 {% extends 'base.html.twig' %}
{% block title %}Create a new Record | {{ parent() }}{% endblock %}
{% block body %}

// ... lines 6 - 20
21 {% endblock %}

S b owoN

Eso hace exactamente lo que esperarias: encuentra el contenido de la plantilla padre para este

bloque... y lo imprime. Actualiza y... eso es muy bonito.

La herencia de plantillas es la herencia de clases

Si alguna vez estas confundido sobre como funciona la herencia de plantillas, es util, al menos
para mi, pensar en ella exactamente como en la herencia orientada a objetos. Cada plantilla es

como una clase y cada bloque es como un método. Asi, la "clase" de la pagina de inicio

extiende la "clase" de base.html.twig, pero anula dos de sus métodos. Si eso sélo te ha

confundido, no te preocupes.

Asi que... eso es todo para Twig. Basicamente eres un experto en Twig, lo que me han dicho

gue es un tema popular en las fiestas.

A continuacioén: una de las caracteristicas mas destacadas de Symfony son sus herramientas

de depuracion. Vamos a instalarlas y a comprobarlas.

Chapter 9: Perfilador: Tu mejor amigo para la
depuracion

Es hora de instalar nuestro segundo paquete. Y éste es divertido. Vamos a confirmar nuestros
cambios primero: asi sera mas facil comprobar los cambios que hace la receta del nuevo

paquete.

Anade todo:

git add .

Parece que esta bien, asi que... confirma:

git commit -m "Added some Tiwggy goodness"

Bonito.

El paquete de depuracion

Ahora ejecuta:

composer require debug

Asi que si, este es otro alias de Flex... y aparentemente es un alias de symfony/debug-pack.Y
sabemos que un paquete es una coleccion de paquetes. Asi que, en lugar de afnadir esta unica
linea a nuestro archivo composer.json, si lo comprobamos, parece que ha afadido un nuevo
paquete en la seccion require -se trata de una biblioteca de registro- y... al final, ha afadido

una nueva seccidnrequire-dev con otras tres bibliotecas.

La diferencia entre require y require-dev no es demasiado importante: todos estos
paquetes se descargaron en nuestra aplicacion, pero como mejor practica, si instalas una
biblioteca que soélo esta pensada para el desarrollo local, deberias ponerla enrequire-dev. El

pack lo hizo por nosotros! jGracias pack!

Cambios en la receta

De vuelta al terminal, jesto también instal6 tres recetas! Ooh. Veamos qué han hecho. Limpio la

pantalla y corro:

git status

Esto me resulta familiar: modificé config/bundles.php para activar tres nuevos bundles. De

nuevo, los bundles son plugins de Symfony, que afiaden mas funciones a nuestra aplicacion.

También afadié varios archivos de configuracion al directorio config/packages/. Hablaremos
mas de estos archivos en el préximo tutorial, pero, a alto nivel, controlan el comportamiento de

esos bundles.

La barra de herramientas de depuracion web y el perfilador

¢ Qué nos aportan estos nuevos paquetes? Para averiguarlo, dirigete a tu navegador y
actualiza la pagina de inicio. jSanto cielo, Batman! Es la barra de herramientas de depuracion
web. Esto es una locura de depuracién: una barra de herramientas llena de buena informacion.
A la izquierda, puedes ver el controlador al que se ha llamado junto con el cédigo de estado
HTTP. También esta la cantidad de tiempo que tardo la pagina, la memoria que utilizé y también

cuantas plantillas se renderizaron a través de Twig: este es el bonito icono de Twig.

En el lado derecho, tenemos detalles sobre el servidor web local Symfony que se esta

ejecutando e informacion sobre PHP.

Pero aun no has visto la mejor parte: haz clic en cualquiera de estos iconos para saltar al
perfilador. Esta es la barra de herramientas de depuracion web... enloquecida. Esta llena de
datos sobre esa peticion, como la peticion y la respuesta, todos los mensajes de registro que se

produjeron durante esa peticion, informacion sobre las rutas y la ruta a la que se respondié,

Twig te muestra qué plantillas se renderizaron y cuantas veces se renderizaron... y hay

informacion de configuracion aqui abajo. jUf!

Pero mi seccion favorita es la de Rendimiento. Muestra una linea de tiempo de todo lo que ha
ocurrido durante la peticion. Esto es genial por dos razones. La primera es bastante obvia:
puedes usarla para encontrar qué partes de tu pagina son lentas. Asi, por ejemplo, nuestro
controlador tardé 20,4 milisegundos. Y dentro de la ejecucion del controlador, la plantilla de la
pagina de inicio se renderizé en 3,9 milisegundos y base.html.twigse renderiz6 en 2,8

milisegundos.

La segunda razon por la que esto es realmente genial es que descubre todas las capas ocultas
de Symfony. Ajusta este umbral a cero. Antes, esto sélo mostraba las cosas que tardaban mas
de un milisegundo. Ahora lo muestra todo. No tienes que preocuparte por la gran mayoria de
las cosas, pero es superguay ver las capas de Symfony: las cosas que ocurren antes y
después de que se ejecute tu controlador. Tenemos un tutorial de inmersion profunda para

Symfony si quieres aprender mas sobre estas cosas.

La barra de herramientas de depuracion web y el perfilador también creceran con nuestra
aplicacién. En un futuro tutorial, cuando instalemos una libreria para hablar con la base de
datos, de repente tendremos una nueva seccidn que enumera todas las consultas a la base de

datos que hizo una pagina y el tiempo que tard6 cada una.

funciones dump().y_dd()

Bien, el paquete de depuracion instal6 la barra de herramientas de depuracion web. También
ha instalado una biblioteca de registro que utilizaremos mas adelante. Y ha instalado un

paquete que nos proporciona dos fantasticas funciones de depuracion.

Dirigete a VinylController. Imagina que estamos haciendo un desarrollo y necesitamos ver
como es esta variable $tracks. En este caso es bastante obvio, pero a veces querras ver lo

que hay dentro de un objeto complejo.

Para ello, digamos dd($tracks), donde "dd" significa "dump" y "die".

src/Controller/VinylController.php

T // ... lines 1 -9

10 class VinylController extends AbstractController
11 {

12 #[Route('/")]

13 public function homepage(): Response
14 {

$ // ... lines 15 - 22

23 dd($tracks);

$ // ... lines 24 - 28

29 }

$ // ... lines 30 - 43
44}

Asi que si refrescamos... jsi! Eso vuelca la variable y mata la pagina. Y esto es mucho mas
potente -y mas bonito- que usar var_dump() : podemos ampliar secciones y ver datos

profundos con mucha facilidad.

En lugar de dd() , también puedes utilizar dump() .. para volcar y vivir. Pero esto podria no
aparecer donde esperas. En lugar de imprimirse en el centro de la pagina, aparece abajo en la

barra de herramientas de depuracion de la web, bajo el icono del objetivo.

src/Controller/VinylController.php

T // ... lines 1 - 9

10 class VinylController extends AbstractController
11 {

12 #[Route('/")]

13 public function homepage(): Response
14 {

$ // ... lines 15 - 22

23 dump($tracks);

$ /7 ... lines 24 - 28

29 }

$ // ... lines 30 - 43
44}

Si es demasiado pequefio, haz clic para ver una version mas grande en el perfilador.

Volcado en Twig

También puedes utilizar este dump() en Twig. Elimina el volcado del controlador... y luego en la

plantilla, justo antes del ul, dump(tracks).

templates/vinyl/homepage.html. twig

T // ... lines 1 - 9

10 <div>

11 Tracks:

12

13 {{ dump(tracks) }}
$ // ... lines 14 - 20
21 </div>

T /7 ... lines 22 - 23

Y esto... se ve exactamente igual. Excepto que cuando haces el volcado en Twig, si que se

vuelca justo en el centro de la pagina

Y aun mas util, sélo en Twig, puedes utilizar dump() sin argumentos.

templates/vinyl/homepage.html. twig

T // ... lines 1 - 9
10 <div>

11 Tracks:

12

13 {{ dump() }}

$ // ... lines 14 - 20
21 </div>

T // ... lines 22 - 23

Esto volcara todas las variables a las que tengamos acceso. Asi que aqui esta la variable
title, tracks vy, jsorpresa! Hay una tercera variable llamada app. Es una variable global que
tenemos en todas las plantillas... y nos da acceso a cosas como la sesion y los datos del

usuario. Y... jlo hemos descubierto por curiosidad!

Asi que ahora que tenemos estas increibles herramientas de depuracion, pasemos a nuestro
siguiente trabajo... que es hacer este sitio menos feo. jEs hora de anadir CSS y un disefio

adecuado para dar vida a nuestro sitio!

Chapter 10: Activos, CSS, imagenes, etc

Si descargas el codigo del curso desde la pagina en la que estas viendo este video, después
de descomprimirlo, encontraras un directorio start/ que contiene la misma aplicacion nueva
de Symfony 6 que hemos creado antes. En realidad no necesitas ese cédigo, pero contiene un
directorio extra llamado tutorial/, como el que tengo aqui. Este contiene algunos archivos

que vamos a utilizar.

Asi que hablemos de nuestro siguiente objetivo: hacer que este sitio parezca un sitio real... en
lugar de parecer algo que he disefiado yo mismo. Y eso significa que necesitamos un

verdadero disefio HTML que incluya algo de CSS.

Anadir un disefio y archivos CSS

Sabemos que nuestro archivo de disefio es base.html.twig... y también hay un
archivobase.html.twig en el nuevo directorio tutorial/. Copia eso... pégalo en las

plantillas, y anula el original.

Antes de ver eso, copia también los tres archivos .png y ponlos en el directorio public/ ...

para que nuestros usuarios puedan acceder a ellos.

Muy bien. Abre el nuevo archivo base.html.twig. Aqui no hay nada especial. Traemos
algunos archivos CSS externos de algunos CDN para Bootstrap y FontAwesome. Al final de
este tutorial, refactorizaremos esto para que sea una forma mas elegante de manejar el CSS...

pero por ahora, esto funcionara bien.

Por lo demas, todo sigue estando codificado. Tenemos una navegacién codificada, el mismo
bloque body ... y un pie de pagina codificado. Vamos a ver como queda. jRefresca y woo!

Bueno, no es perfecto, pero es mejor

Anadir un archivo CSS personalizado

El directorio tutorial/ también contiene un archivo app.css con CSS personalizado. Para

que esté disponible publicamente, de modo que el navegador de nuestro usuario pueda

descargarlo, tiene que estar en algun lugar del directorio public/. Pero no importa dénde o

como organices las cosas dentro.
Creemos un directorio styles/ ... y luego copiamos app.css... y lo pegamos alli.

De vuelta en base.html.twig, dirigete a la parte superior. Después de todos los archivos CSS

externos, vamos a afiadir una etiqueta de enlace para nuestro app.css. Asi que

<link rel="stylesheet"y href="".Como el directorio public/ es la raiz de nuestro

documento, para referirse a un archivo CSS o de imagen alli, la ruta debe ser con respecto a

ese directorio. Asi que esto sera /styles/app.css.

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

3 <head>

1 // ... lines 4 - 15
16 <link rel="stylesheet" href="/styles/app.css">
$ // ... lines 17 - 25
26 </head>

1 // ... lines 27 - 85
86 </html>

Vamos a comprobarlo. Actualiza ahora y... jaun mejor!

La funcion asset()

Quiero que te des cuenta de algo. Hasta ahora, Symfony no interviene para nada en cémo
organizamos o utilizamos las imagenes o los archivos CSS. No. Nuestra configuracion es muy
sencilla: ponemos las cosas en el directorio public/ ... y luego nos referimos a ellas con sus

rutas.

Pero, ¢tiene Symfony alguna funcién interesante para ayudar a trabajar con CSS y JavaScript?
Por supuesto. Se llaman Webpack Encore y Stimulus. Y hablaremos de ambas hacia el final del

tutorial.

Pero incluso en esta sencilla configuraciéon -en la que s6lo ponemos archivos en public/ y

apuntamos a ellos- Symfony tiene una caracteristica menor: la funcién asset().

Funciona asi: en lugar de usar /styles/app.css, decimos {{ asset() }} yluego, entre

comillas, movemos nuestra ruta alli... pero sin la apertura "/".

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

3 <head>

T /7 ... lines 4 - 15
16 <link rel="stylesheet" href="{{ asset('styles/app.css') }}">
$ // ... lines 17 - 25
26 </head>

T // ... lines 27 - 85
86 </html>

Asi, la ruta sigue siendo relativa al directorio public/ ... s6lo que no necesitas incluir el primer
ll/ll.

Antes de hablar de lo que hace esto... vamos a ver si funciona. Actualiza y... jno lo hace! Error:

“Funcion desconocida: ;te has olvidado de ejecutar composer require symfony/asset.”

Sigo diciendo que Symfony empieza con algo pequefo... y luego vas instalando cosas a
medida que las necesitas. jAparentemente, esta funcion asset() viene de una parte de
Symfony que aun no tenemos! Pero conseguirla es facil. Copia este comando composer

require, pasalo a tu terminal y ejecutalo:

composer require symfony/asset

Se trata de una instalacion bastante sencilla: sélo descarga este paquete... y no hay recetas.

Pero cuando probamos la pagina ahora... jfunciona! Comprueba el cédigo fuente HTML.
Interesante: la etiqueta 1ink href sigue siendo, literalmente, /styles/app.css. |Es

exactamente lo que teniamos antes! Entonces, ¢ qué diablos hace esta funcidon asset() ?

La respuesta es... no mucho. Pero sigue siendo una buena idea utilizarla. La funciéon asset()
te ofrece dos caracteristicas. En primer lugar, imagina que te despliegas en un subdirectorio de

un dominio. Por ejemplo, la pagina de inicio vive en https://example.com/mixed-vinyl.

Si ese fuera el caso, para que nuestro CSS funcione, el href tendria que ser
/mixed-vinyl/styles/app.css. En esta situacion, la funcion asset () detectaria el

subdirectorio automaticamente y anadiria ese prefijo por ti.

https://example.com/mixed-vinyl

Lo segundo -y mas importante- que hace la funcion asset() es permitirte cambiar facilmente a
una CDN mas adelante. Como esta ruta pasa ahora por la funcionasset (), podriamos, a

través de un archivo de configuracién, decir:
“iHey Symfony! Cuando emitas esta ruta, por favor ponle el prefijo de la URL a mi CDN.”

Esto significa que, cuando carguemos la pagina, en lugar de href="/styles/app.css, seria

algo como https://mycdn.com/styles/app.css.

Asi que la funcion asset() puede que no haga nada que necesites hoy, pero siempre que
hagas referencia a un archivo estatico, ya sea un archivo CSS, un archivo JavaScript, una

imagen, lo que sea, utiliza esta funcion.

De hecho, aqui arriba, estoy haciendo referencia a tres imagenes. Usemos asset:
{{ asset() ... jy entonces se autocompleta la ruta! jGracias plugin Symfony! Repite esto para

la segunda imagen... y la tercera.

templates/base.html.twig

1 <!IDOCTYPE html>

2 <html>

3 <head>

$ // ... lines 4 - 6

7 <link rel="apple-touch-icon" sizes="180x180" href="{{ asset('apple-touch-
icon.png') }}">

8 <link rel="icon" type="image/png" sizes="32x32" href="{{ asset('favicon-
32x32.png') }}">

9 <link rel="icon" type="image/png" sizes="16x16" href="{{ asset('favicon-
16x16.png') }}">

1 // ... lines 10 - 15

16 <link rel="stylesheet"” href="{{ asset('styles/app.css') }}">

T // ... lines 17 - 25

26 </head>

1 // ... lines 27 - 85

86 </html>

Sabemos que esto no supondra ninguna diferencia hoy... podemos refrescar el codigo fuente

HTML para ver las mismas rutas... pero estamos preparados para una CDN en el futuro.

HTML de la pagina de inicio y de navegacion

iAsi que el disefio ahora se ve muy bien! Pero el contenido de nuestra pagina de inicio esta...
como colgando... con un aspecto raro... como yo en la escuela secundaria. De vuelta al
directorio tutorial/, copia la plantilla de la pagina de inicio... y sobrescribe nuestro archivo

original.

Abrelo. Esto sigue extendiendo base.html.twig... y sigue anulando el bloquebody. Y
ademas, tiene un monton de HTML completamente codificado. Vamos a ver qué aspecto tiene.

Actualiza y... jse ve genial!

Excepto que... esta 100% codificado. Vamos a arreglarlo. En la parte superior, aqui esta el

nombre de nuestro disco, imprime la variable title.

Y luego, abajo para las canciones... tenemos una larga lista de HTML codificado. Convirtamos
esto en un bucle. Afade {% for track in tracks %} como teniamos antes. Y... al final,

endfor.

Para los detalles de la cancion, utiliza track.song...y track.artist.Y ahora podemos

eliminar todas las canciones codificadas.

templates/vinyl/homepage.html. twig

1 {% extends 'base.html.twig' %}

$ // ... lines 2 - 4

5 {% block body %}

6 <div class="container">

7 <hl class="d-inline me-3">{{ title }}</h1l> <i class="fas fa-edit"></i>

8 <div class="row mt-5">

1 // ... lines 9 - 34

35 <div class="col-12 col-md-8 ps-5">

36 <h2 class="mb-4">10 songs (30 minutes of 60 still available)</h2>
37 {% for track in tracks %}

38 <div class="song-list">

39 <div class="d-flex mb-3">
40
41 <i class="fas fa-play me-3"></i>
42
43 {{ track.song }} - {{ track.artist

}}

44
45 <i class="fas fa-bars mx-3"></i>
46
47
48 <i class="fas fa-times"></i>
49

50 </div>

51 </div>

52 {% endfor %}

53 <button type="button" class="btn btn-success"><i class="fas fa-plus">

</i> Add a song</button>

54 </div>

55 </div>

56 </div>

57 {% endblock %}

iGenial! Vamos a probarlo. jHey! jEsta cobrando vida gente!

jFalta una pagina mas! La pagina /browse. Ya sabes lo que hay que hacer: copiar
browse.html.twig, y pegar en nuestro directorio. Esto se parece mucho a la pagina de inicio:

extiendebase.html.twig y anula el bloque body.

En VinylController, no hemos renderizado antes una plantilla... asi que hagamoslo ahora:
return $this->render('vinyl/browse.html.twig"') y pasemos el género. Ahade una
variable para ello: $genre = y si tenemos un slug... utiliza nuestro elegante codigo de
mayusculas y minusculas, si no, ponlo en null. Luego borra lo de $title... y pasagenre a

Twig.

src/Controller/VinylController.php

<?php
// ... Lines 3 - 9
class VinylController extends AbstractController
{
// ... lines 12 - 29
#[Route('/browse/{slug}')]
public function browse(string $slug = null): Response
{
$genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) : null;
return $this->render('vinyl/browse.html.twig', [
‘genre' => $genre
1);
}
}

De vuelta a la plantilla, utiliza esto en el hl. En Twig, también podemos utilizar una sintaxis de

fantasia. Asi que si tenemos un genre, imprime genre, si no imprime All Genres.

templates/vinyl/browse.html. twig

{% extends 'base.html.twig' %}

1

S v howoN

46
47

{% block body %}
<div class="container">

/aRTE

<h1>Browse {{ genre ? genre : 'All Genres' }}</h1l>
Lines 6 - 45

</div>
{% endblock %}

Es hora de probar. Dirigete a /browse: "Navega por todos los géneros" Y

luego /browse/death-metal: Navega por el Death Metal. Amigos, jesto empieza a parecerse

a un sitio real!

Excepto que estos enlaces en el navegador... jno van a ninguna parte! Vamos a arreglar eso

aprendiendo a generar URLs. También vamos a conocer la mega-poderosa herramienta de

linea de comandosbin/console.

Chapter 11: Generar Urls y bin/console

Hay dos formas diferentes de interactuar con nuestra aplicacion. La primera es a través del
servidor web... jy eso es lo que hemos hecho! Liegamos a una URL y... entre bastidores, se
ejecuta public/index.php, que arranca Symfony, llama al enrutamiento y ejecuta nuestro

controlador.

Hola bin/console

¢ Cual es la segunda forma de interactuar con nuestra aplicacion? Todavia no la hemos visto:

es a través de una herramienta de linea de comandos llamada bin/console. En tu terminal

ejecuta:

php bin/console

... para ver un montoén de comandos dentro de este script. Me encanta esta cosa. Esta lleno de
cosas que nos ayudan a depurar, con el tiempo tendra comandos de generacion de codigo,
comandos para establecer secretos: todo tipo de cosas buenas que iremos descubriendo poco

a poco.

Pero quiero sefalar que... jno hay nada especial en este script de bin/console! Es so6lo un
archivo: hay literalmente un directorio bin/ con un archivo consoledentro. Probablemente
nunca necesitaras abrir este archivo ni pensar en él, pero es util. Ah, y en la mayoria de los

sistemas, puedes simplemente ejecutar:

./bin/console

... que se ve mejor. O a veces puedes ver que ejecute:

symfony console

... que no es mas que otra forma de ejecutar este archivo. Hablaremos mas de esto en un

futuro tutorial.

bin/consola debug:router

El primer comando que quiero comprobar dentro de bin/console es debug:router:

php bin/console debug:router

Esto es impresionante. Nos muestra todas las rutas de nuestra aplicacién, como nuestras dos
rutas para / y /browse/{slug}. ;Qué son estas otras rutas? Vienen de la barra de
herramientas de depuracién web y del sistema de perfilado... y sélo estan aqui mientras

desarrollamos localmente.

Bien, de vuelta a nuestro sitio.... en la parte superior de la pagina, tenemos dos enlaces no
funcionales a la pagina de inicio y a la pagina de navegacion. Vamos a conectarlos. Abre

templates/ base.html.twig... y busca las etiquetas a. Ya esta.

Asi que seria muy facil hacer que esto funcionara con soélo href="/". Pero en lugar de eso,
cada vez que enlacemos una pagina en Symfony, vamos a pedir al sistema de enrutamiento

que nos genere una URL. Diremos

“Por favor, genera la URL de la ruta de la pagina de inicio, o de la ruta de la pagina de

navegacion.”

Asi, si alguna vez cambiamos la URL de una ruta, todos nuestros enlaces se actualizaran

instantaneamente. Magia.

Como nombrar tu ruta

Empecemos por la pagina de inicio. { Como le pedimos a Symfony que genere una URL para
esta ruta? Bueno, primero tenemos que dar un nombre a la ruta. jSorpresa! Cada ruta tiene un
nombre interno. Puedes verlo en debug:router. Nuestras rutas se llaman

app_vinyl homepage y app_vinyl browse. Huh, esos son los nombres exactos de mis

tortugas mascota cuando era nifio.

¢ De donde vienen estos nombres? Por defecto, Symfony nos genera automaticamente un
nombre, lo cual esta bien. El nombre no se utiliza en absoluto hasta que generamos una URL a
la misma. Y en cuanto necesitemos generar una URL a una ruta, recomiendo encarecidamente
tomar el control de este nombre... solo para asegurarnos de que nunca cambia

accidentalmente.

Para ello, busca la ruta y anade un argumento: name ajustado a, qué tal, app_homepage . Me

gusta utilizar el prefijo app_: facilita la busqueda del nombre de la ruta mas adelante.

src/Controller/VinylController.php

1 <?php

2

1 // ... lines 3 - 9

10 class VinylController extends AbstractController
11 {

12 #[Route('/', name: 'app_homepage')]
13 public function homepage(): Response
14 {

$ // ... lines 15 - 27
28 }

$ // ... Lines 29 - 38

39 }

Por cierto, los atributos de PHP 8 -como este atributo Route - estan representados por clases
PHP reales y fisicas. Si mantienes pulsado command o ctrl, puedes abrirlo y mirar dentro. Esto
es genial: el método __construct() muestra todas las diferentes opciones que puedes pasar

al atributo.

Por ejemplo, hay un argumento name... y entonces estamos utilizando la sintaxis de
argumentos con nombre de PHP para pasar esto al atributo. Abrir un atributo es una buena

manera de conocer sus opciones.

Generar una URL desde Twig

De todos modos, ahora que le hemos dado un nombre, vuelve a nuestro terminal y ejecuta de

nuevodebug:router:

php bin/console debug:router

Esta vez... jsi! jLa ruta se llama app_homepage! Copialo y vuelve a base.html.twig. Para
generar una URL dentro de twig, di {{ -porque vamos a imprimir algo- y luego utiliza una

funcion Twig llamada path() . Pasale el nombre de la ruta.

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

$ // ... Lines 3 - 26

27 <body>

T // ... Llines 28 - 31

32
33 <i class="fas fa-record-vinyl"></i>
34 Mixed Vinyl

35

$ // ... lines 36 - 84

85 </body>

86 </html>

Ya esta Actualiza... jy el enlace de aqui arriba funciona!

Falta un enlace mas. Ya conocemos el primer paso: dar un nombre a la ruta. Asi que name: v,

qué tal, app_browse.

src/Controller/VinylController.php

1 <?php

2

T /7 ... lines 3 - 9

10 class VinylController extends AbstractController
11 {

$ // ... lines 12 - 29

30 #[Route('/browse/{slug}', name: 'app_browse')]
31 public function browse(string $slug = null): Response
32 {

$ // ... lines 33 - 37

38 }

Copia eso, y... desplazate un poco hacia abajo. Aqui esta: "Examinar mezclas". Cambialo por
{{ path('app_browse') }}.

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

T // ... lines 3 - 26

27 <body>

$ // ... lines 28 - 40
41 <li class="nav-item">
42 <a class="nav-1link" style="margin-top: 20px;" href="

{{ path('app_browse') }}">Browse Mixes

43 </1i>

T // ... lines 44 - 84

85 </body>

86 </html>

Y ahora... jese enlace también funcional!

Generar URLs con comodines

Pero en esta pagina, tenemos algunos enlaces rapidos para ir a la pagina de exploracion de un

género especifico. Y éstos aun no funcionan.

Esto es interesante. Queremos generar una URL como antes... pero esta vez necesitamos
pasar algo al comodin {slug}.Abre browse.html.twig. Asi es como lo hacemos. La primera

parte es la misma: {{ path() }} yluego el nombre de la ruta: app_browse.

Si nos detuviéramos aqui, se generaria /browse. Para pasar valores a cualquier comodin de
una ruta, path() tiene un segundo argumento: una matriz asociativa de esos valores. Y, de
nuevo, al igual que en JavaScript, para crear una "matriz asociativa", utilizas{ y }. Voy a pulsar
intro para dividir esto en varias lineas... solo para que sea legible. Dentro anade una clave

slug ala matriz... y como este es el género "Pop", ponla en pop.

iGenial! Repitamos esto dos veces mas: {{ path('app_browse') }} pasar las llaves para un
array asociativo, con slug fijado en rock. Y luego una vez mas aqui abajo... que haré muy

rapidamente.

templates/vinyl/browse.html. twig

0

O 00 & w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

53

// ... Llines 1 - 2
{% block body %}
// ... Lines 4 - 7

<ul class="genre-list ps-0 mt-2 mb-3">
<li class="d-inline">
<a class="btn btn-primary btn-sm" href="{{ path('app_browse', {
slug: 'pop’
}) }}">Pop
</1li>
<li class="d-inline">
<a class="btn btn-primary btn-sm" href="{{ path('app_browse', {
slug: 'rock’
}) }}">Rock
</1i>
<1li class="d-inline">
<a class="btn btn-primary btn-sm" href="{{ path('app_browse"', {
slug: 'heavy-metal’
}) }}">Heavy Metal
</1i>

// ... lines 25 - 52
{% endblock %}

iVamos a ver si funciona! Actualiza. jAh! La variable rock no existe. Seguro que alguno de

vosotros me ha visto hacer eso. Me olvidé de las comillas, asi que esto parece una variable.

Inténtalo de nuevo. Ya esta. Y prueba los enlaces... jsi! jFuncionan!

Siguiente: hemos creado dos paginas HTML. Ahora vamos a ver como queda la creacion de
una ruta de la API JSON.

Chapter 12: Ruta de la APl JSON

En un futuro tutorial, vamos a crear una base de datos para gestionar las canciones, los
generos y los discos de vinilo mezclados que nuestros usuarios estan creando. Ahora mismo,
estamos trabajando completamente con datos codificados... pero nuestros controladores -y-

especialmente las plantillas no seran muy diferentes una vez que hagamos todo esto dinamico.

Asi que este es nuestro nuevo objetivo: quiero crear una ruta de la API que devuelva los datos
de una sola cancién como JSON. Vamos a usar esto en unos minutos para dar vida a este
botdn de reproduccion. Por el momento, ninguno de estos botones hace nada, pero tienen un

aspecto bonito.
Crear el controlador JSON

Los dos pasos para crear un punto final de la API son... exactamente los mismos que para
crear una pagina HTML: necesitamos una ruta y un controlador. Como esta ruta de la API
devolvera datos de canciones, en lugar de afiadir otro método dentro de VinylController,
vamos a crear una clase de controlador totalmente nueva. La forma en que organices este

material depende enteramente de ti.

Crea una nueva clase PHP llamada SongController... 0 SongApiController también seria
un buen nombre. En su interior, ésta comenzara como cualquier otro controlador,
extendiendoAbstractController. Recuerda: esto es opcional... pero nos proporciona

métodos de acceso directo sin inconvenientes.

A continuacion, crea un public function llamado, qué tal, getSong() . Afade la ruta... y
pulsa el tabulador para autocompletar esto de forma que PhpStorm afada la declaracion de
uso en la parte superior. Establece la URL como /api/songs/{id}, donde id sera finalmente

el id de la base de datos de la cancion.

Y como tenemos un comodin en la ruta, se nos permite tener un argumento $id. Por ultimo,
aunque no necesitamos hacerlo, como sabemos que nuestro controlador devolvera un objeto
Response, podemos establecerlo como tipo de retorno. Asegurate de autocompletar el del

componente HttpFoundation de Symfony.

Dentro del método, para empezar, dd($id) ... sélo para ver si todo funciona.

src/Controller/SongController.php

1 <?php

namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;

2
3
4
5 use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
6
7 use Symfony\Component\Routing\Annotation\Route;

8

9 class SongController extends AbstractController

10

11 #[Route('/api/songs/{id}"')]

12 public function getSong($id): Response
13 {

14 dd($id);

15 }

16 }

iVamos a hacerlo! Dirigete a /api/songs/5 y... jlo tienes! Otra pagina nueva.

De vuelta a ese controlador, voy a pegar algunos datos de la cancién: finalmente, esto vendra
de la base de datos. Puedes copiarlo del bloque de cddigo de esta pagina. Nuestro trabajo es

devolverlo como JSON.

Entonces, ¢como devolvemos JSON en Symfony? Devolviendo un nuevo JsonResponse y

pasandole los datos.

src/Controller/SongController.php

0
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<?php

// ... lines 3 - 5

use Symfony\Component\HttpFoundation\JsonResponse;
// ... lines 7 - 9

class SongController extends AbstractController

{

#[Route('/api/songs/{id}")]
public function getSong($id): Response

{
// TODO query the database
$song = [
'id' => $id,
‘name' => 'Waterfalls',
‘url' => 'https://symfonycasts.s3.amazonaws.com/sample.mp3"',
1
return new JsonResponse($song);
}

}

Lo sé... jdemasiado facil! Refresca y... jhola JSON! Ahora puedes estar pensando:

“iRyan! Nos has estado diciendo -repetidamente- que un controlador debe devolver siempre

un objeto Symfony Response, que es lo que devuelve render(). ;Ahora devuelve ofro tipo

de objeto Response ?”

Vale, es justo... pero esto funciona porque JsonResponse es una Respuesta. Me explico: a

veces es util saltar a las clases principales para ver como funcionan. Para ello, en PHPStorm -

si estas en un Mac mantén pulsado comando, si no, mantén pulsado control- y luego haz clic

en el nombre de la clase a la que quieras saltar. Y... jsorpresa! JsonResponse extiende

Response. Si, seguimos devolviendo un Response. Pero esta subclase esta bien porque

codifica automaticamente JSON nuestros datos y establece la cabeceraContent-Type en

application/json.

El método abreviado ->json()

Ah, y de vuelta a nuestro controlador, podemos ser aun mas perezosos

diciendoreturn $this->json($song)... donde json() es otro método abreviado que viene

de AbstractController.

src/Controller/SongController.php

1 <?php

2

T // ... lines 3 - 9

10 class SongController extends AbstractController
11 {
12 #[Route('/api/songs/{id}")]
13 public function getSong($id): Response
14 {

T // ... Llines 15 - 20
21
22 return $this->json($song);
23 }
24}

Hacer esto no supone ninguna diferencia, porque solo es un atajo para devolver ... jun

JsonResponse!

Si estas construyendo una API seria, Symfony tiene un componente serializer que es
realmente bueno para convertir objetos en JSON... y luego JSON de nuevo en objetos.
Hablamos mucho de él en nuestro tutorial de la Plataforma API, que es una potente biblioteca

para crear APls en Symfony.

A continuacién, vamos a aprender como hacer que nuestras rutas sean mas inteligentes, por
ejemplo, haciendo que un comodin sélo coincida con un numero, en lugar de coincidir con

cualquier cosa.

Chapter 13: Rutas inteligentes: S6lo GET y Validar
{Comodines}

Ahora que tenemos una nueva pagina, en tu terminal, ejecuta de nuevo debug:router.

php bin/console debug:router

Si, jahi esta nuestra nueva ruta! Observa que la tabla tiene una columna llamada "Método" que
dice "cualquiera". Esto significa que puedes hacer una peticion a esta URL utilizando cualquier

método HTTP -como GET o POST- y coincidira con esa ruta.

Restringir las rutas solo a GET o POST

Pero el objetivo de nuestra nueva ruta API es permitir a los usuarios hacer una peticion GET
para obtener datos de la cancién. Técnicamente, ahora mismo, también podrias hacer una
peticion POST a esto... y funcionaria perfectamente. Puede que no nos importe, pero a menudo
con las APIs, querras restringir una ruta para que sélo funcione con un método especifico como
GET, POST o PUT. ¢ Podemos hacer que esta ruta, de alguna manera, sélo funcione con

peticiones GET?

Si! Adadiendo otra opcion a la Route. En este caso, se llama methods, jincluso se

autocompleta! Establece esto como un array y, pon GET.

src/Controller/SongController.php

1 <?php

2

T // ... lines 3 - 9

10 class SongController extends AbstractController
11 {

12 #[Route('/api/songs/{id}"', methods: ['GET'])]
13 public function getSong($id): Response
14 {

$ // ... lines 15 - 22
23 }
24}

Voy a mantener pulsado Comando y a hacer clic en la clase Route de nuevo... para que

podamos ver que... jsi! methods es uno de los argumentos.

Volvemos a debug:router:

php bin/console debug:router

Bien. La ruta ahora s6lo coincidira con las peticiones GET. Es... un poco dificil probar esto, ya
que un navegador siempre hace peticiones GET si vas directamente a una URL... pero aqui es

donde otro comando de bin/console resulta util: router:match.

Si lo ejecutamos sin argumentos

php bin/console router:match

Nos da un error, jpero muestra como se utiliza! Inténtalo:

php bin/console router:match /api/songs/11

Y... jeso coincide con nuestra nueva ruta! Pero ahora preguntate qué pasaria si hiciéramos una
peticion POST a esa URL con --method=POST:

php bin/console router:match /api/songs/11 --method=POST

iNinguna ruta coincide con esta ruta con ese método! Pero dice que casi coincide con nuestra

ruta.

Restringir los comodines de ruta mediante Regex

Vamos a hacer una cosa mas para restringir nuestra nueva ruta. Voy a anadir una pista de tipo

int al argumento $id.

src/Controller/SongController.php

1 <?php

2

T // ... lines 3 - 9

10 class SongController extends AbstractController
11 {

12 #[Route('/api/songs/{id}"', methods: ['GET'])]
13 public function getSong(int $id): Response
14 {

$ // ... lines 15 - 22

23 }

24}

Eso... no cambia nada, excepto que ahora PHP tomara la cadena id de la URL que Symfony
pasa a este método y la convertira en un int, lo cual es... agradable porque entonces estamos

tratando con un verdadero numero entero en nuestro cédigo.

Puedes ver la sutil diferencia en la respuesta. Ahora mismo, el campo id es una cadena.

Cuando actualizamos, id es ahora un niumero verdadero en JSON.

Pero... si alguien se hiciera el remoldn... y pasara a /api/songs/apple... jvaya! jUn error

PHP, que, en produccidn, seria una pagina de error 500! Eso no me gusta.

Pero... 4qué podemos hacer? El error se produce cuando Symfony intenta llamar a nuestro
controlador y le pasa ese argumento. Asi que no podemos poner codigo en el controlador para

comprobar si $id es un numero: jes demasiado tarde!

¢ Y si, en cambio, pudiéramos decirle a Symfony que esta ruta sélo debe coincidir si el comodin

id es un numero? ; Es posible? Totalmente

Por defecto, cuando tienes un comodin, coincide con cualquier cosa. Pero puedes cambiarlo
para que coincida con una expresion regular personalizada. Dentro de las llaves, justo después
del nombre, anade un <, luego > vy, entre medias, \d+. Es una expresion regular que significa

"un digito de cualquier longitud”.

src/Controller/SongController.php

1 <?php

2

T // ... lines 3 - 9

10 class SongController extends AbstractController
11 {

12 #[Route('/api/songs/{id<\d+>}"', methods: ['GET'])]
13 public function getSong(int $id): Response
14 {

$ // ... lines 15 - 22

23 }

24}

iPruébalo! Actualiza y... jsi' A404. No se ha encontrado ninguna ruta: simplemente no ha
coincidido con esta ruta. Un 404 esta muy bien... pero un error 500... eso es algo que queremos

evitar. Y si volvemos a /api/songs/5... eso sigue funcionando.

A continuacién: si me preguntaras cual es la parte mas central e importante de Symfony, no lo
dudaria: son los servicios. Descubramos qué es un servicio y cdmo es la clave para liberar el

potencial de Symfony.

Chapter 14: Objetos de servicio

Veo a Symfony como dos grandes partes. La primera parte es el sistema de ruta, controlador y
respuesta. Es muy simple y bueno... jya eres un experto en ello! La segunda mitad de Symfony
se trata de los muchos objetos utiles que estan flotando por ahi... jsélo esperando a que los

usemos!

Objetos de servicio Hola

Por ejemplo, cuando renderizamos una plantilla, lo que estamos haciendo en realidad es
aprovechar un objeto Twig y pedirle que renderice una plantilla. También hay un objeto
registrador, un objeto caché, un objeto de conexion a la base de datos, un objeto que ayuda a
hacer peticiones a la API, jy muchos, muchos mas! Y cuando instalas un nuevo paquete, eso te

da aun mas objetos utiles.

La verdad es que todo lo que hace Symfony lo hace... uno de estos objetos utiles. Diablos, jhay

incluso un objeto router que se encarga de encontrar la ruta adecuada para la pagina dada!

En el mundo de Symfony, y realmente en el mundo de la programacion orientada a objetos en
general, estos "objetos que hacen trabajo" tienen un nombre especial: servicios. Pero no dejes
que esa palabra te confunda. Cuando oigas servicio, piensa: jes un objeto que hace trabajo!
Como un objeto de plantilla que representa una plantilla o un objeto de conexién a la base de

datos que realiza consultas.

Y como los objetos de servicio hacen trabajo, son basicamente... jherramientas que te ayudan
a hacer tu trabajo! La segunda mitad de Symfony consiste en descubrir qué servicios estan

disponibles y como utilizarlos.

El comando debug:autowiring

Vamos a probar algo. En nuestro controlador, quiero registrar un mensaje... quizas algun
mensaje de depuracion. Como registrar un mensaje es un trabajo, lo hace un servicio.

¢ Nuestra aplicacion ya tiene un servicio de registro? Y si es asi, como lo conseguimos?

Para averiguarlo, ve a tu terminal y ejecuta otro comando bin/console:

php bin/console debug:autowiring

Saluda a uno de los comandos mas potentes de bin/console. Me encanta esta cosa! Esta
lista todos los servicios que existen en nuestra aplicacion. De acuerdo, en realidad no es la lista
completa, pero esto muestra los servicios que probablemente necesites. Y aunque nuestra
aplicaciéon es pequefa, jhay muchas cosas aqui! Hay un servicio de sistema de archivos... y

aqui abajo un servicio de caché. jIncluso hay un servicio Twig!

¢ Hay un servicio de registro? Puedes mirar en esta lista... o puedes volver a ejecutar este

comando y buscar la palabra log:

php bin/console debug:autowiring log

iExcelente! Por ahora, ignora todo excepto la primera linea. Esta linea nos dice que hay un
servicio de registro y que este objeto implementa una interfaz llamada

Psr\Log\LoggerInterface.

Obtencion de un servicio mediante autoconexion

Vale, ¢y por qué nos ayuda saber eso? Porque si quieres un servicio, lo pides utilizando la

sugerencia de tipo que se muestra en este comando. Se llama autoconexion.

Vamos a probarlo. Dirigete a nuestro controlador y ainade un segundo argumento. En realidad,
el orden de los argumentos no importa. Lo que importa es que el nuevo argumento se indique
con LoggerInterface. Pulsaré el tabulador para autocompletarlo... para que PhpStorm afiada

la declaracion de uso en la parte superior.

En este caso, el argumento puede llamarse como sea, como $logger. Cuando Symfony ve
esta sugerencia de tipo, busca dentro de la lista debug:autowiring... y como hay una

coincidencia, nos pasara el servicio de registro.

Asi que ahora conocemos dos tipos diferentes de argumentos que podemos tener en el
controlador: puedes tener un argumento cuyo nombre coincida con un comodin de la ruta o un

argumento cuyo tipo-hint coincida con uno de los servicios de nuestra app.

Utilizar el registrador

Bien, ahora que sabemos que Symfony nos pasara el objeto de servicio logger, jvamos a
utilizarlo! No sé, todavia, qué métodos puedo llamar en él pero... si decimos $1ogger->...

PhpStorm... jnos lo dice! jHa sido facil!

Voy a registrar algo en un nivel de prioridad info() . Digamos:

“Devolucion de la respuesta de la API para la cancion”

Y luego el $id.

src/Controller/SongController.php

1 <?php

2

T // ... lines 3 - 4

5 use Psr\lLog\LoggerInterface;

T // ... lines 6 - 10
11 class SongController extends AbstractController
12 {
13 #[Route('/api/songs/{id<\d+>}"', methods: ['GET'])]
14 public function getSong(int $id, LoggerInterface $logger): Response
15 {

$ // ... lines 16 - 22
23 $logger->info('Returning API response for song '.$id);
$ // ... lines 24 - 25
26 }
27 }

En realidad, podemos hacer algo aun mas genial con este servicio de registro. Aflade {song}
al mensaje... y afade un segundo argumento, que es una matriz de informacion extra que
quieres adjuntar al mensaje de registro. Pasa songajustado a $id. En un minuto, veras que el

registrador imprimira el id real en lugar de {song}.

src/Controller/SongController.php

1 <?php

2

$ // ... lines 3 - 10

11 class SongController extends AbstractController

12 {

13 #[Route('/api/songs/{id<\d+>}"', methods: ['GET'])]

14 public function getSong(int $id, LoggerInterface $logger): Response
15 {

T // ... lines 16 - 22
23 $logger->info('Returning API response for song {song}', [
24 'song' => $id,
25 1);

T // ... Llines 26 - 27
28 }
29 }

En cualquier caso, este controlador es para nuestra ruta de la API. Asi que vamos a refrescarlo.
iUm... ok! Asi que no hay error, jeso es bueno! ; Pero ha funcionado? ;Ddnde se registra

realmente el servicio de registro?

Averigiémoslo a continuacion, aprendamos un truco para ver el perfilador incluso para las

peticiones de la APl y luego aprovechemos nuestro segundo servicio directamente.

Chapter 15: El servicio Twig y el perfilador de
peticiones de la API

Como esta pagina acaba de cargarse sin ningun error, pensamos que acabamos de registrar
con éxito un mensaje a través del servicio de registro. Pero... ;donde van los mensajes de

registro? ; Como podemos comprobarlo?

El servicio de registro lo proporciona una biblioteca que hemos instalado antes, llamada
monolog, que forma parte del paquete de depuracion. Y puedes controlar su configuracion
dentro del archivo config/packages/monolog.yaml, incluyendo donde se registran los
mensajes de registro, por ejemplo, en qué archivo. Nos centraremos mas en la configuracion

en el siguiente tutorial.

El perfilador de peticiones de la API

Pero una forma de ver siempre los mensajes de registro de una peticion es a través del
perfilador Esto es muy util. Ve a la pagina de inicio, haz clic en cualquier enlace de la barra de
herramientas de depuracién web... y luego ve a la seccion Registros. Ahora veremos todos los

mensajes de registro que se hicieron sélo durante esa ultima peticion a la pagina de inicio.

iGenial! Excepto que... nuestro mensaje de registro se hace en una ruta de la API... jy las rutas
de la API no tienen una barra de herramientas de depuracion web en la que podamos hacer
clic! ; Estamos atascados? No! Actualiza esta pagina una vez mas... y luego ve manualmente a
/_profiler. Esta es... una especie de puerta secreta al sistema de perfiles... y esta pagina
muestra las ultimas diez peticiones realizadas en nuestro sistema. La segunda en la parte
superior es la peticion de la APl que acabamos de hacer. Haz clic en el pequefio enlace del
token para ver... jsi! jEstamos viendo el perfil de esa peticion de la API! En la seccion de

Registros... jahi esta!

“‘Respuesta de la API para la cancién 5”

... e incluso puedes ver la informacién extra que hemos pasado.

Renderizar una plantilla Twig_manualmente

Vale, los servicios son tan importantes que... Quiero hacer un ejemplo rapido mas. Vuelve a
VinylController. El método render() es realmente un atajo para obtener el servicio "Twig",
llamar a algun método de ese objeto para renderizar la plantilla... y luego poner la cadena

HTML final en un objeto Response. Es un gran atajo y deberias utilizarlo.

Pero! Como reto, ¢ podriamos renderizar una plantilla sin usar ese método? jPor supuesto!

Hagamoslo.

Primer paso: encontrar el servicio que hace el trabajo que necesitas hacer. Asi que tenemos

que encontrar el servicio Twig. Volvamos a hacer nuestro truco:

php bin/console debug:autowiring twig

Y... jsi! Al parecer, el tipo de pista que tenemos que utilizar es Twig\Environment.

iDe acuerdo! Vuelve a nuestro método, afiade un argumento, escribe Environment, y pulsa el
tabulador para autocompletarlo y que PhpStorm afiada la sentencia use. Vamos a llamarlo

$twig.

A continuacion, en lugar de usar render, digamos $html = y luego $twig->. Al igual que con
el registrador, no necesitamos saber qué métodos tiene esta clase, porque, gracias a la
sugerencia de tipo, PhpStorm puede decirnos todos los métodos. El método render() parece
que es probablemente lo que queremos. El primer argumento es el nombre de la cadena de la
plantilla a renderizar y el argumento $context contiene las variables. Asi que... tiene los

mismos argumentos que ya estabamos pasando.

Para ver si funciona, dd($html) .

src/Controller/VinylController.php

1 <?php

2

T // ... lines 3 - 10

11 class VinylController extends AbstractController

12 {

13 #[Route('/', name: 'app_homepage')]

14 public function homepage(Environment $twig): Response
15 {

T // ... lines 16 - 24

25 $html = $twig->render('vinyl/homepage.html.twig', [
26 ‘title' => 'PB & Jams',

27 "tracks' => $tracks,

28 1);

29 dd($html);

30 }

$ // ... lines 31 - 40
41 '}

jHora de probar! Dirigete a la pagina de inicio... jy si! jAcabamos de renderizar una plantilla
manualmente! jIncreible! Y podemos terminar esta pagina envolviendo eso en una

respuesta: return new Response($html).

src/Controller/VinylController.php

1 <?php

2

T // ... lines 3 - 10

11 class VinylController extends AbstractController

12 {

13 #[Route('/', name: 'app_homepage')]

14 public function homepage(Environment $twig): Response
15 {

T // ... lines 16 - 24

25 $html = $twig->render('vinyl/homepage.html.twig', [
26 ‘title' => 'PB & Jams’,

27 "tracks' => $tracks,

28 1);

29

30 return new Response($html);

31 }

$ // ... lines 32 - 41
42 3}

Y ahora... jla pagina funciona! Y entendemos que la verdadera forma de renderizar una plantilla

es a través del servicio Twig. Algun dia te encontraras en una situacion en la que necesites

renderizar una plantilla pero no estés en un controlador... y por tanto no tengas el método
abreviado $this->render(). Saber que hay un servicio Twig que puedes recuperar sera la

clave para resolver ese problema. Mas sobre esto en el préximo tutorial.

Pero en una aplicacién real, en un controlador, no hay razon para hacer todo este trabajo extra.
Asi que voy a revertir esto... y volver a usar render() . Y... entonces ya no necesitamos

autocablear ese argumento... e incluso podemos limpiar la declaracionuse.

Aqui estan los tres grandes, gigantescos e importantes puntos de partida. En primer lugar,
Symfony esta repleto de objetos que hacen su trabajo... a los que llamamos servicios. Los
servicios son herramientas. Segundo, todo el trabajo en Symfony lo hace un servicio... incluso
cosas como el enrutamiento. Y en tercer lugar, podemos utilizar los servicios para ayudarnos a

realizar nuestro trabajo mediante la autoconexion de los mismos.

En el proximo tutorial de esta serie, profundizaremos en este concepto tan importante.

Pero antes de que terminemos este tutorial, quiero hablar de otra cosa increible y asombrosa:
Webpack Encore, la clave para escribir CSS y JavaScript de forma profesional. A lo largo de
estos ultimos capitulos, vamos a dar vida a nuestro sitio e incluso a hacerlo tan responsivo

como una aplicacion de una sola pagina.

Chapter 16: Configuracion de Webpack Encore

Nuestra configuracion de CSS esta bien. Ponemos los archivos en el directorio public/ y
luego... apuntamos a ellos desde dentro de nuestras plantillas. Podriamos afadir archivos de

JavaScript de la misma manera.

Pero si queremos tomarnos realmente en serio la escritura de CSS y JavaScript, tenemos que
llevar esto al siguiente nivel. E incluso si te consideras un desarrollador principalmente de
backend, las herramientas de las que vamos a hablar te permitiran escribir CSS y JavaScript de

forma mas facil y menos propensa a errores que a lo que probablemente estés acostumbrado.

La clave para llevar nuestra configuracion al siguiente nivel es aprovechar una biblioteca de
nodos llamada Webpack. Webpack es |la herramienta estandar de la industria para empaquetar,
minificar y analizar tu CSS, JavaScript y otros archivos del frontend. Pero no te preocupes:

Node es s6lo JavaScript. Y su papel en nuestra aplicacion sera bastante limitado.

Configurar Webpack puede ser complicado. Por eso, en el mundo Symfony, utilizamos una
herramienta ligera llamada Webpack Encore. Sigue siendo Webpack... jsélo lo hace mas facil!

Y tenemos un tutorial gratuito sobre ello si quieres profundizar.

Instalar Encore

Pero vamos a hacer un curso intensivo ahora mismo. Primero, en tu linea de comandos,

asegurate de que tienes instalado Node:

node -v

También necesitaras npm -que viene con Node automaticamente- o yarn:

yarn --version

Npm y yarn son gestores de paquetes de Node: son el Compositor para el mundo de Node... y
puedes usar cualquiera de los dos. Si decides usar yarn - que es lo que yo usaré - asegurate

de instalar la version 1.

Estamos a punto de instalar un nuevo paquete... asi que vamos a confirmar todo:

git add .

Y... se ve bien:

git status

Asi que confirma todo:

git commit -m "Look mom! A real app"

Para instalar Encore, ejecuta:

composer require encore

Esto instala WebpackEncoreBundle. Recuerda que un bundle es un plugin de Symfony. Y este

paquete tiene una receta: una receta muy importante. Ejecuta:

git status

La receta de Encore

Por primera vez, la receta ha modificado el archivo .gitignore. Vamos a comprobarlo. Abre

.gitignore. Lo de arriba es lo que teniamos originalmente... y lo de abajo es lo nuevo que ha

afiadido WebpackEncoreBundle. Esta ignorando el directorionode_modules/, que es
basicamente el directorio vendor/ para Node. No necesitamos confirmarlo porque esas
bibliotecas de proveedores se describen en otro archivo nuevo de la receta: package.json.
Este es el archivo composer. jsonde Node: describe los paquetes de Node que necesita
nuestra aplicacion. El mas importante es el propio Webpack Encore, que es una biblioteca de

Node. También tiene algunos otros paquetes que nos ayudaran a realizar nuestro trabajo.

La receta también ha afiadido un directorio assets/ ... y un archivo de configuracion para
controlar Webpack: webpack.config. js. El directorio assets/ ya contiene un pequefio

conjunto de archivos para que podamos empezar.

Instalar las dependencias de Node

Bien, con Composer, si no tuviéramos este directorio vendor/, podriamos
ejecutarcomposer install que le diria que leyera el archivo composer.json y volviera a
descargar todos los paquetes en vendor/. Lo mismo ocurre con Node: tenemos un archivo

package.json. Para descargarlo, ejecuta

yarn install

O:

npm install

iGo node go! Esto tardara unos instantes mientras se descarga todo. Probablemente recibiras

algunas advertencias como ésta, que puedes ignorar.

iGenial! Esto hizo dos cosas. En primer lugar, descargd un monton de archivos en el
directorionode_modules/ : el directorio de "proveedores" de Node. También cre6 un
archivoyarn.lock... o package-1lock.json si estas usando npm. Esto sirve para el mismo
proposito de composer.lock: almacena las versiones exactas de todos los paquetes para que

obtengas las mismas versiones la préxima vez que instales tus dependencias.

En su mayor parte, no necesitas preocuparte por estos archivos de bloqueo... excepto que

debes confirmarlos. Hagamoslo. Ejecuta:

git status

Entonces:

git add .

Hermoso:

git status

Y confirma:

git commit -m "Adding Webpack Encore™

jHey! jYa esta instalado Webpack Encore! Pero... jtodavia no hace nada! Aprovechado. A

continuacién, vamos a utilizarlo para llevar nuestro JavaScript al siguiente nivel.

Chapter 17: Empaquetar JS y CSS con Encore

Cuando instalamos Webpack Encore, su receta nos dio este nuevo directorio assets/. Mira el
archivo app.js. Es interesante. Observa como importa este archivo bootstrap. En realidad

es bootstrap.js: este archivo de aqui. La extensién .js es opcional.

Importaciones de JavaScript

Esta es una de las cosas mas importantes que nos da Webpack: la capacidad de importar un
archivo JavaScript de otro. Podemos importar funciones, objetos... realmente cualquier cosa

desde otro archivo. Vamos a hablar mas sobre este archivobootstrap.js dentro de un rato.

Esto también importa un archivo CSS? Si no has visto esto antes, puede parecer... raro:

¢ JavaScript importando CSS?

Para ver cémo funciona todo esto, en app.js, afade un console.log().

assets/app.js

T // ... lines 1 - 12
13
14 console.log('Hi! My name is app.js!');

Y app.css ya tiene un fondo de cuerpo... pero afiade un !important para que podamos ver

definitivamente si se esta cargando.

assets/styles/app.css

1 body {
2 background-color: lightgray !important;
3}

Vale... ientonces quién lee estos archivos? Porque... no viven en el directorio public/ ... asi

que no podemos crear etiquetas script o link que apunten directamente a ellos.

webpack.config.js

Para responder a esto, abre webpack.config.js. Webpack Encore es un binario ejecutable:
vamos a ejecutarlo en un minuto. Cuando lo hagamos, cargara este archivo para obtener su

configuracion.

Y aunque hay un monton de funciones dentro de Webpack, lo unico en lo que tenemos que
centrarnos ahora es en esta: addEntry() . Este app puede ser cualquier cosa... como
dinosaur, no importa. Te mostraré como se utiliza en un minuto. Lo importante es que apunta
al archivo assets/app.js. Por ello,app.js sera el primery unico archivo que Webpack

analizara.

Esto es bastante bueno: Webpack leera el archivo app.js y luego seguira todas las
declaraciones de import recursivamente hasta que finalmente tenga una coleccion gigante de
todo el JavaScript y el CSS que nuestra aplicacion necesita. Entonces, lo escribira en el

directorio public/.

Ejecutando Webpack Encore

Vamos a verlo en accion. Busca tu terminal y ejecuta:

yarn watch

Esto es, como dice, un atajo para ejecutar encore dev --watch. Si miras tu archivo

package.json, viene con una seccion script con algunos atajos.

En cualquier caso, yarn watch hace dos cosas. En primer lugar, crea un nuevo directorio
public/build/y, dentro, los archivos app.css y app.js Pero no dejes que los nombres te
engafen: app.js contiene mucho mas que lo que hay dentro de assets/app.js: contiene
todo el JavaScript de todas las importaciones que encuentra. app.css contiene todo el CSS de

todas las importaciones.

La razon por la que estos archivos se llaman app.css y app.js es por el nombre de la

entrada.

Asi que la conclusion es que, gracias a Encore, de repente tenemos nuevos archivos en el
directoriopublic/build/ que contienen todo el JavaScript y el CSS que necesita nuestra

aplicacion

Las funciones Twig de Encore

Y si te diriges a tu pagina de inicio y la actualizas... jwoh! Ha funcionado al instante!? El fondo
ha cambiado... y en mi inspector... jesta el registro de la consola! ; Cémo diablos ha ocurrido

eso”?

Abre tu diseno base: templates/base.html.twig. El secreto esta en las
funcionesencore_entry link tags() y encore_entry script_tags().Apuesto a que
puedes adivinar lo que hacen: afadir la etiqueta 1ink a build/app.css y la etiqueta

scripta build/app.js.

Puedes ver esto en tu navegador. Mira la fuente de la pagina y... jsi! La etiqueta link para
/build/app.css... y la etiqueta script para /build/app.js.Ah, pero también ha
renderizado otras dos etiquetas script. Eso es porque Webpack es muy inteligente. Por
motivos de rendimiento, en lugar de volcar un gigantesco archivo app.js, a veces Webpack lo
divide en varios archivos mas pequefos. Afortunadamente, estas funciones Twig de Encore son
lo suficientemente inteligentes como para manejar eso: incluira todas las etiquetas de enlace o

de script necesarias.

Lo mas importante es que el cddigo que tenemos en nuestro archivo assets/app.js-

incluyendo todo lo que importa- jahora funciona y aparece en nuestra pagina!

Vigilancia de los cambios

Ah, y como hemos ejecutado yarn watch, Encore sigue funcionando en segundo plano en
busca de cambios. Compruébalo: entra en app.css... y cambia el color de fondo. Guarda,

pasa y actualiza

assets/styles/app.css

1 body {
2 background-color: maroon !important;
3}

iSe actualiza instantaneamente! Eso es porque Encore se ha dado cuenta del cambio y ha

recompilado el archivo construido muy rapidamente.

A continuacién: vamos a trasladar nuestro CSS existente al nuevo sistema y a aprender cémo

podemos instalar e importar bibliotecas de terceros -mira Bootstrap o FontAwesome-

directamente en nuestra configuracion de Encore.

Chapter 18: Instalacion de codigo de terceros en
nuestro JS/CSS

Ahora tenemos un nuevo y bonito sistema de JavaScript y CSS que vive completamente dentro
del directorioassets/. Vamos a trasladar nuestros estilos publicos a éste.

Abrepublic/styles/app.css, copia todo esto, borra todo el directorio... y pégalo en el nuevo
app.css. Gracias a encore_entry link tags() enbase.html.twig, el nuevo CSS se esta

incluyendo... y ya no necesitamos la antigua etiquetalink.

Ve a comprobarlo. Refresca y... jtodavia se ve muy bien!

Instalacion de bibliotecas JavaScript/CSS de terceros

Vuelve a base.html.twig. ;Qué pasa con estas etiquetas de enlace externo para bootstrap y
FontAwesome? Bueno, puedes mantener totalmente estos enlaces CDN. Pero también
podemos procesar estas cosas a través de Encore. ; Como? Instalando Bootstrap y

FontAwesome como bibliotecas de proveedor e importandolas.

Elimina todas estas etiquetas de enlace... y luego actualiza. jVaya! Vuelve a parecer que he
disefiado este sitio. Vamos... primero a volver a afiadir bootstrap. Busca tu terminal. Ya que el

comando watch se esta ejecutando, abre una nueva pestafa de terminal y ejecutalo:

yarn add bootstrap --dev

Esto hace tres cosas. Primero, afiade bootstrap a nuestro archivo package.json. Segundo,
descarga bootstrap en nuestro directorio node_modules/ ... lo encontrarias aqui abajo. Y
tercero, actualiza el archivo yarn. lock con la version exacta de bootstrap que acaba de

descargar.

Si nos detuviéramos ahora... jesto no supondria ninguna diferencia! Hemos descargado

bootstrap -yay- pero no lo estamos utilizando.

Para usarlo, tenemos que importarlo. Entra en app.css. Al igual que en los archivos
JavaScript, podemos importar desde dentro de los archivos CSS diciendo @import y luego el
archivo. Podemos hacer referencia a un archivo en el mismo directorio con
./other-file.css. O, si quieres importar algo del directorio node_modules/ en CSS, hay un

truco: un ~ y luego el nombre del paquete: bootstrap.

assets/styles/app.css

1 @import '~bootstrap';
T // ... lines 2 - 34

Eso es todo En cuanto hicimos eso, la funcion de vigilancia de Encore reconstruyé nuestro
archivo app.css... jque ahora incluye Bootstrap! Observa: actualiza la pagina y... jvolvemos a

estar de vuelta! jQué bien!

Las otras dos cosas que nos faltan son FontAwesome y una fuente especifica. Para afiadirlas,

vuelve al terminal y ejecutalas:

yarn add @fontsource/roboto-condensed --dev

Revelacion completa: hice algunas busquedas antes de grabar para saber los nombres de

todos los paquetes que necesitamos. Puedes buscar los paquetes en https://npmjs.com.

Anadamos también el ultimo que necesitamos:

yarn add @fortawesome/fontawesome-free --dev

De nuevo, esto descargo las dos bibliotecas en nuestro proyecto... pero no las utiliza
automaticamente todavia. Como esas bibliotecas contienen archivos CSS, vuelve a nuestro

archivoapp.css e impértalos: @import '~' yluego @fortawesome/fontawesome-free.Y

@import '~@fontsource/roboto-condensed’.

assets/styles/app.css

1 @import '~bootstrap';
@import '~@fortawesome/fontawesome-free';

@import '~@fontsource/roboto-condensed’;

b owoN

// ... Llines 5 - 34

https://npmjs.com/

El primer paquete deberia arreglar este icono... y el segundo deberia hacer que la fuente
cambie en toda la pagina. Observa el tipo de letra cuando refrescamos... jha cambiado! Pero...

los iconos siguen estando algo rotos.

Importar archivos especificos de node_modules/

Para ser totalmente honesto, no estoy seguro de por qué esto no funciona fuera de la caja.
Pero la solucidn es bastante interesante. Mantén pulsado command en un Mac -o ctrl en caso

contrario- y haz clic en esta cadena fontawesome-free.

Cuando usas esta sintaxis, va a tu directorio node_modules/,
a@fortawesome/fontawesome-free... y entonces, si no pones ningun nombre de archivo
después de esto, hay un mecanismo en el que esta biblioteca le dice a Webpack qué archivo
CSS debe importar. Por defecto, importa este archivo fontawesome.css. Por alguna razon...

eso no funciona. Lo que queremos es este all.css.

Y podemos importarlo afadiendo la ruta: /css/all.css. No necesitamos el archivo minificado

porque Encore se encarga de minificar por nosotros.

assets/styles/app.css

1 @import '~bootstrap';
2 @import '~@fortawesome/fontawesome-free/css/all.css’;
3 @import '~@fontsource/roboto-condensed’;

4

T // ... lines 5 - 34

Y ahora... jestamos de vuelta!

La principal razén por la que me encanta Webpack Encore y este sistema es que nos permite
utilizar importaciones adecuadas. Incluso podemos organizar nuestro JavaScript en pequenos
archivos -poniendo clases o funciones en cada uno- y luego importarlos cuando los

necesitemos. Ya no son necesarias las variables globales.

Webpack también nos permite utilizar cosas mas serias como React o Vue: incluso puedes ver,

en webpack.config.js, los métodos para activarlos.

Pero, por lo general, me gusta utilizar una encantadora biblioteca de JavaScript lamada

Stimulus. Y quiero hablarte de ella a continuacion.

Chapter 19: Stimulus: Un JavaScript Sensato y
Bonito

Quiero hablar de Stimulus. Stimulus es una pequefia pero encantadora biblioteca de JavaScript
que me encanta. Y Symfony tiene un soporte de primera clase para ella. También es muy

utilizada por la comunidad de Ruby on Rails.

SPA vs. Aplicaciones "tradicionales"

Hay dos filosofias en el desarrollo web. La primera es que devuelves el HTML de tu sitio, como
hemos hecho en nuestra pagina de inicio y de navegacion, y luego anades el comportamiento
de JavaScript a ese HTML. La segunda filosofia es utilizar un marco de trabajo de JavaScript

para construir todo tu HTML y JavaScript, lo que supone una aplicacion de una sola pagina.

La solucion correcta depende de tu aplicacién, pero a mi me gusta mucho el primer enfoque. Y
utilizando Stimulus -asi como otra herramienta de la que hablaremos en unos minutos llamada
Turbo- podemos crear aplicaciones altamente interactivas que se ven y se sienten tan

responsivas como una aplicacién de una sola pagina.

Tenemos un tutorial completo sobre Stimulus, pero vamos a probarlo. Ya puedes ver como
funciona en el ejemplo de su documentacion. Creas una pequena clase JavaScript llamada
controlador... y luego adjuntas ese controlador a uno o mas elementos de la pagina. Y ya esta
Stimulus te permite adjuntar escuchas de eventos -como eventos de clic- y tiene otras cosas

buenas.

Controladores Stimulus en nuestra aplicacion

@ Tip

En versiones recientes de Symfony (y, especificamente, WebpackEncoreBundle v2),
Stimulus ya no viene instalado con symfony/webpack-encore-bundle. Para instalarlo,
ejecuta:

composer require symfony/stimulus-bundle

En nuestra aplicacion, cuando instalamos Encore, nos dio un directorio controllers/. Aqui es
donde viviran nuestros controladores Stimulus. Y en app.js, importamosbootstrap.js. No
es un archivo que tengas que mirar mucho, pero es super util. Esto pone en marcha Stimulus -
si, ya esta instalado- y registra todo lo que hay en el directorio controllers/ como un
controlador Stimulus. Esto significa que si quieres crear un nuevo controlador Stimulus, jsoélo

tienes que anadir un archivo a este directorio controllers/!

Y obtenemos un controlador de Estimulos fuera de la caja llamado hello_controller.js.
Todos los controladores de Estimulos siguen la practica de nombrar algo con "guion
bajo" controller.js o algo con guion controller.js. La parte que precede a _controller

-por tanto, hello - se convierte en el nombre del controlador.

Adjuntar un controlador a un elemento

Adjuntemos esto a un elemento. Abre templates/vinyl/homepage.html.twig. Veamos... en
la parte principal de la pagina, voy a afadir un div... y luego para adjuntar el controlador a este

elemento, anade data-controller="hello".

templates/vinyl/homepage.html. twig

T // ... lines 1 - 35
36 <div data-controller="hello"></div>
T // ... lines 37 - 59

iVamos a probarlo! Actualiza y... jsi! jHa funcionado! El estimulo ha visto este elemento, ha
instanciado el controlador... y luego nuestro codigo ha cambiado el contenido del elemento. El

elemento al que esta unido este controlador esta disponible como this.element.

iEl estimulo ve dinamicamente nuevos elementos!

Asi que... esto ya es muy bonito... porque conseguimos trabajar dentro de un objeto JavaScript

ordenado... que esta ligado a un elemento especifico.

Pero déjame mostrarte la parte mas genial de Stimulus: o que hace que cambie el juego.
Inspecciona el elemento en las herramientas de tu navegador cerca del elemento. Voy a
modificar el HTML del elemento padre. Justo encima de éste -aunque no importa donde- afiade

otro elemento con data-controller="hello".

Y... jboom! {Vemos el mensaje! Esta es la caracteristica estrella de Stimulus: puedes afiadir
estos elementos data-controller ala pagina cuando quieras. Por ejemplo, si haces una
llamada Ajax... que afiade HTML fresco a tu pagina, Stimulus se dara cuenta de ello y ejecutara
los controladores a los que el nuevo HTML deba estar unido. Si alguna vez has tenido
problemas en los que has afadido HTML a tu pagina mediante Ajax... pero el JavaScript de ese
nuevo HTML esta roto porque le faltan algunos escuchadores de eventos, pues Stimulus acaba

de resolverlo.

La funcion stimulus_controller ()

Cuando usas Stimulus dentro de Symfony, obtenemos unas cuantas funciones de ayuda para
hacernos la vida mas facil. Asi, en lugar de escribir data-controller="hello" a mano,

podemos decir{{ stimulus_controller('hello') }}.

templates/vinyl/homepage.html. twig

$ // ... lines 1 - 35
36 <div {{ stimulus_controller('hello') }}></div>
$ // ... lines 37 - 59

Pero eso es soélo un atajo para renderizar ese atributo exactamente igual que antes.

Bien, ahora que tenemos lo basico de Stimulus, vamos a utilizarlo para hacer algo real, como
hacer una peticion Ajax cuando hagamos clic en este icono de reproduccion. Eso es lo

siguiente.

Chapter 20: Ejemplo de Stimulus en el mundo real

Pongamos a prueba a Stimulus. Este es nuestro objetivo: cuando hagamos clic en el icono de
reproduccion, haremos una peticion Ajax a nuestra ruta de la API... la que esta en
SongController. Esto devuelve la URL donde se puede reproducir esta cancidon. Entonces

usaremos eso en JavaScript para... jreproducir la cancion!

Toma hello_controller.js y cambiale el nombre a, qué tal
song-controls_controller.js. Dentro, solo para ver si esto funciona, en connect(),
registra un mensaje. El método connect() se llama cada vez que Stimulus ve un nuevo

elemento coincidente en la pagina.

assets/controllers/song-controls controller.js

1 import { Controller } from '@hotwired/stimulus’;

2

3 /*

4 * This is an example Stimulus controller!

5 *

6 * Any element with a data-controller="hello" attribute will cause
7 * this controller to be executed. The name "hello" comes from the filename:
8 * hello_controller.js -> "hello"

9 *

10 * Delete this file or adapt it for your use!

11 */

12 export default class extends Controller {

13 connect() {

14 console.log('I just appeared into existence!');

15 }

16 }

Ahora, en la plantilla, hola ya no va a funcionar, asi que quita eso. Lo que quiero hacer es
rodear cada fila de canciones con este controlador.... asi que es este elementosong-1list.

Después de la clase, afiade {{ stimulus_controller('song-controls') }}.

templates/vinyl/homepage.html. twig

1

o <) NNV, N SN VVRR]

37
38

0
51
52

0
56
57

{% extends 'base.html.twig' %}

{% block title %}Create a new Record | {{ parent() }}{% endblock %}

{% block body %}
<div class="container">
// ... lines 7 - 36
{% for track in tracks %}
<div class="song-list" {{ stimulus_controller('song-controls') }}»>
// ... Llines 39 - 50
</div>
{% endfor %}
// ... lines 53 - 55
</div>
{% endblock %}

Vamos a probarlo Actualiza, comprueba la consola y... jsi! Golped nuestro codigo seis veces!

Una vez por cada uno de estos elementos. Y cada elemento recibe su propia instancia de

controlador, por separado.

Anadir acciones de Stimulus

Bien, a continuacién, cuando hagamos clic en reproducir, queremos ejecutar algun cédigo. Para

ello, podemos afadir una accion. Tiene este aspecto: en la etiqueta a, anade

{{ stimulus_action() }} -otra funcion de acceso directo- y pasale el nombre del

controlador al que estas adjuntando la accién - song-controls -y luego un método dentro de

ese controlador que debe ser llamado cuando alguien haga clic en este elemento. ;Qué te

parece play.

templates/vinyl/homepage.html. twig
1

{% extends 'base.html.twig' %}

2

3 {% block title %}Create a new Record | {{ parent() }}{% endblock %}

4

5 {% block body %}

6 <div class="container">

T // ... lines 7 - 36

37 {% for track in tracks %}

38 <div class="song-list" {{ stimulus_controller('song-controls') }}»>
39 <div class="d-flex mb-3">
40
41 <i class="fas fa-play me-3"></i>
42

$ // ... lines 43 - 49

50 </div>

51 </div>

52 {% endfor %}

$ // ... lines 53 - 55

56 </div>

57 {% endblock %}

Genial, ¢no? De vuelta en el controlador de la cancién, ya no necesitamos el método
connect(): no tenemos que hacer nada cada vez que veamos otra fila song-1ist. Pero si

necesitamos un meétodo play().

Y al igual que con los escuchadores de eventos normales, éste recibira un objeto event...y
entonces podremos decir event.preventDefault() para que nuestro navegador no intente

seguir el clic del enlace. Para probar, console.log('Playing!").

assets/controllers/song-controls controller.js

1 import { Controller } from '@hotwired/stimulus’;

T /7 ... lines 2 - 11

12 export default class extends Controller {
13 play(event) {

14 event.preventDefault();

15

16 console.log('Playing!"');

17 }

18 }

iVamos a ver qué pasa! Actualiza y... haz clic. Ya funciona. Asi de facil es enganchar un oyente

de eventos en Stimulus. Ah, y si inspeccionas este elemento... esa

funciénstimulus_action() es soélo un atajo para afadir un atributo especial

data-actionque Stimulus entiende.

Instalar e importar Axios

Bien, ¢ cdmo podemos hacer una llamada Ajax desde dentro del método play() ? Bueno,
podriamos utilizar la funcién integrada fetch() de JavaScript. Pero en su lugar, voy a instalar

una biblioteca de terceros llamada Axios. En tu terminal, instalala diciendo:

yarn add axios --dev

Ahora sabemos lo que hace: descarga este paquete en nuestro directorio node_modules, y

anade esta linea a nuestro archivo package.json.

Ah, y nota al margen: puedes utilizar absolutamente jQuery dentro de Stimulus. No lo haré,
pero funciona muy bien - y puedes instalar - e importar - jQuery como cualquier otro paquete.

Hablamos de ello en nuestro tutorial de Stimulus.
Bien, ¢como utilizamos la biblioteca axios ? Importandola

Al principio de este archivo, ya hemos importado la clase base Controller destimulus.
Ahora import axios from 'axios'. En cuanto lo hagamos, Webpack Encore cogera el

cédigo fuente de axios y lo incluira en nuestros archivos JavaScript construidos.

assets/controllers/song-controls_controller.js

T // ... lines 1 - 11
12 import axios from 'axios';
$ // ... lines 13 - 21

Ahora, aqui abajo, podemos decir axios.get() para hacer una peticion GET. Pero... jqué
debemos pasar para la URL? Tiene que ser algo como /api/songs/5... pero j,como sabemos

cual es el "id" de esta fila?

Valores de Stimulus

Una de las cosas mas interesantes de Stimulus es que te permite pasar valores de Twig a tu
controlador Stimulus. Para ello, declara qué valores quieres permitir que se pasen a través de
una propiedad estatica especial: static values = {}. Dentro, vamos a permitir que se pase
un valor de infoUrl. Me acabo de inventar ese nombre: creo que pasaremos la URL completa

a la ruta de la API. Establece esto como el tipo que sera. Es decir, un String.

Aprenderemos cémo pasamos este valor desde Twig a nuestro controlador en un minuto. Pero

como tenemos esto, abajo, podemos referenciar el valor diciendo this.infoUrlValue.

assets/controllers/song-controls_controller.js

T // ... lines 1 - 11
12 import axios from 'axios';

T /7 ... Line 13
14 export default class extends Controller {

15 static values = {

16 infoUrl: String

17 }

T // ... line 18

19 play(event) {

$ // ... lines 20 - 21

22 console.log(this.infoUrlVvalue);
23 //axios.get()

24 }

25 }

Entonces, ¢como lo pasamos? De vuelta en homepage.html.twig, afiade un segundo
argumento a stimulus_controller() . Este es un array de los valores que quieres pasar al

controlador. Pasa a infoUrl el conjunto de la URL.

Hmm, pero tenemos que generar esa URL. ¢ Esa ruta tiene ya un nombre? No, afade

name: 'api_songs_get one'.

src/Controller/SongController.php

1 <?php

2

$ // ... Lines 3 - 10

11 class SongController extends AbstractController

12 {

13 #[Route('/api/songs/{id<\d+>}"', methods: ['GET'], name: 'api_songs_get one')]
14 public function getSong(int $id, LoggerInterface $logger): Response

15 {

T /7 ... lines 16 - 27

28 }

29 }

Perfecto. Copia eso... y de nuevo en la plantilla, establece infoUR1 a path(), el nombre de la

ruta... y luego una matriz con cualquier comodin. Nuestra ruta tiene un comodinid.

En una aplicacion real, estas rutas probablemente tendrian cada una un id de base de datos
que podriamos pasar. Todavia no lo tenemos... asi que para, en cierto modo, falsear esto, voy a
utilizar loop.index. Esta es una variable magica de Twig: si estas dentro de un bucle de Twig
for, puedes acceder al indice -como 1, 2, 3, 4- utilizando loop.index. Asi que vamos a usar

esto como una identificacion falsa. Ah, y no olvides decir id: y luegoloop.index.

templates/vinyl/homepage.html. twig

T // ... lines 1 - 4
5 {% block body %}

6 <div class="container">

T // ... lines 7 - 36

37 {% for track in tracks %}

38 <div class="song-list" {{ stimulus_controller('song-controls’', {
39 infoUrl: path('api_songs_get_one', { id: loop.index })

40 })

$ // ... lines 41 - 52

53 </div>

54 {% endfor %}

$ // ... lines 55 - 57

58 </div>

59 {% endblock %}

jHora de probar! Refresca. Lo primero que quiero que veas es que, cuando pasamos infoUrl
como segundo argumento a stimulus_controller, lo Unico que hace es dar salida a un
atributo muy especial data que Stimulus sabe leer. Asi es como se pasa un valor a un

controlador.

Haz clic en uno de los enlaces de reproduccion y... lo tienes. jA cada objeto controlador se le

pasa su URL correcta!

Hacer la llamada Ajax

iVamos a celebrarlo haciendo la llamada Ajax! Hazlo con axios.get(this.infoUrlValue) -
si, acabo de escribirlo-, .then() y una devolucién de llamada utilizando una funcién de flecha
que recibira un argumento response. Esto se llamara cuando termine la llamada Ajax. Registra

la respuesta para empezar. Ah, y corrige para usar this.infoUrlValue.

assets/controllers/song-controls_controller.js

1 import { Controller } from '@hotwired/stimulus’;

2

T // ... lines 3 - 11

12 import axios from 'axios';

T // ... line 13

14 export default class extends Controller {
$ // ... lines 15 - 18

19 play(event) {

20 event.preventDefault();

21

22 axios.get(this.infoUrlValue)
23 .then((response) => {

24 console.log(response);
25 })s

26 }

27 }

Muy bien, actualiza... jy haz clic en el enlace de reproduccion! jSi! Ha volcado la respuesta... y

una de sus claves es data... jque contiene el url!

iEs hora de dar la vuelta de la victoria! De vuelta a la funcién, podemos reproducir ese audio
creando un nuevo objeto Audio -es un objeto JavaScript normal-,

pasandole response.data.url... y lamando a continuacion a play() .

assets/controllers/song-controls_controller.js

1 import { Controller } from '@hotwired/stimulus’;

T s/ ... lines 2 - 11

12 import axios from 'axios';

13

14 export default class extends Controller {
$ // ... lines 15 - 18

19 play(event) {

20 event.preventDefault();

21

22 axios.get(this.infoUrlValue)

23 .then((response) => {

24 const audio = new Audio(response.data.url);
25 audio.play();

26 })s

27 }

28 }

Y ahora... cuando le demos al play... jpor fin! Musica para mis oidos.

Si quieres aprender mas sobre Stimulus - esto ha sido un poco rapido - tenemos un tutorial

entero sobre ello... y es genial.

Para terminar este tutorial, vamos a instalar otra biblioteca de JavaScript. Esta hara que
nuestra aplicacion se sienta instantaneamente como una aplicacién de una sola pagina. Eso a

continuacion.

Chapter 21: Turbo: Supercarga tu aplicacion

Bienvenido al ultimo capitulo de nuestro tutorial de introduccion a Symfony 6. Si estas viendo
esto, jlo estas petando! Y es hora de celebrarlo instalando un paquete mas de Symfony. Pero
antes de hacerlo, como sabes, me gusta confirmar todo primero... por si el nuevo paquete

instala una receta interesante:

git add .

git commit -m "Never gonna let you go..."

Instalando symfony/ux-turbo

Bien, vamos a instalar el nuevo paquete:

composer require symfony/ux-turbo

¢ Ves ese "ux" en el nombre del paquete? Symfony UX es un conjunto de bibliotecas que
afaden funcionalidad JavaScript a tu aplicacién... a menudo con algo de codigo PHP para
ayudar. Por ejemplo, hay una biblioteca para renderizar graficos... y otra para usar un Cropper

de imagenes con el sistema de formularios.

Recetas UX de Symfony

Asi que, como puedes ver, esto instald una receta. OoOOo. Ejecuta

git status

para que podamos ver lo que ha hecho. La mayor parte es normal, como
config/bundles.phpque significa que habilité el nuevo bundle. Los dos cambios interesantes

sonassets/controllers.json y package.json. Comprobemos primero package.json.

Cuando instalas un paquete UX, lo que suele significar es que te estas integrando con una
biblioteca JavaScript de terceros. Y asi, la receta de ese paquete afiade esa biblioteca a tu
cédigo. En este caso, la biblioteca JavaScript con la que nos estamos integrando se llama
@hotwired/turbo. Ademas, el propio paquete PHP symfony/ux-turbo viene con algo de

JavaScript adicional. Esta linea especial dice

“iHey Node! Quiero incluir un paquete llamado @symfony/ux-turbo... pero en lugar de de
descargarlo, puedes encontrar su codigo en el directorio directorio

vendor/symfony/ux-turbo/Resources/assets.”

Puedes buscar literalmente en esa ruta vendor/symfony/ux-turbo/Resources/assets para
encontrar un mini paquete JavaScript. Ahora, debido a que esto actualizé nuestro archivo
package. json, tenemos que volver a instalar nuestras dependencias para descargarlo y

tenerlo todo listo.

De hecho, busca tu terminal que esta ejecutando yarn watch. Tenemos un error! Dice que no
se puede encontrar el archivo @symfony/ux-turbo/package.json, intenta

ejecutaryarn install --force.

iVamos a hacerlo! Pulsa control+C para detener esto... y luego ejecuta

yarn install --force

o npm install --force. Luego, reinicia Encore con:

yarn watch

El otro archivo que la receta modifico fue assets/controllers.json. Vamos a echarle un
vistazo: assets/controllers.json. Esta es otra cosa que es exclusiva de Symfony UX.
Normalmente, si queremos afadir un controlador Stimulus, lo ponemos en el

directoriocontrollers/. Pero a veces, puede que instalemos un paquete PHP y que

gqueramos anadir su propio controlador Stimulus en nuestra aplicacién. Esta sintaxis dice

basicamente

“iHey Stimulus! Ve a cargar este controlador Stimulus desde ese nuevo

@symfony/ux-turbo paquete.”

Ahora bien, este controlador Stimulus en particular es un poco raro. No es uno que vayamos a
utilizar directamente dentro de la funcion stimulus_controller() Twig. Es una especie de

controlador falso. 4, Qué hace? Sdlo con que se cargue, va a activar la biblioteca Turbo.

jHola Turbo! Por la actualizacion de la pagina completa

Sigo hablando de Turbo. ;Qué es Turbo? Bueno, al ejecutar ese comando composer require...
y luego reinstalar yarn, el JavaScript de Turbo esta ahora activo y funcionando en nuestro sitio.
¢ Qué hace? Es sencillo: convierte cada clic en un enlace y cada envio de un formulario de

nuestro sitio en una llamada Ajax. Y eso hace que nuestro sitio sea rapido como un rayo.

Compruébalo. Haz una ultima actualizacion completa. Y luego observa... si hago clic en
Examinar, jno hay actualizacién completa de la pagina! Si hago clic en estos iconos, jno hay
actualizacion! Turbo intercepta esos clics, hace una llamada Ajax a la URL, y luego pone ese
HTML en nuestro sitio. Esto es enorme porque, de repente, nuestra aplicacion se ve y se siente

como una aplicacion de una sola pagina... jsin que nosotros hagamos nadal!

La barra de herramientas de depuracion web y el perfilador de
peticiones Ajax

Ahora, otra cosa interesante que notaras es que, aunque las recargas de paginas completas
han desaparecido, estas llamadas Ajax aparecen en la barra de herramientas de depuracion
web. Y puedes hacer clic para ir a ver el perfil de esa llamada Ajax muy facilmente. Esta parte
de la barra de herramientas de depuracion web es aun mas util con las llamadas Ajax para una
ruta de la API. Si pulsamos el icono de reproduccion... ese 7 acaba de subir a 8... jy aqui esta
el perfilador de esa peticion de la API! Abriré ese enlace en una nueva ventana. Esa es una

forma super facil de llegar al perfilador de cualquier peticion Ajax.

Asi que Turbo es increible... y puede hacer mas. Hay algunas cosas que debes saber sobre él

antes de enviarlo a produccion, y si te interesa, jsi! tenemos un tutorial completo sobre Turbo.

Queria mencionarlo en este tutorial porque Turbo es mas facil si lo anades a tu aplicacion

desde el principio.

Muy bien, jfelicidades! jEI primer tutorial de Symfony 6 esta en los libros! Date una palmadita

en la espalda... o mejor, busca a un amigo y choca los cinco.

iY sigue adelante! Acompananos en el siguiente tutorial de esta serie, que te hara pasar de ser
un desarrollador de Symfony en ciernes a alguien que realmente entiende lo que esta pasando.
Cdmo funcionan los servicios, el sentido de todos estos archivos de configuracion, los entornos
Symfony, las variables de entorno y mucho mas. Basicamente todo lo que necesitaras para

hacer lo que quieras con Symfony.

Y si tienes alguna pregunta o idea, estamos aqui para ti en la seccion de comentarios debajo

del video.

Muy bien amigos, jhasta la proxima!

With <3 from SymfonyCasts

