
Blackfire.io: Revealing
Performance Secrets with

Profiling

Chapter 1: Performance, Profilers and APMs

Hey friends! Welcome to the fastest, most performant SymfonyCasts tutorial of all time, on Blackfire.

The end. What? We should say a bit more?

Uh, Blackfire is all about having fun while you discover ways to make your site absurdly fast. We're

going to see big graphs, numbers, statistics, animated gifs, and watch all those numbers decrease as

we hunt down and eliminate performance bottlenecks. This stuff is just fun. And who doesn't want a

faster site?

But... ok... just "being fun" probably isn't a good enough reason to use Blackfire. If you're trying to "sell"

using a tool to your team... or management, the real reason is profit. Performance is money. Heck,

Google even has a page that will measure the speed of your site and tell you how much revenue you

can gain by de creasing the rendering time of your site by various amounts.

On the flip side, I'm sure you've heard the famous saying:

“Premature optimization is the root of all evil”

I thought it was Nickelback. If that's true... doesn't a having a cool profiling tool like Blackfire make you

think more about prematurely optimizing? Actually, it's the opposite: it let's us focus on creating

features and then noticing performance problems if there are any.

Performance: Server + Network + Rendering

By the way, your site's performance is really three things put together. First, the time it takes your

server to build the page. Second, the time it takes to transmit that data over the network. And third, the

time it takes for the browser to display stuff - the frontend. You should focus on all of these, but the

main parts are the server and frontend. Your browser has tools to understand and optimize your

frontend. Blackfire helps optimize your backend.

Application Performance Monitoring (APM) Versus Blackfire

But it's not the only way to monitor performance on your server. The most well-known way is by using

an "application performance monitoring tool" - or APM... which is an acronym I had to look up about 10

times before I could remember what it meant! An APM is something that runs on your servers all the

https://www.thinkwithgoogle.com/feature/testmysite

time, collecting information about load times, slow queries, slow functions, errors and more. The most

famous one is probably NewRelic, though Blackfire is planning to release their own sometime soon.

The great thing about an APM is that you can see data from every request on your production servers.

The bad part is that, because an APM is always running, it needs to collect data without slowing down

the page. If it tries to collect too much, it would become the performance bottleneck!

Blackfire is a profiler. The big difference is that, instead of running on every single request that our

users make... and needing to stay very lightweight, Blackfire only profiles a page when you tell it to. It

then makes its own request to the page and collects an incredible amount of extremely detailed

information. This process totally slows down that page load... which is fine, because there's not a real

user waiting for it to return.

The point is: use an APM and a profiler. The APM will give you a constant stream of information from

production. The profiler will give you the deep information you need when debugging performance on

specific pages.

Project Setup

Ok, enough chat! Let's do this! To remove any bottlenecks and maximize your learning performance,

you should totally code along with me. Download the course code from this page. When you unzip it,

you'll find a start/ directory with the same code that you see here. Follow the README.md file for all

the setup details. This is a Symfony project - but that won't matter much: we'll mostly focus on

understanding and getting the most out of Blackfire.

The last setup step in the README will be to open a terminal, move into the project, use the Symfony

binary to start a local web server by typing:

symfony serve

Ok, let's see the site! Find your browser and head to https://localhost:8000 . Now you

understand how important this project is. The world has been looking for Big Foot, or "Sasquatch", for

years. Thanks to the Big-Foot fanatic community on our site - "Sasquatch Sightings" - we're closer

than ever. In our case, better performance doesn't mean more profit, it means, more big foot.

Do... I know where the performance problems are? Nope. No idea. Honestly, I was too focused on

getting this site to production to obsess over performance. And... I feel great about that! We'll use

Blackfire to find the bottlenecks - if any - and Sasquash them!

https://symfony.com/download
https://symfony.com/download

Next, let's get Blackfire installed on my local machine and start profiling this local website. And yes,

you can use Blackfire on production - which is awesome - and something we'll do later in the tutorial.

Chapter 2: Blackfire Install: Agent, Probe, Chrome
Extension

So let's get Blackfire installed on our local computer. Head over to https://blackfire.io and log

in or register for a new account. As you can see, I've been busy using Blackfire already.

Agent & Probe: How it all Works

Click the Docs link on top... then installation on the left. Before we jump in and install everything, I want

you to understand just a little bit about how this all works: understanding this helped me a bunch. If you

want to skip this and head to the next video you can... just prepare to miss out on some cool diagrams!

Click the "main components of Blackfire" link and scroll down to find... woh! A diagram that shows you

exactly how Blackfire works.

The Probe: PHP Extension that Collects Data

How about... we look at a simplified version. There are 3 things we need to install. The first is called

the "probe", which is really just a PHP extension. You'll install this wherever your code is running - like

on your local machine, and later on production. The probe's job is simple, but huge! It's responsible for

collecting all of the information: all the function calls, how long each took, which function called which

other function, how much memory did something take, network requests... you get the idea. By the

way, the process of "collecting all the data" is sometimes called instrumentation... which I only mention

so that if you see this fancy word... it hopefully won't confuse you... it confused me.

The Probe: Collector and Sender

The second thing we will need to install is called the "agent". This is a service - or "daemon" - that runs

on your computer - or on your production machine. It... just sits there and waits. When the PHP

extension - the probe - finishes collecting all the data, it sends that data to the agent. The agent does

some processing on it - like removing unimportant information and anonymizing things - then ultimately

sends that data to the Blackfire server. It's... the middleman.

So basically, the probe and agent work together to collect the info and send it to Blackfire.

The Browser Extension: Profiling Activator

The last piece you'll need to install is a browser extension. Remember: the probe is not profiling every

single request. Normally, when a request comes in, it yawns... and does nothing. The browser

extension's job is to activate profiling. It basically says:

“Hey probe! Wake up! I'm going to make a request and I actually want you to do your thing - collect

all the data and sent it to the agent. Cool? Text me when it's done.”

And... that's it! This bottleneck-fighting superhero trio is our ticket to performance glory. Next, let's get

them installed.

Chapter 3: Installing the Agent, Probe & Chrome
Extension

So... let's get these pieces installed! Back on the install page, the setup details will vary based on your

operating system. Fortunately, Blackfire has details for pretty much all situations. I'm on a Mac and will

use Homebrew to get everything working.

I'll copy the brew tap command, move to my terminal, open a new tab and paste:

brew tap blackfireio/homebrew-blackfire

Installing the Agent

That gives me access to the Blackfire packages. Now, install the agent - that's the "daemon" that runs

in the background - with:

brew install blackfire-agent

Perfect! It says I need to "register" my agent. And... the browser instructions confirm that! I'll copy that

command, clear the screen and paste:

sudo blackfire-agent --register

This is going to ask us for our "Server Id" and "Server Token". These are... basically an internal

"username and password" that the agent will use to tell the Blackfire servers which account the profiles

should be attached to. Copy the Server Id, paste, copy the Server Token, paste and... we're good!

Finally, remember how the "agent" is a service that runs in the background? We just installed the

agent, but it's not running yet. Back in the docs, the next two commands set up the agent as a

"service" in Brew, so that it will always be running. Copy the first, paste.

ln -sfv /usr/local/opt/blackfire-agent/*.plist ~/Library/LaunchAgents/

Then spin back over again, copy the launchctl load command... and paste that.

launchctl load -w ~/Library/LaunchAgents/homebrew.mxcl.blackfire-agent.plist

Cool! If everything worked, the Blackfire agent is now running in the background. You wont really ever

see it or care that it's there... but it is... waiting for data.

Installing the Probe

Back on the install docs, the next piece we need is the PHP extension - the probe. Skip this CLI tool

for now - we won't need it until later.

To install the PHP extension, we'll once again use brew . But... hopefully you're not still using PHP 5.6.

Let me head over to my terminal and see what version I'm running:

php --version

7.3.6. Brilliant! So I'll run:

brew install blackfire-php73

Notice that the extension doesn't need any authentication info - like a server Id or token. It's beautifully

dumb: its job is to profile data, send it to the agent, and let it worry about authentication with the

Blackfire servers.

We do, however, as it says, need to restart our web server. For us, that means going to the other

terminal tab, hitting Control + C, and then running

symfony serve

Is the Blackfire extension working? I don't know! Because we're using Symfony, an easy way to check

is to hover over the web debug toolbar and click the "View phpinfo()" link. Let's see... yep! The

Blackfire PHP extension is here.

 Tip

If you have XDebug installed, disable it for the best results.

Installing the Browser Extension

At this point, our server is set up and ready to profile! Victory! The only thing we need now is a way to

tell the probe when to activate. That's the job of the browser extension.

Go almost all the way back to the top of the install page where they talk about the different pieces. I'm

using Chrome, so I'll click the Google Chrome extension link. I don't have it installed yet, so let's fix

that: Add to Chrome.

There it is! If you refresh the docs... yep! It sees the extension.

Profiling our First Page

Hey! We're ready to profile! Ahhhh! Where should we start? Let's... just click to view details about any

Big Foot sighting. All of this data comes from some data fixtures that we used to pre-populate the

database while setting up the project. It uses a bunch of random data up here... and each sighting has

a bunch of random comments.

When we loaded this page a second ago, the PHP extension - the probe - did nothing. To activate it,

click the browser extension.

Moment of truth! When we click profile, the plugin will send a request to this page with a special

header that tells the probe to activate and start profiling. Click "Profile"!

There it goes! It goes from 0 to 100% as it actually makes 10 requests and averages their data. We

can also give this "profile" a name to keep our account organized: I'll say

[Recording] Show page initial and hit enter.

Troubleshooting Failure

https://blackfire.io/docs/integrations/browsers/chrome

If you got to 100%, congrats! If you got an error... wah wah. This is the most common place for

something to go wrong... and the error will almost always be the same: Probe not found. This might

mean that you forgot to install the PHP extension, or that the PHP extension was installed on a

different PHP binary... or that the agent isn't running... or that the agent is running but you

misconfigured the server id and token. They have great docs to help with this.

But we had success! Click the "View Call Graph" button to go to a URL on their site. Hello beautiful

Blackfire profile. Wow.

Next, let's start diving into this mountain of information and see how we can use it to find hidden

sasquatch... I mean, hidden performance bugs.

Chapter 4: Wall Time, Exclusive Time & Other
Wonders

We just made Blackfire profile our first page. One of the best things about Blackfire is that, instead of

just... giving me some raw data-dump and saying:

“Good luck navigating that black pit of data!”

... they expose this treasure trove of info on their site with a beautiful interface. This is called the "call

graph". The most challenging part of Blackfire for me was learning what all this stuff means... so I

could really get the most out of it. If you stick with me for the next few minutes, your profiling game will

get a huge boost.

By the way, throughout the tutorial, I'll give you links to view the exact profile on Blackfire that I'm

navigating in the video. Feel free to open it up and play around. The first one is here:

https://bit.ly/sfcasts-bf-profile1.

And yes, I know, the cool-looking graph in the middle is calling to us, but let's start by looking at the the

left side: the list of function calls, ordered from the functions that took the longest to execute on top...

down to the quickest on the bottom. Well actually, Blackfire "prunes" or "removes" function calls that

took very little time... so you won't see everything here.

Viewing by Different Dimensions

The functions are ordered by "time" because we're viewing the call graph in the time "dimension". You

can also look at all of this information ordered by several other dimensions - like which functions took

the most memory. It's kind of like the process manager on your computer: you can see which

applications are currently taking up the most CPU, the most memory, reading the most info from your

disk or even using the most network. But more on these dimensions later.

Wall Time

In the profiling world, time is called "wall time". But, it's nothing fancy: wall time is the difference

between the time at which a function was entered and the time at which the function was left. So... wall

time is a fancy word for... um... time: the amount of "time" a function took to run.

https://bit.ly/sfcasts-bf-profile1

Inclusive vs Exclusive

So... we just find the function with the highest wall time and optimize it, right? Well... what if a function

is taking a really long time... but actually, 99% of that time is due to a function that it calls. In that case,

the other function is probably the problem.

To help sort this all out, wall time is divided into two parts: exclusive time and inclusive time. If you

hover over the red graph, you'll see this: exclusive time 37.9 milliseconds, inclusive time 101

milliseconds.

Inclusive time is the full time it took for the function to execute. Exclusive time is more interesting: it's

the time a function took to execute excluding the time spent inside other functions it called: it's a pure

measurement of the time that the code inside this function took.

Right now, we're actually ordering this list by exclusive time, because that usually shows you the

biggest problems. You can also order by inclusive time... which is probably not very useful: the top item

is where our script starts executing, the second is the next function call, and so on. Go back to

exclusive.

Navigating What Calls What

So apparently, the biggest problem, according to exclusive time, is this

UnitOfWork::createEntity function... whatever that is. If you use Doctrine, you might know what

this is - but let's pretend we have no idea.

Before we dive further into the root cause behind this slow function, the other way to order the calls is

by the number of times each is called. Wow! Apparently the function that's called the most times - over

6 thousand times - is ReflectionProperty::setValue . Huh. I wonder who calls that?

Deeper Function Details

Click to expand that function. I love this! Even though we're viewing the call graph in the "time"

dimension, this gives us all the info about this function: the wall time, I/O wait time, CPU time, memory

footprint and network.

Wall Time = I/O Time + CPU Time

This isn't a particularly time consuming function - its wall time is 9.13 milliseconds. Wall time itself is

broken down into two pieces, and this is important: wall time = I/O time + CPU time. There is nothing

else: either a function is using CPU or it's doing some I/O operation, like talking to the filesystem or

making network calls. In this case, the 9.13 milliseconds wall time is all CPU time.

Finding Callers

Okay, but who actually calls this function so many times? Above this, see those 3 down arrow buttons?

These represent the three other functions that call this one - the size is relative to how many times

each calls this. Click the first one. Ah ha! It's UnitOfWork::createEntity ! That's the function with

the highest exclusive time - it calls this function 4,959 times. Wow. So... it's definitely a problem.

If you click the other two arrows, you can see the other two callers: one calls this 984 times and the

other 216 times. Both are from Doctrine.

Viewing Callees

Close all of this up and go back to ordering by the highest exclusive time. Open up

UnitOfWork::createEntity() . As I mentioned, even though we're currently viewing the call

graph in the "time" dimension, we can see all this function's dimensions right here.

Hover over the time graph: even though the exclusive time is significant - 37.9 milliseconds - most of

this function's time is still inclusive: it's taken up by other functions that it calls. That helps give us a hint

as to if the problem is inside this function... or inside something it calls.

And actually, every dimension has inclusive and exclusive measurements: like CPU time and even

memory. If any of these had a high inclusive value - meaning some function it calls is really taking up

that resource - you can see what functions it calls by clicking one of the arrow buttons below this.

What I really want to know though is... what's happening in our code to cause this function -

UnitOfWork::createEntity() - be called so many times? Click the biggest arrow above. Ah:

ObjectHydrator::getEntity() is the main culprit.

But... honestly... I don't know what that function is either: this is still way too low-level in Doctrine - I

have no idea what's really going on. So next, let's use the call graph - the pretty diagram on the right -

to get a full picture of what's happening going on... and how to fix it.

Chapter 5: Finding Issues via the Call Graph

There are two different ways to optimize any function: either optimize the code inside that function or

you can try to call the function less times. In our case, we found that the most problematic function is

UnitOfWork::createEntity . But this is a vendor function: it's not our code. So it's not something

that we can optimize. And honestly, it's probably already super-optimized anyways.

But we could try to call it less times... if we can understand what in our app is causing so many calls!

The call graph - the big diagram in the center of this page - holds the answer.

Call Graph: Visual Function List

Start by clicking on the magnifying glass next to createEntity . Woh! That zoomed us straight to

that "node" on the right. Let's zoom out a little.

The first thing to notice is that the call graph is basically a visual representation of the information from

the function list. On the left, it says this function has two "callers". On the right, we can see those two

callers. But when you're trying to figure out the big picture of what's going on, the call graph is way

nicer.

The Critical Path

Let's zoom out a bunch further. Now we can see a clear red path... that eventually leads to the dark red

node down here. This is called the critical path. One of Blackfire's main jobs is to help us make sense

out of all this data. One way it does that is exactly this: by highlighting the "path" to the biggest problem

in our app.

I'm going to hit this little "home" icon - that will reset the call graph, instead of centering it around the

createEntity node. In this view, Blackfire does hide some less-important information around the

createEntity node, but it gives us the best overall summary of what's going on: we can clearly see

the critical path. The critical thing to understand is: why is that path in our app so slow?

Let's trace up from the problem node... to find where our code starts. Ah, here's our controller being

rendered... and then it renders a template. That's interesting: it means the problem is coming from

inside a template... from inside the body block apparently. Then it jumps to a Twig extension called

getUserActivityText() ... that calls something else

CommentHelper::countRecentCommentsForUser() . That's the last function before it jumps into

Doctrine.

Finding the Problem

So the problem in our code is something around this getUserActivityText() stuff. Let's open up

this template: main/sighting_show.html.twig - at

templates/main/sighting_show.html.twig .

If you look at the site itself, each commenter has a label next to them - like "hobbyist" or "bigfoot

fanatic" - that tells us how active they are in the great and noble quest of finding BigFoot. Over in the

Twig template, we get this text via a custom Twig filter called user_activity_text :

templates/main/sighting_show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 19

20

21

22

 // ... lines 23 - 25

26

 // ... line 27

28

 // ... lines 29 - 33

34

35

36

37

38

39

40

 // ... lines 41 - 42

If you're not familiar with Twig, no problem. The important piece is that whenever this filter code is hit, a

function inside src/Twig/AppExtension.php is called... it's this getUserActivityText()

method:

{% block body %}

<div class="col">

 {% for comment in sighting.comments %}

 <div class="comment-container mb-3">

 <div class="row">

 <div class="col">

 ({{ comment.owner|user_activity_text }})

 </div>

 </div>

 </div>

 {% endfor %}

</div>

{% endblock %}

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

This counts how many "recent" comments this user has made... and via our complex & proprietary

algorithm, it prints the correct label.

Back over in Blackfire, it told us that the last call before Doctrine was

CommentHelper::countRecentCommentsForUser() - that's this function call right here!

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

27

28

29

 // ... lines 30 - 43

44

45

Let's go open that up - it's in the src/Service directory:

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);

 if ($commentCount > 50) {

 return 'bigfoot fanatic';

 }

 if ($commentCount > 30) {

 return 'believer';

 }

 if ($commentCount > 20) {

 return 'hobbyist';

 }

 return 'skeptic';

 }

}

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);

 }

}

src/Service/CommentHelper.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Ah. If you don't use Doctrine, you might not see the problem - but it's one that can easily happen no

matter how you talk to a database. Hold Command or Ctrl and click the getComments() method to

jump inside:

src/Entity/User.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 50

51

52

53

54

 // ... lines 55 - 187

188

189

190

191

192

193

194

 // ... lines 195 - 206

207

Here's the story: each User on our site has a database relationship to the comment table: every user

can have many comments. The way our code is written, Doctrine is querying for all the data for every

comment that a User has ever made... simply to then loop over them, and count how many were

created within the last 3 months:

class CommentHelper

{

 public function countRecentCommentsForUser(User $user): int

 {

 $comments = $user->getComments();

 $commentCount = 0;

 $recentDate = new \DateTimeImmutable('-3 months');

 foreach ($comments as $comment) {

 if ($comment->getCreatedAt() > $recentDate) {

 $commentCount++;

 }

 }

 return $commentCount;

 }

}

class User implements UserInterface

{

 /**

 * @ORM\OneToMany(targetEntity="App\Entity\Comment", mappedBy="owner")

 */

 private $comments;

 /**

 * @return Collection|Comment[]

 */

 public function getComments(): Collection

 {

 return $this->comments;

 }

}

src/Service/CommentHelper.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

It's a massively inefficient way to get a simple count. This is problem number one.

It seems obvious now that I'm looking at it. But the nice thing is that... it's not a huge deal that I did this

wrong originally - Blackfire points it out. And not over-obsessing about performance during

development helps prevent premature optimization.

Attempting the Performance Bug Fix

So let's fix this performance bug. Open up src/Repository/CommentRepository.php . I've

already created a function that will use a direct COUNT query to get the number of recent comments

since a certain date:

class CommentHelper

{

 public function countRecentCommentsForUser(User $user): int

 {

 $comments = $user->getComments();

 $commentCount = 0;

 $recentDate = new \DateTimeImmutable('-3 months');

 foreach ($comments as $comment) {

 if ($comment->getCreatedAt() > $recentDate) {

 $commentCount++;

 }

 }

 return $commentCount;

 }

}

src/Repository/CommentRepository.php

 // ... lines 1 - 7

8

 // ... lines 9 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

29

30

31

32

33

 // ... lines 34 - 62

63

Let's use this... instead of my current, crazy logic.

To access CommentRepository inside CommentHelper - this is a bit specific to Symfony - create a

public function __construct() and autowire it by adding a

CommentRepository $commentRepository argument:

src/Service/CommentHelper.php

 // ... lines 1 - 5

6

7

8

9

 // ... lines 10 - 11

12

13

 // ... line 14

15

 // ... lines 16 - 21

22

Add a private $commentRepository property... and set it in the constructor:

$this->commentRepository = $commentRepository :

use App\Entity\User;

class CommentRepository extends ServiceEntityRepository

{

 public function countForUser(User $user, \DateTimeImmutable $sinceDate): int

 {

 return (int) $this->createQueryBuilder('comment')

 ->select('COUNT(comment.id)')

 ->andWhere('comment.owner = :user')

 ->andWhere('comment.createdAt >= :sinceDate')

 ->setParameter('user', $user)

 ->setParameter('sinceDate', $sinceDate)

 ->getQuery()

 ->getSingleScalarResult();

 }

}

use App\Repository\CommentRepository;

class CommentHelper

{

 public function __construct(CommentRepository $commentRepository)

 {

 }

}

src/Service/CommentHelper.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 21

22

Now... I don't need any of this logic. Just return

$this->commentRepository->countForUser() . Pass this $user ... and go steal the

DateTimeImmutable from below and use that for the second argument. Celebrate by killing the rest

of the code:

src/Service/CommentHelper.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 16

17

18

19

20

21

22

If we've done a good job, we will hopefully be calling that UnitOfWork function many less times - the

23 calls into Doctrine from CommentHelper eventually caused many, many things to be called.

So... let's profile this and see the result! We'll do that next and use Blackfire's "comparison" feature to

prove that this change was good... except for one small surprise.

use App\Repository\CommentRepository;

class CommentHelper

{

 private $commentRepository;

 public function __construct(CommentRepository $commentRepository)

 {

 $this->commentRepository = $commentRepository;

 }

}

class CommentHelper

{

 public function countRecentCommentsForUser(User $user): int

 {

 return $this->commentRepository

 ->countForUser($user, new \DateTimeImmutable('-3 months'));

 }

}

Chapter 6: Comparisons: Validate Performance
Changes, Find Side Effects

We've just updated our code to make a COUNT query instead of querying for all the comments for a

user... just to count them. So, the page will definitely be faster. Right? Are you absolutely sure? Well, I

think it will be faster... but sometimes making one part of your code faster... will make other parts

slower. Fortunately, Blackfire has a special way to prove that a performance tweak does in fact help.

Let's profile the page now - I'll refresh... then click to profile. Give it a name to stay organized

[Recording] Show page after count query .

Ok! Let's go see the call graph! https://bit.ly/sfcast-bf-profile2

Hey! 270 milliseconds total time - the last one was 415. So it is faster. We win! Tutorial over!

Well... yeah, I agree: it does look faster. But an important aspect of optimization is understanding why

something is faster. Like, did this reduce CPU time? I/O wait time? And, maybe more importantly, did

this change cause anything to be worse? For example, a change might decrease CPU time, but

increase memory. If that happened, would the change really be a good one? It depends.

Comparing Profiles

This leads me to one of my favorite tools from Blackfire: the ability to compare profiles. Click back to

your dashboard: the top two profiles are from the initial profile and then the page after using the

COUNT query. On the right, hover over the "Compare" button on the original, click, then click the new

one.

Say hello to the comparison view: https://bit.ly/sf-bf-compare1-2. Everything that's faster, or "better" is

in blue. Anything that's slower or worse will be in red. And yea, it looks like the new profile is better in

every single category. Ok, the I/O wait is higher - but .1 millisecond higher - that's just "noise".

Anyways, the comparison proves that this was a good change. Really, it's a huge win! On the call

graph, in the darkest blue, the critical path this time is the path that improved the most. Click the

UnitOfWork call now. Wow. The inclusive time is down by 90 milliseconds and even the memory

plummeted: down 1.39 megabytes.

https://bit.ly/sfcast-bf-profile2
https://bit.ly/sf-bf-compare1-2

 Tip

The SQL Query information requires a Profiler plan or higher.

But wait. One of the items on top is called "SQL Queries". The total query time is less than before... but

we've added 5 more queries. We removed these 18 queries... but added 23 new ones.

Is that a problem? Probably not. Overall, this change was good. And if having too many queries does

create a real problem - not just an imaginary one of "too many queries" - Blackfire will help us discover

that. The big takeaway here is: don't just assume that a performance enhancement... is actually better.

We'll see this later - not every change we'll do in this tutorial will prove to be a good one.

Next: Blackfire has a deep understanding of PHP, database queries, Redis calls and even libraries like

Symfony, Doctrine, Magento, Composer, eZ platform, Wordpress and others. Thanks to that, it

automatically detects problems and recommends solutions.

Chapter 7: Recommendations

Head back to the Blackfire dashboard... and click into the latest profile - the one with our COUNT

query improvement - https://bit.ly/sfcast-bf-profile2.

The critical path is now much less clear... there are kind of two critical paths... but neither end in a

node with a red background... which would indicate an obvious issue. This might mean that there

aren't any more easy performance "wins" on this page... it might be fast enough!

Focus in Improvement, Not Absolute Time

The response time from the profile was 270 milliseconds. If you're not satisfied with that, remember

two things. First, we're profiling Symfony in its dev environment. Switching to prod would be faster...

we'll do that soon. And second, the time you see in a profile will never be quite as fast as the real thing,

because when the probe is activated - the PHP extension that does all the profiling - it slows things

down. So don't obsess over any absolute numbers. Instead, focus on finding ways to improve each

number.

Switching to Symfony's prod Environment

The function that takes up the most exclusive time is from something called DebugClassLoader . Ah.

Our local Symfony app is currently running in its dev environment, which adds a lot of debugging

tools, like the web debug toolbar. That stuff also slows things down... which makes profiling less useful:

the profiler is cluttered up with function calls that won't really be there in production. That extra noise

makes finding the true performance issues harder.

So, let's switch our app to the prod environment while profiling.

Open up .env , find the APP_ENV variable, and change it to prod :

.env

 // ... lines 1 - 16

17

 // ... lines 18 - 29

That will make things more realistic... but it also means that after... pretty much any change to our

code, we will need to clear & warm the cache. No big deal: at your terminal, run:

APP_ENV=prod

https://bit.ly/sfcast-bf-profile2

php bin/console cache:clear

and then:

php bin/console cache:warmup

Ok, let's profile again! I'll refresh... just to make sure the page is working and... profile! I'll call this one

[Recording] Show page in prod mode . Cool! 106 milliseconds is a huge improvement! Click to

open the call graph: https://bit.ly/sf-bf-profile3

Now the function list and the call graph look a bit more useful. There's no super problematic, red-

background node on the graph... but the function that takes up the most exclusive time -

PDOStatement::execute() - at least makes sense: that's executing database queries.

Hello Recommendations

 Tip

The Recommendations information requires a "Profiler" plan level or higher.

Back on our site, you may have noticed that each time we've profiled, a little exclamation icon showed

up. If you clicked that, it would take you to a "Recommendations" section of the profile. The

exclamation point was telling us that we're failing one or more Blackfire recommendations.

I dig this feature. Because Blackfire is written for PHP, it has special knowledge of how queries are

made, how Composer works, Symfony, Magento and so many other things. The Blackfire team has

used that knowledge to add a bunch of things that they call "recommendations". I call them "sanity

checks".

For example, Blackfire counted our queries and said:

“Hey! FYI - you've got a bunch of queries on this page... maybe you should try to have less than

10.”

Yea, our 43 queries is pretty high. Does that mean we should immediately run into our code and fix it?

Nah. It's just a good thing to keep on your radar.

https://bit.ly/sf-bf-profile3

There's also a recommendation that Doctrine annotation metadata should be cached in production.

Honestly... I'm not sure why that's there - Symfony apps come with a

config/packages/prod/doctrine.yaml file that takes care of caching these when you're in the

prod environment. When I tried to reproduce this later... it went away. So let's ignore it for now. If it

comes back later when we deploy to production, then I will want to look into it further.

Composer Autoloader Recommendation

The last recommendation is awesome:

“The Composer autoloader class map should be dumped in production”

By the way. if you don't know what something means, the cute question mark can help.

Look back at the function list: the second highest function was something related to Composer's

autoload system. Blackfire nailed that this is an issue.

You may already know this, but when you deploy, you're supposed to run a special command - or add

a special option - that tells Composer to dump an optimized autoload file. Blackfire is telling us that we

forgot to do this locally.

Let's fix this: it will help clean up even more stuff on the profile. At your terminal, run:

composer dump-autoload --optimize

Perfect! Refresh the page... it works... and create another profile - I'll call this:

[Recording] Show page after optimized autoloader . Click to view the call graph:

https://bit.ly/sf-bf-profile4 and close the old one.

It's not significantly faster, but we've removed at least one heavy-looking function call from our list. That

will help us focus on any real problems. Check out the recommendations now. Yea! The Composer

one is gone. Later, we'll learn how to add custom assertions - which are basically a way to write your

own custom recommendations.

Next, let's look deeper at what's going on with this PDOStatement::execute stuff. Is our page fast

enough? Or can we discover some further, hidden optimizations?

https://bit.ly/sf-bf-profile4

Chapter 8: Property Caching

Now that we've got our application in production mode and we've dumped the autoloader, it's easier to

see what the biggest performance problem is on this page: https://bit.ly/sf-bf-profile4

And actually, there might not be any more problems worth solving. I mean, it's loading in 104

milliseconds... even with the Probe doing all the profiling work.

But... let's see for sure. The function with the highest exclusive time now is

PDOStatement::execute() ... which is a low-level function that executes SQL queries.

 Tip

The SQL Query information requires a Profiler plan or higher.

If we hover over the query info, these are only taking 12.5 milliseconds... but we are making 43 SQL

calls on this page. Is that a problem? It's not ideal, but is it worth fixing? I guess it depends on how

much you care... and whether the fix would be easy or if it would add a lot of complexity to our app.

Navigating the Call Graph: Top to Bottom, Bottom to Top

When you're trying to identify where the problem is, there are two ways to look at the call graph - and I

often do both to help me understand what's going on. First, you can read from top to bottom - trace

through your whole application flow to figure out what's going on down the hot path. Or, you can do the

opposite: start at the bottom - start where the problem is... and trace up to find where your code starts.

Let's start from the top: handleRaw() is the framework booting up... and as we trace down... it

renders our controller, renders our template... and we're once again inside the body block. This is

really the same as last time! Our AppExtension::getUserActivityText() calls the

countRecentCommentsForUser() function 23 times. That makes sense: we probably have 23

comments on the page... and for each comment, we need to count all the author's comments to print

out this label.

Navigating Dimensions

https://bit.ly/sf-bf-profile4

Before we think about if, and how we might fix this, let's back up and look at other dimensions of this

profile. In addition to wall time, we can completely re-draw the call graph based on only I/O time or

CPU time. Remember, wall time is I/O time + CPU time. Or we could do something totally different:

look at which functions are using the most memory... or even the most network bandwidth.

When we look at this in the network dimension, PDOStatement::execute() - the function that

makes SQL calls - shows up here as a big problem. That's because SQL queries are technically

network requests.

Re-draw the call graph for the I/O Wait time dimension. We see the same problem here because

network calls - and so SQL calls - are part of I/O wait time.

The point is: while "wall time" is typically the most useful dimension, don't forget about these other

ones: they can give us more information about what's going on. Is a function slow because of

inefficient code inside? Or is it, for example, because of a network call?

Click back to I/O wait time - PDOStatement::execute() is definitely the issue according to this -

and the critical path is pretty clear. This one function is taking over half the I/O wait time... but that's

only 6 milliseconds. Optimizing this might not be worth it... but let's at least see if we can figure out how

to call it less times.

As we already discovered, the problem is coming from CommentRepository::countForUser()

which is called by AppExtension::getUserActivityText() .

Over in src/Twig/AppExtension.php , each time we render a comment, it calls

countForUser() and passes the User object attached to this comment:

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

27

28

29

 // ... lines 30 - 43

44

45

Property Caching

Can we optimize this? Well... sometimes, the same user will comment many times on the same

sighting - like this vborer user. When that happens, we're making a query to count that user's

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);

 }

}

comments for every comment. That's wasteful!

So here's one idea: leverage "property caching". Basically, we'll keep track of the "status" strings for

each user and use that to avoid calculating the status more than once for a given user.

Start by moving most of the logic into a private function called calculateUserActivityText() :

this will have a User argument and return a string:

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Next, add a new property to the top of the file: private $userStatuses = [] :

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 55

56

Back in the public function, here's the magic: if not

isset($this->userStatuses[$user->getId()]) , then set it by saying

class AppExtension extends AbstractExtension

{

 private function calculateUserActivityText(User $user): string

 {

 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);

 if ($commentCount > 50) {

 return 'bigfoot fanatic';

 }

 if ($commentCount > 30) {

 return 'believer';

 }

 if ($commentCount > 20) {

 return 'hobbyist';

 }

 return 'skeptic';

 }

}

class AppExtension extends AbstractExtension

{

 private $userStatuses = [];

}

$this->userStatuses[$user->getId()] = $this->calculateUserActivityText($user) .

At the bottom of the function, return $this->userStatuses[$user->getId()] :

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 28

29

30

31

32

33

34

35

36

 // ... lines 37 - 55

56

This is one of my favorite performance tricks because it has no downside, except for some extra code.

If getUserActivityText() is called and passed the same User multiple times within a single

request, we won't duplicate any work.

So... we probably made our site faster, right? Let's find out! Since we're in Symfony's prod

environment, just to be safe, let's clear the cache:

php bin/console cache:clear

and warm it up:

php bin/console cache:warmup

Back in the browser, refresh the page and... let's profile! I'll name this one

[Recording] show page try property caching . View the call graph: https://bit.ly/sf-bf-

profile-prop-caching.

Ok - PDOStatement still looks like a main problem... but I think we're a little faster. You know what?

Let's just compare the two profiles. Go back to the dashboard and compare the previous profile to this

one. https://bit.ly/sf-bf-compare-prop-caching. I'll close the old profile.

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 if (!isset($this->userStatuses[$user->getId()])) {

 $this->userStatuses[$user->getId()] = $this-

>calculateUserActivityText($user);

 }

 return $this->userStatuses[$user->getId()];

 }

}

https://bit.ly/sf-bf-profile-prop-caching
https://bit.ly/sf-bf-profile-prop-caching
https://bit.ly/sf-bf-compare-prop-caching

Ok, so it did help - lower time in each dimension... and we saved 5 queries. So, this is a win, right?

Maybe. If you profiled other Big foot sighting pages, which I did, you would find that this often did not

help... or helped very little. In fact, this is the first time I've seen it help nearly this much.

So, does the improvement justify the added complexity in our code? If we can repeat this 13%

improvement consistently, yea, it is. But if it's more like 1%, probably not.

And even 13% is not that much... and PDOStatement::execute() is still the biggest problem. I feel

like the profile is trying to ask us: is there a better way to optimize this?

Next, let's try another approach: using a real cache layer. Truly caching things has its own downside:

added complexity in your code and possibly - depending on what you're caching - the need to worry

about invalidating cache. We'll want to be sure it's worth it.

Chapter 9: Using a Caching Layer & Proving its Worth

Whenever we make something more performant, we often also make our code more complex. So, was

the property-caching trick we just used worth it? Maybe... but I'm going to revert it.

Remove the property caching logic and just return

$this->calculateUserActivityText($user) :

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

27

28

29

30

 // ... lines 31 - 49

50

And... we don't need the $userStatuses property anymore:

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 55

56

We could stop here and say: this spot is not worth optimizing. Or, we can try a different solution - like

using a real caching layer. After all, this label probably won't change very often... and it's probably not

critical that the label changes at the exact moment a user adds enough comments to get to the next

level. Caching could be an easy win.

Adding Caching

Back in AppExtension , autowire Symfony's cache object by adding an argument type-hinted with

CacheInterface - the one from Symfony\Contracts\Cache . I'll press Alt+Enter and select

"Initialize fields" to make PhpStorm create a new property with this name and set it in the constructor:

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 return $this->calculateUserActivityText($user);

 }

}

class AppExtension extends AbstractExtension

{

 private $userStatuses = [];

}

src/Twig/AppExtension.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... line 15

16

17

18

19

 // ... line 20

21

22

 // ... lines 23 - 59

60

Down in the method, let's first create a cache key that's specific to each user. How about:

$key = sprintf('user_activity_text_'.and then $user->getId() :

src/Twig/AppExtension.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 30

31

32

33

 // ... lines 34 - 39

40

 // ... lines 41 - 59

60

Wow, I just realized that my sprintf here is totally pointless.

Then, return $this->cache->get() and pass this $key . If that item exists in the cache, it will

return immediately:

use Symfony\Contracts\Cache\CacheInterface;

class AppExtension extends AbstractExtension

{

 private $cache;

 public function __construct(CommentHelper $commentHelper, CacheInterface

$cache)

 {

 $this->cache = $cache;

 }

}

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 $key = sprintf('user_activity_text_'.$user->getId());

 }

}

src/Twig/AppExtension.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 30

31

32

33

34

35

 // ... lines 36 - 38

39

40

 // ... lines 41 - 59

60

Otherwise, it will execute this callback function, pass us a CacheItemInterface object and our job

will be to return the value that should be stored in cache.

Hmm... I need the $user object inside here. Add use then $user to bring it into scope. Then return

$this->calculateUserActivityText($user) :

src/Twig/AppExtension.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 30

31

32

33

34

35

 // ... lines 36 - 37

38

39

40

 // ... lines 41 - 59

60

I think it's probably safe to cache this value for one hour: that's long enough, but not so long that we

need to worry about adding a system to manually invalidate the cache. Set the expiration with

$item->expiresAfter(3600) :

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 $key = sprintf('user_activity_text_'.$user->getId());

 return $this->cache->get($key, function(CacheItemInterface $item) use

($user) {

 });

 }

}

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 $key = sprintf('user_activity_text_'.$user->getId());

 return $this->cache->get($key, function(CacheItemInterface $item) use

($user) {

 return $this->calculateUserActivityText($user);

 });

 }

}

src/Twig/AppExtension.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 30

31

32

33

34

35

36

37

38

39

40

 // ... lines 41 - 59

60

So... does this help? Of course it will! More importantly, because we decided we don't need to worry

about adding more complexity to invalidate the cache, it's probably a big win! But let's find out for sure.

Move over and refresh. Boo - 500 error. We're in the prod environment... and I forgot to rebuild the

cache:

php bin/console cache:clear

And:

php bin/console cache:warmup

Profiling with Cache

Refresh again. And... profile! I'll name this one: [Recording] Show page real cache . Open up

the call graph: https://bit.ly/sf-bf-real-caching.

This time things look way better. But let's not trust it: go compare the original profile - before we even

did property caching - to this new one: https://bit.ly/sf-bf-compare-real-cache.

class AppExtension extends AbstractExtension

{

 public function getUserActivityText(User $user): string

 {

 $key = sprintf('user_activity_text_'.$user->getId());

 return $this->cache->get($key, function(CacheItemInterface $item) use

($user) {

 $item->expiresAfter(3600);

 return $this->calculateUserActivityText($user);

 });

 }

}

https://bit.ly/sf-bf-real-caching
https://bit.ly/sf-bf-compare-real-cache

Wow. The changes are significant... and there's basically no downside to the changes we made. Even

our memory went down! You can also compare this to the property caching method: https://bit.ly/sf-bf-

compare-prop-real-caching. Yea... it's way better

And really, this is no surprise: fully caching things will... of course be faster! The question is how much

faster? And if adding caching means that you also need to add a cache invalidation system, is that

performance boost worth it? Since we don't need to worry about invalidation in this case, it was totally

worth it.

Next: let's find & solve a classic N+1 query problem. The final solution might not be what you

traditionally expect.

https://bit.ly/sf-bf-compare-prop-real-caching
https://bit.ly/sf-bf-compare-prop-real-caching

Chapter 10: The N+1 Problem & EXTRA_LAZY

At this point, I'm pretty happy with the show page that we've been profiling. So let's look at something

different: let's profile the homepage at https://localhost:8000/.

Ok, this page has a list of all of the sightings... and on the right, that shows some SymfonyCasts

repository info from GitHub. Let's refresh... though... that's not really needed - and profile! I'll call this

one: [Recording] Original homepage - https://bit.ly/sf-bf-homepage-original.

Ok! 165 milliseconds! Let's view the call graph. Well... this looks familiar! We have the same number 1

exclusive-time function as before: UnitOfWork::createEntity() . In that situation, it meant that

we were querying for too many items and so Doctrine was hydrating too many objects. Is it the same

problem now? And if so, why? Can we optimize it?

Time to put on our profiling detective hats. Let's follow the hot path! We enter

MainController::homepage() and render a template... so the problem is coming from our

template. Interesting. Next _sightings.html.twig is rendered... and then something called

twig_length_filter executes loadOneToManyCollection() , which is from Doctrine. Let's do

some digging in that template: templates/main/_sightings.html.twig .

We saw that it was referencing something called twig_length_filter . Search the template for

length . Ah: sighting.comments|length :

templates/main/_sightings.html.twig

1

2

 // ... lines 3 - 10

11

12

13

14

15

Finding the N+1 Problem

Look back on the site: one of the things it does is prints the number of comments for each article. The

length filter counts how many items are in sighting.comments , which is a database relationship

{% for sighting in sightings %}

<tr>

 <td>

 <a class="text-white table-content text-center" href="{{

path('app_sighting_show', {id: sighting.id}) }}">{{ sighting.comments|length }}

 </td>

</tr>

{% endfor %}

https://localhost:8000/
https://bit.ly/sf-bf-homepage-original

from the big_foot_sighting table to the comment table.

If you're not familiar with Doctrine, when you call sighting.comments , at that moment, Doctrine

queries for all of the comments for that specific BigFootSighting record. I'll open up

src/Entity/BigFootSighting.php . Yep, we're accessing the comments property, which is a

OneToMany relationship to Comment :

src/Entity/BigFootSighting.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 56

57

58

59

60

61

 // ... lines 62 - 205

206

The point is: for each BigFootSighting that we are rendering, Doctrine is making an extra query to

fetch all the comments for that sighting. This is basically the classic N+1 problem. If we want to print 25

BigFootSighting rows, in addition to the 1 query to fetch the 25 rows, the system will also make 25

additional queries to fetch the comments for each sighting. That's 25 + 1 queries.

You can see this in the SQL queries in Blackfire: we have one query from big_foot_sighting - the

query above is related to the pagination logic - then 25 queries from the comment table.

Counting with fetch="EXTRA_LAZY"

Okay, we have identified the problem: we are not only making a lot of queries... but those queries are

also fetching all the comment data... just to count them. Silliness!

One simple solution might be... just to tell Doctrine to make a COUNT query instead of fetching all the

data. We would still have 25 extra queries... but they would be much faster.

In Doctrine, we can do this really easily. If you access a relationship - like the comments property -

and only count it, we can ask Doctrine to do a COUNT query instead of loading all the comment data.

How? Above the comments property, add fetch="EXTRA_LAZY" :

class BigFootSighting

{

 /**

 * @ORM\OneToMany(targetEntity="App\Entity\Comment",

mappedBy="bigFootSighting")

 * @ORM\OrderBy({"createdAt"="DESC"})

 */

 private $comments;

}

src/Entity/BigFootSighting.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 56

57

58

 // ... line 59

60

61

 // ... lines 62 - 205

206

Before we try this, don't forget that we're in the prod environment: run cache:clear :

php bin/console cache:clear

And cache:warmup :

php bin/console cache:warmup

Ok, let's see if this helps! Spin over, refresh the page and... profile! I'll call this one:

[Recording] homepage EXTRA_LAZY - https://bit.ly/sf-bf-extra-lazy. I'll close the other tab and

view the call graph.

Was this better? Well, createEntity() isn't the biggest problem anymore... so that's a good sign!

Let's compare to be sure: go from the original homepage... to the most recent profile: https://bit.ly/sf-bf-

extra-lazy-compare.

And... wow! Yea, this is a huge win in every category! So, was this a good change? Absolutely: this

was an awesome change.

But, even though the queries are much faster... we're still making the same number of queries. Is that

something we care about? I don't know? But that's the great thing about profiling with Blackfire: you

don't need to absolutely optimize everything. If you're not sure if something is a problem, you can

deploy and check it on production to see if it's really slowing things down under realistic conditions.

Especially because sometimes improving performance comes at a cost of extra complexity.

Next, let's see if we can reduce the number of queries. Will it help performance? If so, is it enough for

the added complexity?

class BigFootSighting

{

 /**

 * @ORM\OneToMany(targetEntity="App\Entity\Comment",

mappedBy="bigFootSighting", fetch="EXTRA_LAZY")

 */

 private $comments;

}

https://bit.ly/sf-bf-extra-lazy
https://bit.ly/sf-bf-extra-lazy-compare
https://bit.ly/sf-bf-extra-lazy-compare

Chapter 11: Fixing N+1 With a Join?

We made a huge leap forward by telling Doctrine to make COUNT queries to count the comments for

each BigFootSighting ... instead of querying for all the comments just to count them. That's a big

win.

Could we go further... and make a smarter query that can grab all this data at once? That is the classic

solution to the N+1 problem: need the data for some Bigfoot sightings and their comments? Add a

JOIN and get all the data at once! Let's give that a try!

Adding he JOIN

The controller for this page lives at src/Controller/MainController.php - it's the

homepage() method:

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 120

121

To help make the query, this uses a function in

src/Repository/BigFootSightingRepository.php - this findLatestQueryBuilder() :

class MainController extends AbstractController

{

 /**

 * @Route("/", name="app_homepage")

 */

 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

 {

 $sightings = $this->createSightingsPaginator(1,

$bigFootSightingRepository);

 return $this->render('main/homepage.html.twig', [

 'sightings' => $sightings

]);

 }

}

src/Repository/BigFootSightingRepository.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

 // ... lines 29 - 57

58

This method ... if you did some digging ... creates the query that returns these results.

And... it's fairly simple: it grabs all the records from the big_foot_sighting table, orders them by

createdAt and sets a max result - a LIMIT .

To also get the comment data, add leftJoin() on big_foot_sighting.comments and alias

that joined table as comments . Then use addSelect('comments') to not only join, but also select

all the fields from comment :

src/Repository/BigFootSightingRepository.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

29

30

 // ... lines 31 - 59

60

Let's... see what happens! To be safe, clear the cache:

php bin/console cache:clear

And warm it up:

class BigFootSightingRepository extends ServiceEntityRepository

{

 public function findLatestQueryBuilder(int $maxResults): QueryBuilder

 {

 return $this->createQueryBuilder('big_foot_sighting')

 ->setMaxResults($maxResults)

 ->orderBy('big_foot_sighting.createdAt', 'DESC');

 }

}

class BigFootSightingRepository extends ServiceEntityRepository

{

 public function findLatestQueryBuilder(int $maxResults): QueryBuilder

 {

 return $this->createQueryBuilder('big_foot_sighting')

 ->leftJoin('big_foot_sighting.comments', 'comments')

 ->addSelect('comments')

 ->setMaxResults($maxResults)

 ->orderBy('big_foot_sighting.createdAt', 'DESC');

 }

}

php bin/console cache:warmup

Now, move over, refresh and profile! I'll call this one: [Recording] Homepage with join :

https://bit.ly/sf-bf-join.

Go check it out! Woh! This... looks weird... it looks worse! Let's do a compare from the EXTRA_LAZY

profile to the new one: https://bit.ly/sf-bf-join-compare.

Wow... this is much, much worse: CPU is way up, I/O... it's up in every category, especially network:

the amount of data that went over the network. We did make less queries - victory! - but they took 8

milliseconds longer. We're now returning way more data than before.

So this was a bad change. It seems obvious now - but in a different situation where you might be doing

different things with the data, this same solution could have been the right one! Let's remove the join

and rely on the EXTRA_LAZY solution.

A Smarter Join?

Yes, this will mean that we will once again have 27 queries. If you don't like that, there is another

solution: you could make the JOIN query smarter - it would look like this:

// src/Repository/BigFootSightingRepository.php

public function findLatestQueryBuilder(int $maxResults): QueryBuilder

{

 return $this->createQueryBuilder('big_foot_sighting')

 ->leftJoin('big_foot_sighting.comments', 'comments')

 ->groupBy('big_foot_sighting.id')

 ->addSelect('COUNT(comments.id) as comment_count')

 ->setMaxResults($maxResults)

 ->orderBy('big_foot_sighting.createdAt', 'DESC');

}

The key is that instead of selecting all the comment data... which we don't need... this selects only the

count. It gets the exact data we need, in one query. From a performance standpoint, it's probably the

perfect solution.

But... it has a downside: complexity. Instead of returning an array of BigFootSighting objects, this

will return an array of... arrays... where each has a 0 key that is the BigFootSighting object and a

https://bit.ly/sf-bf-join
https://bit.ly/sf-bf-join-compare

comment_count key with the count. It's just... a bit weird to deal with. For example, the template

would need to be updated to take this into account:

{% for sightingData in sightings %}

 {% set sighting = sightingData.0 %}

 {% set commentCount = sightingData.comment_count %}

 {# ... #}

 {{ sighting.title }}

 {{ commentCount }}

 {# ... #}

{% endfor %}

And... because of the pagination that this app is using... the new query would actually produce an

error. So let's keep things how they are now. If the extra queries ever become a real problem on

production, then we can think about spending time improving this. Sometimes profiling is about

knowing what not to fix... because it may not be worth it.

Next, if you were surprised that we didn't see any evidence of the network request that the homepage

is making to render the SymfonyCasts repository info from GitHub, that's because the homepage is

more complex than it might seem. Let's use a cool "Profile all" feature to see all requests that the

homepage makes.

Chapter 12: Profile All Requests (Including Ajax)

When you open the browser extension to create a profile, it has a few options that we've been...

ignoring so far.

Debugging Mode

 Tip

Debugging mode is available via the Debugging add-on.

For example, "debugging mode" will tell Blackfire to disable pruning - that's when it removes data for

functions that don't take a lot of resources - and also to disable anonymization - that's when it hides

exact details used in SQL queries and HTTP requests. Debugging mode is nice if something weird is

going on.. and you want to fully see what's happening inside a request.

Distributed Profiling

 Tip

Distributed profiling is available to Premium plan users or higher.

Another superpower of Blackfire is called distributed profiling... which you either won't care about... or

it's the most awesome thing ever. Imagine you have a micro-service architecture where, when you load

the page, it makes a few HTTP requests to some microservices. If you have Blackfire installed on all of

your microservices, Blackfire will automatically create profiles for every request made to every app.

The final result is a profile with sub-profiles that show you how the entire infrastructure is working

together. It's... pretty incredible.

But, if you want to disable it and only profile this main app, you can do that with this option.

Disabling Aggregation

The last option is to "disable aggregation". That's a fancy way of telling Blackfire that you want to make

& profile just one request, instead of making 10 requests and averaging the results.

Profiling All Requests

But what I really want to look at is this "Profile all requests" link. Hit "Record"... then refresh. Woh!

Cool! It already made 2 requests! And if I scroll down a little bit... there's a third! Let's stop right there.

That jumps us to our Blackfire dashboard. These last three profiles were just created: one for the

homepage and two others: these are both AJAX calls! Surprise! Without even thinking about it, we

discovered a few extra requests that are part of that page.

This first one - /api/github-organization - is what loads this GitHub repository info on the right.

This makes an API call for the most popular repositories under the Symfonycasts organization... which

is kind of silly... but it was a great way to show how network requests look in Blackfire. We'll see that in

a minute.

This other request - for /_sightings - is an AJAX call that powers the forever scroll on the page.

Basically... I like using "profile all requests" in 3 situations. One, to get an idea of what's all happening

on a page. Two, to profile AJAX requests... though I'll show you another way to do that soon. And

three, to profile form submits: fill out the form, hit "Record", then submit.

Checking out the Network Requests

Let's look closer at the /api/github-organization AJAX profile: https://bit.ly/sf-bf-github-org. As I

mentioned, this makes a network request to the GitHub API to load repository information. The

profile... is almost comical! Out of the 438 millisecond wall time - 82% of it is from

curl_multi_select() - that's the time spent making any API calls.

It's kind of fun to look at this in the CPU dimension, which is only 74 milliseconds.

curl_multi_exec() is still the biggest offender... but it's a lot less obvious what the critical path is.

Compare that with the I/O wait dimension, which includes network time. The critical path is ridiculously

obvious here. This is an extreme example of how different dimensions can be more or less useful

depending on the situation.

One of the interesting things is that... this is not the full call graph. According to this, the code goes

straight from handleRaw() - which is the first call into the Symfony Framework - to our controller. In

reality, there are many more function calls in between. Switch back to the CPU dimension. Yep! This

shows more nodes.

This is the result of that "pruning" I mentioned a few minutes ago. Blackfire removes function calls that

don't consume any significant resources so that the critical path - from a performance standpoint - is

https://bit.ly/sf-bf-github-org

more obvious. The call graph also automatically hides or shows some info based on what you're

zoomed in on.

In this situation, the critical path is obvious. You can also see the network requests on top. There are

actually two: one that returns 1.5 kilobytes and another that returns 5.

This shows the network time too... but at least if you're using the Symfony HTTP client like I am, these

numbers aren't right - they're far too small... I think that's due to the asynchronous nature of Symfony's

HTTP Client. That's ok - because the overall cost is showing up correctly in all the other dimensions.

So how do we fix this? Should we add some caching? Or somehow try to make only one API call

instead of two? We're actually going to revisit and fix this problem later. For now, I wanted you to be

aware of the "Profile All" feature. Next, let's check out the Blackfire command-line tool, which has two

superpowers... one of which has nothing to do with the command line.

Chapter 13: The Blackfire CLI Tool for AJAX Requests

We know that the probe - that's the Blackfire PHP extension - doesn't run on every single request: it

only runs when it detects that our browser extension is telling it to run.

There's actually a second way that you can tell the probe to do its work. It's with a super handy

command-line tool.

Installing the Blackfire CLI Tool

Go back to the Blackfire site, click on their docs... and once again find the installation page. When we

went through this earlier, we purposely skipped one step: installing the Blackfire CLI tool. Actually,

Blackfire recently updated this page... and I like the newer version a lot better. In both versions of the

docs - the new one and the old one you see here - if you followed the commands to install the "agent"

then you've already also installed the CLI tool. Nice!

To make sure, find your terminal and try running:

blackfire version

Blackfire CLI Confiug: Client ID & Token

Got it! Before using this, we do need to add a little bit of configuration by running a

blackfire config command. On the old version of the docs, I'll copy the "client ID": I'll need that in

a second. On the newer version of the docs, you'll be able to copy a blackfire config command

that already includes the client id and client token. For me, I'll run

blackfire config

If your version of the command has the --client-id and --client-token options already,

you're done! If not, like me, paste in the Client Id... then also copy and paste in the token.

https://blackfire.io/docs/up-and-running/installation

The client id and token work... almost like a username and password to your Blackfire account. When

we use the browser extension, we're logged into Blackfire in the browser. When we click profile, the

Blackfire API is able to give the extension some credentials that it passes to the probe to prove that

we're allowed to profile this page.

When you use the Blackfire command line tool to profile something... the client id and client token are

used to talk to the Blackfire API and get those same credentials that it then passes to the probe to

prove we're authorized to profile. They basically identify & prove which user we are on Blackfire.

Profiling AJAX Requests

The Blackfire CLI tool has two superpowers. The first is that you can run blackfire curl and then

pass a URL to any page on your site that you want to create a profile for. Now... that might seem totally

worthless. After all... if we want to profile a page... isn't it easier just to go to that page in our browser

and use the extension to profile it?

Yep! Unless... you can't easily "go" to that page - like if you want to profile an AJAX request or an API

endpoint. Check this out: I'll open up the dev tools, go to the "Network" section and refresh. Notice I'm

already filtered to XHR requests - so the /api/github-organization AJAX request pops up.

Want to easily profile just that request? Right click on it and select "Copy as cURL".

Now head back to your terminal and paste. Cool, right? It creates a full curl command that you can use

to make that same request... including any session cookies, which means this request will be

authenticated as the same user you're logged in as in the browser. We can use this with Blackfire: say

blackfire then paste!

Try it! It's profiling and using the same process as the browser: making 10 requests and profiling each

one. This is my favorite way to profile AJAX requests. When it finishes, it gives us the URL to the call

graph and some basic stats below. Go open that profile: http://bit.ly/sf-bf-curl!

It works! Use that to easily profile any AJAX requests you want to.

So what is the second superpower of the CLI tool? It's actually its main superpower: the ability to

profile command-line scripts. Let's do that next.

http://bit.ly/sf-bf-curl

Chapter 14: Profiling Command Line scripts

As handy as the CLI tool is for profiling AJAX requests, its true purpose is something different: it's to

allow us to profile our custom command-line scripts. Let's check out an example. I've already created a

command line script that you can execute by calling:

php bin/console app:update-sighting-scores

What does it do? Let me show you! Each Bigfoot sighting on the site has, what we call, a "Bigfoot

believability score". Right now, this shows zero for every sighting. That's because we use a highly-

complex and proprietary algorithm to calculate this. It's such a heavy process that, instead of figuring it

out on page-load, we store the current value in a column on each row of the table. To populate that

column, we run this command once a day: it loops over all the sightings, calculates the newest

"believability score" and saves it back to the database. Try it:

php bin/console app:update-sighting-scores

It takes a few seconds... and when we go back to the site and refresh... we find out that this Bigfoot

sighting in kind of believable - a score of 5 out of 10.

The code for this lives at src/Command/UpdateSightingScoresCommand.php :

src/Command/UpdateSightingScoresCommand.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

namespace App\Command;

use App\Repository\BigFootSightingRepository;

use Doctrine\ORM\EntityManagerInterface;

use Symfony\Component\Console\Command\Command;

use Symfony\Component\Console\Input\InputInterface;

use Symfony\Component\Console\Output\OutputInterface;

use Symfony\Component\Console\Style\SymfonyStyle;

class UpdateSightingScoresCommand extends Command

{

 protected static $defaultName = 'app:update-sighting-scores';

 private $bigFootSightingRepository;

 private $entityManager;

 public function __construct(BigFootSightingRepository

$bigFootSightingRepository, EntityManagerInterface $entityManager)

 {

 $this->bigFootSightingRepository = $bigFootSightingRepository;

 $this->entityManager = $entityManager;

 parent::__construct();

 }

 protected function configure()

 {

 $this

 ->setDescription('Update the "score" for a sighting')

 ;

 }

 protected function execute(InputInterface $input, OutputInterface $output)

 {

 $io = new SymfonyStyle($input, $output);

 $sightings = $this->bigFootSightingRepository->findAll();

 $io->progressStart(count($sightings));

 foreach ($sightings as $sighting) {

 $io->progressAdvance();

 $characterCount = 0;

 foreach ($sighting->getComments() as $comment) {

 $characterCount += strlen($comment->getContent());

 }

 $score = ceil(min($characterCount / 500, 10));

 $sighting->setScore($score);

 $this->entityManager->flush();

50

51

52

53

You might already see a problem. But if you don't... that's ok! Let's see what Blackfire thinks. This time,

run that same command, but put blackfire run at the beginning:

blackfire run bin/console app:update-sighting-scores

Woh. It's a lot slower now: we're seeing evidence of how the PHP extension slows down the process...

and wow... it's just getting slower, and slower. I'm going to use the magic of TV to speed things up.

Ok, let's look at that profile! http://bit.ly/sf-bf-console-original

Woh! Some computeChangeSet() function was called almost 500,000 times! Ah! That's taking up

half of the exclusive time! Because this call is such a problem, Blackfire is hiding a lot of data, all of

which is unimportant relative to what we are seeing.

That's cool because the result is a super simple call graph: here's our command... here's

EntityManager::flush() ... and then it goes into deep Doctrine stuff.

Let's check out the command and look for the EntityManager::flush() call:

src/Command/UpdateSightingScoresCommand.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 33

34

35

 // ... lines 36 - 39

40

 // ... lines 41 - 48

49

50

 // ... line 51

52

53

Yep! I flush once each time at the end of the loop, which updates that database row. If you're familiar

with Doctrine, you might know the problem: you don't need to call flush() inside the loop. Instead,

move this after the loop:

 }

 $io->progressFinish();

 }

}

class UpdateSightingScoresCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface $output)

 {

 foreach ($sightings as $sighting) {

 $this->entityManager->flush();

 }

 }

}

http://bit.ly/sf-bf-console-original

src/Command/UpdateSightingScoresCommand.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 33

34

35

 // ... lines 36 - 39

40

 // ... lines 41 - 48

49

50

 // ... line 51

52

53

With this change, Doctrine will try to perform all update queries at the same time... which even lets it

try to optimize those queries if it can. But the big problem with our old code was something related to

Doctrine's UnitOfWork::computeChangeSet() . Each time you call flush() in Doctrine, it looks

at all the objects it has queried for - so all of the BigFootSighting objects - and checks every single

one to see if any data has changed that needs to be sync'ed back to the database with an UPDATE

query. Yep, with the old code, it was checking every property of every record for updated data on every

loop. Hence...the 450,000 calls!

Let's profile again with the updated code.

blackfire run php bin/console app:update-sighting-scores

This time it's much faster - I don't even think we need to compare the profiles: 56 seconds down to 1.

Open it up: http://bit.ly/sf-bf-console2.

Complexity, Speed & Reliability

Could we optimize this further? Maybe! But this performance enhancement already came at a cost:

reduced reliability. I originally put the call to flush() inside the loop not because I didn't know

better... but to make the command a little more resilient. If, for example, the command gets through

half of the records and then has an error, with the new code, none of the scores will be saved.

It's beyond the scope of this tutorial, but I love to make my command-line scripts super forgiving. If this

were a real app, I would probably save the datetime that I last calculated the score for each record and

class UpdateSightingScoresCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface $output)

 {

 foreach ($sightings as $sighting) {

 }

 $this->entityManager->flush();

 }

}

http://bit.ly/sf-bf-console2

use that to query for only the rows that have not been updated in the last 24 hours. I would also move

the flush() back into the loop:

$sightings = $this->bigFootSightingRepository

 ->findAllScoreNotUpdatedSince(new \DateTime('-1 month'));

foreach ($sightings as $sighting) {

 // ...

 $sighting->setScore($score);

 $sighting->setScoreLastUpdatedAt(new \DateTime());

 $this->entityManager->flush();

}

Thanks to those changes, if this command failed half-way through, the first half of the records would

already be updated and we could run the command again to resume with the ones that are still not

updated.

But wouldn't that make the command super-slow again? Yep! And with the help of Blackfire, you can

test solutions that improve performance without making the command less reliable. For example, we

could make the first query only return an array of integer ids. Then, inside the loop, use that id to query

for the one object you need. That would mean we only have one BigFootSighting object in

memory at a time instead of all of them:

$sightingIds = $this->bigFootSightingRepository

 ->findIdsScoreNotUpdatedSince(new \DateTime('-1 month'));

foreach ($sightingIds as $id) {

 $sighting = $this->bigFootSightingRepository->find($id);

 $sighting->setScore($score);

 $sighting->setScoreLastUpdatedAt(new \DateTime());

 $this->entityManager->flush();

}

You can go further by calling EntityManager::clear() after flush() to, sort of, "clear"

Doctrine's memory of the BigFootSighting object you just finished... so that it doesn't check it for

changes when we call flush() during the next time through the loop:

$sightingIds = $this->bigFootSightingRepository

 ->findIdsScoreNotUpdatedSince(new \DateTime('-1 month'));

foreach ($sightingIds as $id) {

 $sighting = $this->bigFootSightingRepository->find($id);

 $sighting->setScore($score);

 $sighting->setScoreLastUpdatedAt(new \DateTime());

 $this->entityManager->flush();

 $this->entityManager->clear($sighting);

}

The point is: like with everything, make your code do what it needs to... then use Blackfire to solve the

real performance issues... if you have any.

Next, there's a giant screen in Blackfire that we haven't even looked at yet. What!? It's... the Timeline!

Chapter 15: Timeline: Go Behind-the-Scenes with your
Code

Click log in to find our super-secure login system. We not only give you a valid email address, but even

the password! We're very generous to our users.

You can't tell, but now that we're logged in, a new piece of code is... silently running in the background

on each request. Blackfire is going to help us notice this.

Back to the dev Environment

Before we profile this page, open up the .env file and switch back to the dev environment:

.env

 // ... lines 1 - 16

17

 // ... lines 18 - 29

What I'm about to show you is more of a debugging tool than a profiling tool. We're switching back to

the dev environment both to make our life a little bit easier - no need to clear the cache after changes

- and because when your code executes more slowly, Blackfire tends to prune, or remove, less stuff.

That's bad for trying to find performance issues, but good if your goal is to debug something... or

understand how your app is working.

I'll refresh the page to make sure that it works. Yep! Our handy web debug toolbar on the bottom is

back! Let's profile! I'll call this one [Recording] Homepage authenticated dev : http://bit.ly/sf-

bf-timeline. Poetry.

When that finishes, as usual, click to view the call graph. Okay: there's not too much interesting here...

especially because the DebugClassLoader stuff is once again adding "noise" that won't be there on

production. It's not clear what the critical path is... and the page, at this point, is probably fast enough

for me.

Hello Timeline

APP_ENV=dev

http://bit.ly/sf-bf-timeline
http://bit.ly/sf-bf-timeline

So let's look at something else: click the "Timeline" link. OooOOOOo. The timeline... other than just

looking cool... is the place to go to... just... basically figure out how your app is working: how does the

code flow through all the layers? What hidden things might be happening?

For example, this page apparently has 28 SQL queries. But where are these happening? Are they all in

the controller? Are some in the controller and others are in the template? Are some coming from

somewhere else we didn't even think of? That's something that the call graph can't really tell us.

I love the timeline... but I'll admit that the first few times I looked at this page... I didn't really understand

what was going on... or how to make this useful. It looks simple enough - we can see the function calls

and their child calls from left to right through the lifecycle of the request - but there's more to it.

Metrics

Let's start on the left: these timeline metrics. Metrics are basically a way that Blackfire groups function

calls together and give them a label. For example, Blackfire knows that a specific function call means

that an event is being dispatched. It finds those, labels all of them as symfony.events and give

them this purple color so that they show up more clearly on the right. Here's one Symfony event right

here... and there's another one.

It does the same thing for SQL queries: it knows that PDOStatement::execute() ,

PDO::query() and several other functions mean that an SQL query is being made. It groups them

together, calls them sql and labels them as yellow. It's a great idea... and is just that simple.

Below this, there is another section called "Other Metrics". These are the same thing: meaningful

groups of function calls. The only difference is that Blackfire does not give these a special color and

they don't show up on the timeline. These are... just... raw data... that sit right here. If you're wondering

why that would useful... I was too! For the purpose of the timeline, they are not useful. They'll come in

handy later when we talk more about metrics. Metrics are their own big topic.

Finding Metrics in the Timeline

Let's look at one of the timeline metrics doctrine.entities.hydrated . What does this one

mean? Sometimes the title of a metric will tell you a bit more... but often the metric name is all you

really have. Most metrics are self-explanatory.

Depending on how well you know Doctrine, this might be obvious... or not. This metric refers to

whenever one or more entities are hydrated into an object. Notice the count is 3. For this metric, it's not

that there are only 3 objects being hydrated during this request, but that our code asks Doctrine to

hydrate one or more objects on three occasions.

So where are the 3 times that we're hydrating objects? One of the cool things is that, when you hover

over a timeline metric, it adds a border to the matching boxes on the right. It's... a little subtle... but it

does the trick. I wish you could double-click and... maybe zoom to the matching boxes... but it's tricky

because they may be spread out over the whole request.

If we hover over doctrine.entities.hydrated ... hmm... I don't see those. You need to do a little

bit of digging... I'll hover back over. There they are. It turns out that the 3 calls are not all in the same

place: they're coming from three very different parts of our code. The first is part of the firewall...

probably querying for the logged in user... and the other two are down in some template rendering...

along with a few similarly-colored doctrine.dql.parsed items.

I want to look at what's happening inside of this template... but a lot of these things are really small. On

top, we can see the entire timeline. Click where we want to start, move over, and let go! Zoom!

Much easier to see! In this spot, Doctrine parses its DQL, it makes an SQL query here... and a different

query a bit later.

So as far as getting insight into what's really going on in your application, you can't get much better

than this. You can even see our N+1 problem visually: it makes a query to count the comments little-

by-little as the template renders.

Hit the "Home" icon to zoom back out. This is cool... but I mentioned that, as soon as we logged in,

there was some new code that was now running in the background. Next, let's look a bit closer at the

timeline to discover what that is and a hidden performance problem.

Chapter 16: Timeline: Finding a Hidden Surprise

One of the big spots on the timeline is the RequestEvent . It's purple because this is an event: the

first event that Symfony dispatches. It happens before the controller is called... which is pretty obvious

in this view.

Let's zoom in: by double-clicking the square. Beautiful! What happens inside this event? Apparently...

the routing layer happens! That's RouterListener . You can also see Firewall : this is where

authentication takes place. Security is a complex system... so being able to see a bit about what

happens inside of it is pretty cool. At some point... it calls a method on EntityRepository and we

can see the query for the User object that we're logged in as. Pretty cool.

The Hidden Slow Listener

There's one more big chunk under RequestEvent : something called

AgreeToTermsSubscriber ... which is taking 30 milliseconds. Let's open that class and see what it

does: src/EventSubscriber/AgreeToTermsSubscriber.php :

src/EventSubscriber/AgreeToTermsSubscriber.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

namespace App\EventSubscriber;

use App\Entity\User;

use App\Form\AgreeToUpdatedTermsFormType;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

use Symfony\Component\Form\FormFactoryInterface;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\HttpKernel\Event\RequestEvent;

use Symfony\Component\Security\Core\Security;

use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

use Twig\Environment;

class AgreeToTermsSubscriber implements EventSubscriberInterface

{

 private $security;

 private $formFactory;

 private $twig;

 private $entrypointLookup;

 public function __construct(Security $security, FormFactoryInterface

$formFactory, Environment $twig, EntrypointLookupInterface $entrypointLookup)

 {

 $this->security = $security;

 $this->formFactory = $formFactory;

 $this->twig = $twig;

 $this->entrypointLookup = $entrypointLookup;

 }

 public function onRequestEvent(RequestEvent $event)

 {

 $user = $this->security->getUser();

 // only need this for authenticated users

 if (!$user instanceof User) {

 return;

 }

 // in reality, you would hardcode the most recent "terms" date

 // change so you can see if the user needs to "re-agree". I've

 // set it dynamically to 1 year ago to avoid anyone hitting

 // this - as it's just example code...

 //$latestTermsDate = new \DateTimeImmutable('2019-10-15');

 $latestTermsDate = new \DateTimeImmutable('-1 year');

 $form = $this->formFactory->create(AgreeToUpdatedTermsFormType::class);

 $html = $this->twig->render('main/agreeUpdatedTerms.html.twig', [

 'form' => $form->createView()

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Ah yes. Every now and then, we update the "terms of service" on our site. When we do that, our lovely

lawyers have told us that we need to require people to agree to the updated terms. This class handles

that: it gets the authenticated user and, if they're not logged in, it does nothing:

src/EventSubscriber/AgreeToTermsSubscriber.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 29

30

31

32

33

34

35

36

37

 // ... lines 38 - 63

64

 // ... lines 65 - 71

72

But if they are logged in, then it renders a twig template with an "agree to the terms" form:

]);

 // resets Encore assets so they render correctly later

 // only technically needed here because we should really

 // "exit" this function before rendering the template if

 // we know the user doesn't need to see the form!

 $this->entrypointLookup->reset();

 // user is up-to-date!

 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

 return;

 }

 $response = new Response($html);

 $event->setResponse($response);

 }

 public static function getSubscribedEvents()

 {

 return [

 RequestEvent::class => 'onRequestEvent',

];

 }

}

class AgreeToTermsSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 $user = $this->security->getUser();

 // only need this for authenticated users

 if (!$user instanceof User) {

 return;

 }

 }

}

src/EventSubscriber/AgreeToTermsSubscriber.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 29

30

31

 // ... lines 32 - 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 // ... lines 61 - 63

64

 // ... lines 65 - 71

72

Eventually, if the terms have been updated since the last time this User agreed to them, it sets that

form as the response instead of rendering the real page.

We haven't seen this form yet... and... it's not really that important. Because we rarely update our

terms, 99.99% of the requests to the site will not display the form.

So... the fact that this is taking 30 milliseconds... even though it will almost never do anything... is kind

of a lot!

Blue Memory Footprint

class AgreeToTermsSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 // in reality, you would hardcode the most recent "terms" date

 // change so you can see if the user needs to "re-agree". I've

 // set it dynamically to 1 year ago to avoid anyone hitting

 // this - as it's just example code...

 //$latestTermsDate = new \DateTimeImmutable('2019-10-15');

 $latestTermsDate = new \DateTimeImmutable('-1 year');

 $form = $this->formFactory->create(AgreeToUpdatedTermsFormType::class);

 $html = $this->twig->render('main/agreeUpdatedTerms.html.twig', [

 'form' => $form->createView()

]);

 // resets Encore assets so they render correctly later

 // only technically needed here because we should really

 // "exit" this function before rendering the template if

 // we know the user doesn't need to see the form!

 $this->entrypointLookup->reset();

 // user is up-to-date!

 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

 return;

 }

 }

}

Oh, and see this blue background? I love this: it's the memory footprint. If we trace over this call - this

is about when the AgreeToTermsSubscriber happens - the memory starts at 3.44 megabytes...

and finishes around 4.46. That's 1 megabyte of memory - kinda high for such a rarely-used function.

The point is: this method doesn't take that long to run. And so, it may not have shown up as a

performance critical path on the call graph. But thanks to the timeline, this invisible layer jumped out at

us. And... I think it is taking a bit too long.

Fixing the Slow Code

Back in the code, the mistake I made is pretty embarrassing. I'm using some pretend logic to see

whether or not we need to render the form. But... I put the check too late!

src/EventSubscriber/AgreeToTermsSubscriber.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 29

30

31

 // ... lines 32 - 56

57

58

59

60

 // ... lines 61 - 63

64

 // ... lines 65 - 71

72

We're doing all the work of rendering the form... even if we don't use it.

Let's move that code all the way to the top. Ah, too far - it needs to be after the fake

$latestTermsDate variable:

class AgreeToTermsSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 // user is up-to-date!

 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

 return;

 }

 }

}

src/EventSubscriber/AgreeToTermsSubscriber.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 29

30

31

 // ... lines 32 - 38

39

40

41

42

43

44

45

46

47

48

49

 // ... lines 50 - 63

64

 // ... lines 65 - 71

72

That looks better. Let's try it! I'll refresh the page. Profile again and call it

[Recording] Homepage authenticated fixed subscriber : http://bit.ly/sf-bf-timeline-fix

Let's jump straight to view the Timeline... double-click RequestEvent and this time...

AgreeToTermsSubscriber is gone! We can see RouterListener and Firewall ... but not

AgreeToTermsSubscriber . That's not because our app isn't calling it anymore: it is. It's because

Blackfire hides function calls that take almost no resources. That's great.

Next, we know that we can write code inside a function that is slow. But did you know that sometimes

even the instantiation of an object can eat a lot of resources? Let's see how that looks in Blackfire and

leverage a Symfony feature - service subscribers - to make instantiation lighter.

class AgreeToTermsSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 // in reality, you would hardcode the most recent "terms" date

 // change so you can see if the user needs to "re-agree". I've

 // set it dynamically to 1 year ago to avoid anyone hitting

 // this - as it's just example code...

 //$latestTermsDate = new \DateTimeImmutable('2019-10-15');

 $latestTermsDate = new \DateTimeImmutable('-1 year');

 // user is up-to-date!

 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

 return;

 }

 }

}

http://bit.ly/sf-bf-timeline-fix

Chapter 17: Spotting Heavy Object Instantiation

I want to show a... more subtle performance problem. To even see it, we need to go back to the prod

environment:

.env

 // ... lines 1 - 16

17

 // ... lines 18 - 29

Make sure to run cache:clear :

php bin/console cache:clear

cache:warmup :

php bin/console cache:warmup

And also:

composer dump-autoload --optimize

Let's create a fresh profile of the homepage. I'll call this one: [Recording] Homepage prod . Click

to view the timeline: http://bit.ly/sf-bf-instantiation

Overall, this request is pretty fast. Click into the "Memory" dimension. The biggest call is

Composer\Autoload\includeFile : that's literally Composer including files that we need... not a

lot of memory optimization we can do about that.

But, if we look closer, the memory dimension reveals something else. See this "Container" thing - the

2nd item on the function list? This is related to Symfony's container, which is responsible for

instantiating all of our objects. This specific function is interesting: it's highlighting a section of a file that

lives in our cache directory. If you looked in that file, you would see that this part of the code is

APP_ENV=prod

http://bit.ly/sf-bf-instantiation

responsible for including some of the main files that our app needs. It's basically another version of the

top node: it's code that includes files for classes we're using.

Seeing Object Instantiation

Ok, so the first few aren't really that interesting. Things get much more intriguing down on the 4th

function call: some

Container{BlahBlah}/getDoctrine_Orm_DefaultEntityManagerService.php call. What

is this? Well, the details of how this is organized are specific to Symfony: but this is evidence of

something that every app does: this is showing the amount of resources used to instantiate Doctrine's

EntityManager object. I know, we don't often think about how much time or how much memory it takes

to instantiate an object, but it can sometimes be a problem. The next function call is for the

instantiation of Doctrine's Connection service.

Go down a little bit... I'm looking for something specific... here it is:

getLoginFormAuthenticatorService() . This is responsible for instantiating a

LoginFormAuthenticator object in our app. It's not a particularly problematic function though: it's

10th on the list... only takes 2.56 milliseconds and uses about 500 kilobytes.

Checking the Instantiation of LoginFormAuthenticator

Let's check out the class: src/Security/LoginFormAuthenticator.php :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 2

3

 // ... lines 4 - 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

namespace App\Security;

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 use TargetPathTrait;

 private $entityManager;

 private $urlGenerator;

 private $csrfTokenManager;

 private $passwordEncoder;

 public function __construct(EntityManagerInterface $entityManager,

UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface

$csrfTokenManager, UserPasswordEncoderInterface $passwordEncoder)

 {

 $this->entityManager = $entityManager;

 $this->urlGenerator = $urlGenerator;

 $this->csrfTokenManager = $csrfTokenManager;

 $this->passwordEncoder = $passwordEncoder;

 }

 public function supports(Request $request)

 {

 return 'app_login' === $request->attributes->get('_route')

 && $request->isMethod('POST');

 }

 public function getCredentials(Request $request)

 {

 $credentials = [

 'email' => $request->request->get('email'),

 'password' => $request->request->get('password'),

 'csrf_token' => $request->request->get('_csrf_token'),

];

 $request->getSession()->set(

 Security::LAST_USERNAME,

 $credentials['email']

);

 return $credentials;

 }

 public function getUser($credentials, UserProviderInterface $userProvider)

 {

 $token = new CsrfToken('authenticate', $credentials['csrf_token']);

 if (!$this->csrfTokenManager->isTokenValid($token)) {

 throw new InvalidCsrfTokenException();

 }

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

As its name suggests, this is responsible for authenticating the user when they submit the login form.

But, there's something special about this class. Due to the way the Symfony security system works,

Symfony instantiates this object on every request. It does that so it can then call supports() to

figure out if this service should be "activated" on this request or not:

 $user = $this->entityManager->getRepository(User::class)-

>findOneBy(['email' => $credentials['email']]);

 if (!$user) {

 // fail authentication with a custom error

 throw new CustomUserMessageAuthenticationException('Email could not

be found.');

 }

 return $user;

 }

 public function checkCredentials($credentials, UserInterface $user)

 {

 return $this->passwordEncoder->isPasswordValid($user,

$credentials['password']);

 }

 public function onAuthenticationSuccess(Request $request, TokenInterface

$token, $providerKey)

 {

 if ($targetPath = $this->getTargetPath($request->getSession(),

$providerKey)) {

 return new RedirectResponse($targetPath);

 }

 return new RedirectResponse($this->urlGenerator-

>generate('app_homepage'));

 }

 protected function getLoginUrl()

 {

 return $this->urlGenerator->generate('app_login');

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 38

39

40

41

42

43

 // ... lines 44 - 94

95

For this class, it only needs to its work when the URL is /login and this is a POST request. In every

other situation, supports() returns false and no other methods are called on this class.

So let's think about this. Instantiating this class takes about 3 milliseconds and 500 kilobytes... which is

not a ton... but since all it needs to do for most requests is check the current URL... then exit... that is

kind of heavy.

Why Instantiation is Slow?

The question is: why does it take so many resources to instantiate? Well, 500 kilobytes is not a ton, but

this is - according to Blackfire - one of the most expensive objects that is created on this request.

Why?

Check out the constructor:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 30

31

32

33

34

35

36

37

 // ... lines 38 - 94

95

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 public function supports(Request $request)

 {

 return 'app_login' === $request->attributes->get('_route')

 && $request->isMethod('POST');

 }

}

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 public function __construct(EntityManagerInterface $entityManager,

UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface

$csrfTokenManager, UserPasswordEncoderInterface $passwordEncoder)

 {

 $this->entityManager = $entityManager;

 $this->urlGenerator = $urlGenerator;

 $this->csrfTokenManager = $csrfTokenManager;

 $this->passwordEncoder = $passwordEncoder;

 }

}

In order to instantiate this class, Symfony needs to make sure the EntityManager is instantiated...

and the UrlGenerator .. and the CsrfTokenManager ... and the UserPasswordEncoder . If any

of these services have their own dependencies, even more objects may need to be instantiated. In

rare situations, creating a service can be a huge performance problem.

In the case of the EntityManager and the UrlGenerator ... those are pretty core objects that

would probably be needed and thus instantiated by something on this request anyways. But

CsrfTokenManager and UserPasswordEncoder are not normally needed. In other words, we're

forcing Symfony to instantiate both of those services on every request... even though we only need

them when the user is submitting the login form.

This is a classic situation where you have an object that is instantiated on every request... but only

needs to do real work in rare cases. Certain event subscribers - like our AgreeToTermsSubscriber

- Symfony security voters & Twig extensions are other examples from Symfony. These services might

be quick to instantiate... so no problem! But they also might be expensive.

So... how could we make it quicker to instantiate LoginFormAuthenticator? In Symfony, with a

service subscriber.

Chapter 18: Service Subscribers

Because this service is instantiated on every request... it means that all four of the objects in its

constructor also need to be instantiated:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 30

31

32

33

34

35

36

37

 // ... lines 38 - 94

95

That's not a huge deal... except that two of these services probably wouldn't be instantiated during a

normal request and aren't even used unless the current request is a login form submit. In other words,

we're always instantiating these objects... even though we don't need them!

How can we fix this? By using a service subscriber: it's a strategy in Symfony that allows you to get a

service you need... but delay its instantiation until - and unless - you actually need to use it. It's great

for performance. But, like many things, it comes at a cost: a bit more complexity.

Implementing ServiceSubscriberInterface

Start by adding an interface to this class: ServiceSubscriberInterface :

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 public function __construct(EntityManagerInterface $entityManager,

UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface

$csrfTokenManager, UserPasswordEncoderInterface $passwordEncoder)

 {

 $this->entityManager = $entityManager;

 $this->urlGenerator = $urlGenerator;

 $this->csrfTokenManager = $csrfTokenManager;

 $this->passwordEncoder = $passwordEncoder;

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 21

22

23

24

25

 // ... lines 26 - 100

101

Then I'll move to the bottom of the file, go to the "Code"->"Generate" menu - or Command+N on a Mac

- and select "Implement Methods" to generate the one method this interface requires:

getSubscribedServices() :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 91

92

93

 // ... lines 94 - 99

100

101

What does this return? An array of type-hints for all the services we need. For this class, it's these four.

So, return EntityManagerInterface::class , UrlGeneratorInterface::class ,

CsrfTokenManagerInterface::class and OtherLongInterfaceName::class , uh,

UserPasswordEncoderInterface::class :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 91

92

93

94

95

96

97

98

99

100

101

use Symfony\Contracts\Service\ServiceSubscriberInterface;

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

ServiceSubscriberInterface

{

}

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

ServiceSubscriberInterface

{

 public static function getSubscribedServices()

 {

 }

}

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

ServiceSubscriberInterface

{

 public static function getSubscribedServices()

 {

 return [

 EntityManagerInterface::class,

 UrlGeneratorInterface::class,

 CsrfTokenManagerInterface::class,

 UserPasswordEncoderInterface::class,

];

 }

}

By doing this, we can now remove these four arguments. Replace them with ContainerInterface

- the one from Psr\Container - $container :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 6

7

 // ... lines 8 - 23

24

25

 // ... lines 26 - 29

30

31

 // ... line 32

33

 // ... lines 34 - 100

101

When Symfony sees the new interface and this argument, it will pass us a, sort of, "mini-container" that

holds the 4 objects we need. But it does this in a way where those 4 objects aren't created until we use

them.

Finish this by removing the old properties... and having just one: $container . Set it with

$this->container = $container :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 27

28

29

30

31

32

33

 // ... lines 34 - 100

101

Using the Container Locator

Because those properties are gone, using the services looks a bit different. For example, down here

for CsrfTokenManager , now we need to say $this->container->get() and pass it the type-

hint CsrfTokenManagerInterface::class :

use Psr\Container\ContainerInterface;

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

ServiceSubscriberInterface

{

 public function __construct(ContainerInterface $container)

 {

 }

}

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

ServiceSubscriberInterface

{

 private $container;

 public function __construct(ContainerInterface $container)

 {

 $this->container = $container;

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 55

56

57

 // ... line 58

59

 // ... line 60

61

 // ... lines 62 - 70

71

 // ... lines 72 - 100

101

This will work just like before except that the CsrfTokenManager won't be instantiated until this line

is hit... and if this line isn't hit, it won't be instantiated.

For entityManager , use $this->container->get(EntityManagerInterface::class) , for

passwordEncoder , $this->container->get(UserPasswordEncoderInterface::class)

and finally, for urlGenerator , use

$this->container->get->(UrlGeneratorInterface::class) . I'll copy that and use it again

inside getLoginUrl() :

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

ServiceSubscriberInterface

{

 public function getUser($credentials, UserProviderInterface $userProvider)

 {

 if (!$this->container->get(CsrfTokenManagerInterface::class)-

>isTokenValid($token)) {

 }

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 55

56

57

 // ... line 58

59

 // ... line 60

61

62

63

 // ... lines 64 - 70

71

72

73

74

75

76

77

78

79

 // ... lines 80 - 83

84

85

86

87

88

89

90

 // ... lines 91 - 100

101

So, a little bit more complicated... but it should take less resources to create this class. The question is:

did this make enough difference for us to want this added complexity? Let's find out. First, clear the

cache:

php bin/console cache:clear

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

ServiceSubscriberInterface

{

 public function getUser($credentials, UserProviderInterface $userProvider)

 {

 if (!$this->container->get(CsrfTokenManagerInterface::class)-

>isTokenValid($token)) {

 }

 $user = $this->container->get(EntityManagerInterface::class)-

>getRepository(User::class)->findOneBy(['email' => $credentials['email']]);

 }

 public function checkCredentials($credentials, UserInterface $user)

 {

 return $this->container->get(UserPasswordEncoderInterface::class)-

>isPasswordValid($user, $credentials['password']);

 }

 public function onAuthenticationSuccess(Request $request, TokenInterface

$token, $providerKey)

 {

 return new RedirectResponse($this->container-

>get(UrlGeneratorInterface::class)->generate('app_homepage'));

 }

 protected function getLoginUrl()

 {

 return $this->container->get(UrlGeneratorInterface::class)-

>generate('app_login');

 }

}

And warm it up:

php bin/console cache:warmup

Comparing the Results

Move back over... I'll close some tabs and... refresh. Profile again: I'll call this one:

[Recording] Homepage service subscriber : https://bit.ly/sf-bf-service-subscriber. View the

call graph.

Excellent! Go back to the "Memory" dimension and search for "login". The call is still here but it's taking

a lot less memory and less time. Let's compare this to be sure though. Click back to the homepage

and go from the previous profile to this one: https://bit.ly/sf-bf-service-subscriber-compare.

Nice! The wall time is down by 4%... CPU is down and memory also decreased... but just a little bit.

So was this change worth it? Probably. But this doesn't mean you should run around and use service

subscribers everywhere. Why? Because they add complexity to your code and, unless you have a

specific situation, it won't help much or at all. Use Blackfire to find the real problems and target those.

For example, we also could have made this same change to our AgreeToTermsSubscriber :

https://bit.ly/sf-bf-service-subscriber
https://bit.ly/sf-bf-service-subscriber-compare

src/EventSubscriber/AgreeToTermsSubscriber.php

 // ... lines 1 - 2

3

 // ... lines 4 - 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

namespace App\EventSubscriber;

class AgreeToTermsSubscriber implements EventSubscriberInterface

{

 private $security;

 private $formFactory;

 private $twig;

 private $entrypointLookup;

 public function __construct(Security $security, FormFactoryInterface

$formFactory, Environment $twig, EntrypointLookupInterface $entrypointLookup)

 {

 $this->security = $security;

 $this->formFactory = $formFactory;

 $this->twig = $twig;

 $this->entrypointLookup = $entrypointLookup;

 }

 public function onRequestEvent(RequestEvent $event)

 {

 $user = $this->security->getUser();

 // only need this for authenticated users

 if (!$user instanceof User) {

 return;

 }

 // in reality, you would hardcode the most recent "terms" date

 // change so you can see if the user needs to "re-agree". I've

 // set it dynamically to 1 year ago to avoid anyone hitting

 // this - as it's just example code...

 //$latestTermsDate = new \DateTimeImmutable('2019-10-15');

 $latestTermsDate = new \DateTimeImmutable('-1 year');

 // user is up-to-date!

 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

 return;

 }

 $form = $this->formFactory->create(AgreeToUpdatedTermsFormType::class);

 $html = $this->twig->render('main/agreeUpdatedTerms.html.twig', [

 'form' => $form->createView()

]);

 // resets Encore assets so they render correctly later

 // only technically needed here because we should really

 // "exit" this function before rendering the template if

 // we know the user doesn't need to see the form!

60

61

62

63

64

65

66

67

68

69

70

71

72

This class is also instantiated on every request... but rarely needs to do its work. That means we are

causing the FormFactory object to be instantiated on every request.

But, go back to the latest profile... click to view the memory dimension... and search for "agree". There

it is! It took 1.61 milliseconds and 41 kilobytes to instantiate this. That's... a lot less than the login

authenticator. So, is making this class a service subscriber worth it? For me, no. I'd rather get back to

writing features or fixing bigger performance issues.

Next, we can take a lot more control of the profiling process, like profiling just a portion of our code or

automatically triggering a profile based on some condition, instead of needing to manually use the

browser extension. Let's talk about the Blackfire SDK next.

 $this->entrypointLookup->reset();

 $response = new Response($html);

 $event->setResponse($response);

 }

 public static function getSubscribedEvents()

 {

 return [

 RequestEvent::class => 'onRequestEvent',

];

 }

}

Chapter 19: Manually Profile (Instrument) Part of your
Code

Profiling a page looks like this.

Profiling: What happens Behind the Scenes

First, something tells the Blackfire PHP extension - the "Probe":

“Hey! Start profiling!”

Which basically means that it starts collecting tons of data. The process of collecting data is called

instrumentation... because when a concept is too simple, sometimes we tech people like to invent

confusing words. Instrumentation means that the PHP extension is collecting data.

The second step is that - eventually - something tells the PHP extension to stop "instrumentation" and

to send the data. The collection of data is known as a "profile". The PHP extension sends the profile to

the agent, which aggregates it, prune some stuff and ultimately sends it to the Blackfire server.

So: what is the "thing" that tells the PHP extension to activate? We know that the PHP extension

doesn't profile every request... so what is it that says:

“Hey PHP extension "probe" thing: start profiling!”

The answer - so far - is: the browser extension: it sends special information that tells the probe to do its

thing. Or, if you use the blackfire command line utility, which we did earlier to profile a command,

then it is what tells the PHP extension to activate.

In either situation, the extension is activated before even the first line of code is executed. That means

that every single line of PHP code is "instrumented": our final profile contains everything. This is called

auto-instrumentation: instrumentation starts automatically.

This naturally leads to three interesting questions.

First, who is baby Yoda? I mean, is he... like, related to Yoda? Or just the same species?

The second question is: could we trigger, or create a Blackfire profile in a different way? Could we, for

example, dynamically tell the PHP extension to create a profile from inside our code under some

specific condition?

And third, regardless of who triggers the profile, could we "zoom in" and only collect profiling data for

part of our code? Like, could we create a profile that only collects data about the code from our

controller instead of the entire request?

Let's actually start with that last question: profiling a specific part of our code, instead of the whole

thing. To be fully honest, I don't know if this part has a ton of practical use-cases, but it will give you an

even better idea of how Blackfire works behind the scenes.

Installing the Blackfire SDK

To help with this crazy experiment, we're going to install Blackfire's PHP SDK. Find your terminal, dial

up your modem to the Internet, and run:

composer require blackfire/php-sdk

This is a normal PHP library that helps interact directly with Blackfire from inside your code. You'll see

how.

When it finishes, move over and open src/Controller/MainController.php :

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 120

121

Ok: this is the controller for our homepage. Let's pretend that when we profile this page, we don't want

to collect data about all of our code. Nope, we want to, sort of, "zoom in" and see only what's

happening inside the controller.

Manually Instrumenting Code

We can do that by saying $probe = \BlackfireProbe::getMainInstance() :

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 21

22

23

24

 // ... lines 25 - 34

35

 // ... lines 36 - 126

127

Remember: the PHP extension is called the "probe"... that's important if you want this to make sense.

Then call $probe->enable() :

class MainController extends AbstractController

{

 /**

 * @Route("/", name="app_homepage")

 */

 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

 {

 $sightings = $this->createSightingsPaginator(1,

$bigFootSightingRepository);

 return $this->render('main/homepage.html.twig', [

 'sightings' => $sightings

]);

 }

}

class MainController extends AbstractController

{

 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

 {

 $probe = \BlackfireProbe::getMainInstance();

 }

}

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 21

22

23

24

25

 // ... lines 26 - 34

35

 // ... lines 36 - 38

39

 // ... lines 40 - 126

127

At the bottom, I'll set the rendered template to a $response variable, add $probe->disable()

and finish with return $response :

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 21

22

23

24

25

 // ... lines 26 - 27

28

29

30

31

32

33

34

35

 // ... lines 36 - 126

127

Okay, so... what the heck does this do? The first thing I want you to notice is that if I refresh the

homepage a bunch of times... and then go to https://blackfire.io, I do not have any new profiles. Adding

this code does not "trigger" a new profile to be created: it does not tell the PHP extension - the "probe"

- that it should to do its work.

class MainController extends AbstractController

{

 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

 {

 $probe = \BlackfireProbe::getMainInstance();

 $probe->enable();

 }

 */

}

class MainController extends AbstractController

{

 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

 {

 $probe = \BlackfireProbe::getMainInstance();

 $probe->enable();

 $response = $this->render('main/homepage.html.twig', [

 'sightings' => $sightings

]);

 $probe->disable();

 return $response;

 }

}

https://blackfire.io/

Instead, if a profile is currently being created, this tells the probe when to start collecting data. Hmm,

this isn't going to quite make sense until we see it in action. Trigger a new profile on the homepage. I'll

call this one: [Recording] Only instrument some code .

Click to view the call graph: https://bit.ly/sf-bf-partial-profile.

Fascinating. This contains less information than normal. It has a few things on top - main() and

handleRaw() ... but basically it jumps straight to the homepage() method.

How Disabling Auto-Instrumentation Works

What's happening here is that the only code that the probe "instrumented", the only code that it

collected information on, is the code between the enable() and disable() calls:

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 21

22

23

 // ... line 24

25

26

27

28

29

30

31

32

 // ... lines 33 - 34

35

 // ... lines 36 - 126

127

This... completely confused me the first time I saw it. What really happens is this: as soon as we use

the browser extension to tell the probe to do its job, the PHP extension starts instrumenting - so,

collection data - immediately. Initially, it is collecting data about every line of PHP code.

But as soon as it sees $probe->enable() , it basically forgets about all the data collected so far.

The $probe->enable() call says:

class MainController extends AbstractController

{

 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

 {

 $probe->enable();

 $sightings = $this->createSightingsPaginator(1,

$bigFootSightingRepository);

 $response = $this->render('main/homepage.html.twig', [

 'sightings' => $sightings

]);

 $probe->disable();

 }

}

https://bit.ly/sf-bf-partial-profile

“Hey! Start instrumenting here. If you've already collected some data before thanks to auto-

instrumentation, get rid of it.”

This effectively disables auto-instrumentation: we're now controlling which code is instrumented

instead of it happening automatically. Once the code hits $probe->disable() instrumentation

stops.

You can actually use $probe->enable() and $probe->disable() multiple times in your code if

you want to profile different pieces: $probe->enable() only forgets data it's already collected the

first time you call it.

Oh, and you can also optionally call $probe->close() - you'll see this in their documentation:

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 21

22

23

 // ... lines 24 - 31

32

33

 // ... lines 34 - 35

36

 // ... lines 37 - 127

128

That tells the PHP extension that you're definitely done profiling and it can send the data to the agent.

But, it's not strictly required, because it'll be sent automatically when the script ends anyways.

So... this feature is maybe useful... but it's definitely a nice intro into taking more control of the profiling

process.

We haven't used the SDK Yet

And.. fun fact! We installed the blackfire/php-sdk library... but we haven't actually used it yet!

This \BlackfireProbe class is not from the php-sdk library: it's from the Blackfire PHP extension.

As long as you have the extension installed, that class will exist. We're interacting directly with the

extension.

class MainController extends AbstractController

{

 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

 {

 $probe->disable();

 $probe->close(); // optional - will auto-close at end of script

 }

}

So... why did we install the SDK if we didn't need it? Because... it gave us auto-complete on that class.

And you all know that I freakin' love auto-complete.

The SDK has a, sort of, "stub" version of this class. This is not the code that was actually executed

when we called those methods... but having this at least shows us what methods and arguments exist.

Next, let's actually use the PHP SDK to do something a bit more interesting. I want to create a profile

automatically in my code without needing to use the browser extension. This does have real-world

use-cases.

Chapter 20: SDK: Automatically Create a Profile

Imagine you have a performance "problem" on production. No worries! Except... the issue is only

caused in some edge-case situation... and you're having a hard time repeating the exact condition...

which means that you can't create a meaningful Blackfire profile by using the browser extension.

For example, imagine we want to profile the AJAX request that loads the GitHub repository info... but

we think that the performance problem only happens for certain types of users - maybe users that

have many comments. I'm just making this up.

To do that, instead of triggering a new profile by clicking the browser extension button - which maybe is

hard because we can't seem to replicate the correct situation - let's trigger a new profile automatically

from inside our code. We can do this using the PHP SDK.

Spin over, go back to MainController and scroll down to loadSightingsPartial() ... actually

to the gitHubOrganizationInfo() method:

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

 // ... lines 73 - 127

128

This is the controller that returns the content on the right side of the page.

class MainController extends AbstractController

{

 /**

 * @Route("/api/github-organization", name="app_github_organization_info")

 */

 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)

 {

 $organizationName = 'SymfonyCasts';

 $organization = $apiHelper->getOrganizationInfo($organizationName);

 $repositories = $apiHelper-

>getOrganizationRepositories($organizationName);

 return $this->json([

 'organization' => $organization,

 'repositories' => $repositories,

]);

 }

}

Start by creating a fake variable $shouldProfile = true :

src/Controller/MainController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 55

56

57

58

59

 // ... lines 60 - 73

74

 // ... lines 75 - 129

130

In a real app, you would replace this with logic to determine whether or not this is one of those

requests that you think might have a performance problem: maybe you check to see if the user has

many comments or something.

Creating & Starting the Profile

Then, if $shouldProfile , it means that we want Blackfire to profile this request. To do that, say

$blackfire = new Client() - the one from Blackfire . This is an object that helps

communicate with the Blackfire servers. Next, create a probe - basically create a new "profile" - with

$probe = $blackfire->createProbe() :

src/Controller/MainController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 55

56

57

58

59

60

61

62

63

64

 // ... lines 65 - 73

74

 // ... lines 75 - 129

130

class MainController extends AbstractController

{

 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)

 {

 // replace with some conditional logic

 $shouldProfile = true;

 }

}

class MainController extends AbstractController

{

 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)

 {

 // replace with some conditional logic

 $shouldProfile = true;

 if ($shouldProfile) {

 $blackfire = new Client();

 $probe = $blackfire->createProbe();

 }

 }

}

Earlier, when we used BlackfireProbe::getMainInstance() , we were, kind of asking for a

"probe" if there was a profile happening. But this time, we're creating a probe: creating a new profile

and telling it to start "instrumenting" - collecting data - right now.

In fact, the second argument to createProbe() is $enabled=true : whether or not we want the

probe to immediately start instrumentation or if we will enable it later with $probe->enable() .

Now, because this will create a new profile, you need to make sure you do this only rarely on

production. Why? Because creating profiles is heavy and this slow request will be felt by whichever

user triggered it. So, choose your logic for $shouldProfile carefully.

Anyways, let's try it! Move over and refresh your list of Blackfire profiles. The most recent one is the

"Only instrumenting some code" profile. Now refresh the homepage. This triggers the AJAX call... but

notice it's slower. And when we refresh Blackfire... boom! We have a brand new profile! Open that up

and... let's give it a name: [Recording] First automatic profile : http://bit.ly/f-bf-1st-auto-

profile. I'm so proud.

This only Profiles the Controller

You can now create new profiles from your code... whenever you want to. But... there's a small

problem: this only profiled a tiny part of our code. And, that makes sense: when our PHP code started

executing, the PHP extension didn't yet know that we wanted to profile this request. And so, it couldn't

start collecting data until we told it to, which happened in the controller. To make matters worse, as

soon as PHP garbage collected the $probe variable... which happened once the variable isn't used

anymore... so at the end of the controller, internally, the probe called close() on itself. That means

that we just collected data on nothing more than the code in our controller.

How can we fix that? By starting the probe super early and closing it manually as late as we can. Let's

do that next.

http://bit.ly/f-bf-1st-auto-profile
http://bit.ly/f-bf-1st-auto-profile

Chapter 21: Creating an Automatic Probe Early in your
Code

Once we determine that we want to create a probe dynamically in our code, we really want to do that

as early as possible so that Blackfire can "instrument" as much of our code as possible.

Generating the Event Subscriber

In Symfony, we can do that with an event subscriber... which we will generate to be super lazy. First, in

.env , make sure that you're back in the dev environment:

.env

 // ... lines 1 - 16

17

 // ... lines 18 - 29

Then, find your terminal and run:

php bin/console make:subscriber

Call it BlackfireAutoProfileSubscriber ... and we want to listen to RequestEvent : Go check

out the code src/EventSubscriber/BlackfireAutoProfileSubscriber.php :

APP_ENV=dev

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

So, when this RequestEvent happens - which Symfony dispatches super early when handling a

request, we want to create & enable the probe. Copy all of the $shouldProfile code, remove it

from the controller and paste it here:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

12

 // ... lines 13 - 16

17

18

19

20

21

 // ... lines 22 - 28

29

Creating the Prove in the Subscriber

Now add $request = $event->getRequest() . To make this only profile the GitHub organization

AJAX call - whose URL is /api/github-organization - set $shouldProfile equal to

namespace App\EventSubscriber;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

use Symfony\Component\HttpKernel\Event\RequestEvent;

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 // ...

 }

 public static function getSubscribedEvents()

 {

 return [

 RequestEvent::class => 'onRequestEvent',

];

 }

}

use Blackfire\Client;

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 if ($shouldProfile) {

 $blackfire = new Client();

 $probe = $blackfire->createProbe();

 }

 }

}

$request->getPathInfo() === '/api/github-organization' :

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 28

29

In a real app, I would add more code to make sure $shouldProfile is only true on the very specific

requests we want to profile.

Now I'll re-type the t on Client and select the correct Client class so that PhpStorm adds that

use statement to the top of the class for me:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

12

 // ... lines 13 - 16

17

18

 // ... line 19

20

21

 // ... lines 22 - 28

29

Thanks PhpStorm!

But before we try this, I want to code for one edge case: if not $event->isMasterRequest() , then

return :

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 // replace with some conditional logic

 $request = $event->getRequest();

 $shouldProfile = $request->getPathInfo() === '/api/github-organization';

 if ($shouldProfile) {

 $blackfire = new Client();

 $probe = $blackfire->createProbe();

 }

 }

}

use Blackfire\Client;

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 if ($shouldProfile) {

 $blackfire = new Client();

 }

 }

}

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 17

18

19

20

21

22

 // ... lines 23 - 31

32

 // ... lines 33 - 48

49

It might not be important in your app, but Symfony has a "sub-request" system... and the short

explanation is that we don't want to profile those: they are not real requests... and would make a big

mess of things.

Ok, let's try this! I'll close a tab... then refresh the homepage... which causes the AJAX request to be

made. You can see it's slow. Now reload the list of profiles on Blackfire... there it is! Open it up.

And... oh wow, oh weird! 281 microseconds. Give this a name:

[Recording] Auto from subscriber : http://bit.ly/sf-bf-broken-auto-profile

This profile is... broken. That's 281 microseconds - so .281 milliseconds. And the entire profile is just

the Probe::enable() call itself!

Probe Auto-Close Too Early

What happened!? Well... remember: the $probe object automatically calls close() on itself as soon

as that variable is garbage collected... which happens at the end of the subscriber method. That

means.... we profiled exactly one line of code.

The solution is to call $probe->close() manually... which - more importantly - will require us to

store the Probe object in a way where PHP won't garbage collect it too early.

So here's the goal: call $probe->close() as late as possible during the request lifecycle. We can

do this by listening to a different event: when TerminateEvent::class is dispatched - that's very

late in Symfony - call the onTerminateEvent() method:

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 if (!$event->isMasterRequest()) {

 return;

 }

 }

}

http://bit.ly/sf-bf-broken-auto-profile

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 40

41

42

43

 // ... lines 44 - 45

46

47

48

49

I'll hit an Alt+Enter shortcut to create that method... then add the argument

TerminateEvent $event :

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 33

34

35

 // ... lines 36 - 38

39

 // ... lines 40 - 48

49

To be able to call $probe->close() , we need to store the probe object on a property. Add

private $probe with some documentation that says that this will either be a Probe instance from

Blackfire or null :

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 10

11

12

13

14

15

16

 // ... lines 17 - 48

49

Update the code below to be $this->probe = $blackfire->createProbe() :

use Symfony\Component\HttpKernel\Event\TerminateEvent;

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 return [

 TerminateEvent::class => 'onTerminateEvent',

];

 }

}

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onTerminateEvent(TerminateEvent $event)

 {

 }

}

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 /**

 * @var Probe|null

 */

 private $probe;

}

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 10

11

12

13

14

15

16

 // ... line 17

18

19

 // ... lines 20 - 27

28

 // ... line 29

30

31

32

 // ... lines 33 - 48

49

Finally, inside onTerminateEvent , if $this->probe - I should not have put that exclamation point,

that's a mistake - then $this->probe->close() :

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 33

34

35

36

37

38

39

 // ... lines 40 - 48

49

If you assume that I did not include the exclamation point... then this makes sense! If we created the

probe, then we will close it. Problem solved. And... really... the fact that we set the probe onto a

property is the real magic: that will prevent PHP from garbage-collecting that object... which will

prevent it from closing itself until we're ready.

Increasing the Event Priority

While we're here, let's make this a little bit cooler. Change onRequestEvent to be an array... and

add 1000 as the second item:

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 /**

 * @var Probe|null

 */

 private $probe;

 public function onRequestEvent(RequestEvent $event)

 {

 if ($shouldProfile) {

 $this->probe = $blackfire->createProbe();

 }

 }

}

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onTerminateEvent(TerminateEvent $event)

 {

 if ($this->probe) {

 $this->probe->close();

 }

 }

}

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 40

41

42

43

44

45

 // ... line 46

47

48

49

This syntax is... weird. But the result is good: it says that we want to listen to this event with a priority of

1000. That will make our code run even earlier so that even more code will get profiled.

Configuration: Name your Profile

Oh, and there's one other cool thing we can do: we can configure the profile. Add

$configuration = new Configuration() from Blackfire\Profile . Thanks to this, we can

control a number of things about the profile... the best being ->setTitle() :

Automatic GitHub org Profile . Pass this to createProbe() :

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

 // ... lines 14 - 18

19

20

 // ... lines 21 - 28

29

30

31

32

33

34

35

 // ... lines 36 - 51

52

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 return [

 // warning: adding a priority will run before routing & security

 RequestEvent::class => ['onRequestEvent', 1000],

];

 }

}

use Blackfire\Profile\Configuration;

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 if ($shouldProfile) {

 $configuration = new Configuration();

 $configuration->setTitle('Automatic GitHub org profile');

 $blackfire = new Client();

 $this->probe = $blackfire->createProbe($configuration);

 }

 }

}

That's it! Let's see how things whole thing works. Back at the browser, I'll close the old profile... and

refresh the homepage. Once the AJAX call finishes... reload the Blackfire profile list. Ah! We were too

fast - it's still processing. Try again and... there it is!

Open it up! http://bit.ly/sf-bf-auto-profile-subscriber

Much better. A few things might still look a bit odd... because we're still not profiling every single line of

code. For example, Probe::enable() seems to wrap everything. But all the important data is there.

To avoid making a million of these profiles as we keep coding, I'll go back to the subscriber and avoid

profiling entirely by setting $shouldProfile = false :

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 18

19

20

 // ... lines 21 - 28

29

30

31

32

 // ... lines 33 - 36

37

38

 // ... lines 39 - 54

55

Next: you already write automated tests for your app to help prove that key features never have bugs.

You... ah... do write tests right? Let's... say you do. Me too.

Anyways, have you ever thought about writing automated tests to prevent performance bugs? Yep,

that's possible! We can use Blackfire inside our test suite to add performance assertions. It's pretty

sweet... and now that we understand the SDK, it will feel great.

class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

 public function onRequestEvent(RequestEvent $event)

 {

 // stop our testing code from profiling

 $shouldProfile = false;

 if ($shouldProfile) {

 }

 }

}

http://bit.ly/sf-bf-auto-profile-subscriber

Chapter 22: Performance Tests

Let's profile the Github API endpoint again. I'll cheat and go directly to

/api/github-organization ... and click to profile this. I'll call it:

[Recording] GitHub Ajax HTTP requests because we're going to look closer at the HTTP

requests that our app makes to the GitHub API.

Click to view the call graph: https://bit.ly/sf-bf-http-requests

Oh wow - this request was super slow - 1.83 seconds - a lot slower than we've seen before. We can

see that curl_multi_select() is the problem: this is our code making requests to the GitHub API,

which is apparently running a bit slow at the moment.

We have a Performance "Bug"

Lucky for us, that's exactly what I wanted to talk about! At the top, Blackfire tells me that this page

made two HTTP requests. And HTTP requests are always expensive for performance.

If you studied the data from the two API endpoints that we're using, you would discover that it's

possible - by writing some clever code - to get all the info our app needs with just one HTTP request.

What I'm saying is: our page is making one more HTTP request than it truly needs to. If you think

about it... that's kind of a performance "bug": we're making 2 HTTP requests and we only need 1.

In an ideal world, when we find a bug, the process for fixing it looks like this. First, write a test for the

expected behavior. Second, run that test and watch it fail. And third, fix the bug and make sure the test

passes.

Whelp, when it comes to a performance bug... we can do the exact same thing! We can write a

functional test that asserts that this endpoint only makes one HTTP request. It's... pretty awesome.

Running the Functional Test

Find your editor and open tests/Controller/MainControllerTest.php . I already set up a

functional test that makes a request to /api/github-organization and checks some basic data

on the response:

https://bit.ly/sf-bf-http-requests

tests/Controller/MainControllerTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Let's makes sure this passes. Run PHPUnit and point it directly at this class:

php bin/phpunit tests/Controller/MainControlerTest.php

The first time you run this script, it will probably download PHPUnit in the background. When it

finishes... go tests go! All green.

Adding a Performance Assertion

Here's the idea: in addition to asserting that this response contains JSON with an organization

key, I also want to assert that it only made one HTTP request. To do that, first add a trait from the SDK:

use TestCaseTrait . Next, in the method, add $blackfireConfig = new Configuration()

- the one from Blackfire\Profile : the same Configuration class we used earlier when we

gave our custom-created profile a title. This time call assert() and pass it a very special string:

metrics.http.requests.count == 1 :

namespace App\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $client = static::createClient();

 $client->request('GET', '/api/github-organization');

 $this->assertResponseIsSuccessful();

 $data = json_decode($client->getResponse()->getContent(), true);

 $this->assertArrayHasKey('organization', $data);

 }

}

tests/Controller/MainControllerTest.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 12

13

14

15

16

17

18

 // ... lines 19 - 26

27

28

I'll show you where that came from soon. Finally, below this, call $this->assertBlackfire() and

pass this $blackfireConfig and a callback function:

tests/Controller/MainControllerTest.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 16

17

18

19

20

 // ... lines 21 - 25

26

27

28

So... this confused me at first. When we call $this->assertBlackfire() it will execute this

callback. Inside, we will do whatever work we want - like making the request. Finally, when the callback

finishes, Blackfire will execute this assertion against the code that we ran:

use Blackfire\Profile\Configuration;

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $client = static::createClient();

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 }

}

use Blackfire\Profile\Configuration;

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 $this->assertBlackfire($blackfireConfig, function() use ($client) {

 });

 }

}

tests/Controller/MainControllerTest.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 16

17

18

19

20

21

22

23

24

25

26

27

28

To get this to work, we need to use ($client) :

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 19

20

 // ... lines 21 - 25

26

27

28

If this doesn't make sense yet... don't worry: we'll dive a bit deeper soon. But right now... try it! Run the

test again:

php bin/phpunit tests/Controller/MainControlerTest.php

And... it fails! Woo! Failed that metrics.http.requests.count == 1 !

use Blackfire\Profile\Configuration;

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 $this->assertBlackfire($blackfireConfig, function() use ($client) {

 $client->request('GET', '/api/github-organization');

 $this->assertResponseIsSuccessful();

 $data = json_decode($client->getResponse()->getContent(), true);

 $this->assertArrayHasKey('organization', $data);

 });

 }

}

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $this->assertBlackfire($blackfireConfig, function() use ($client) {

 });

 }

}

Performance Tests Create Real Profiles

Behind the scenes, the Blackfire SDK created a real Blackfire profile for the request! You can even

copy the profile URL and go check it out! This takes us to an "assertions" tab. We're making 2 requests

instead of the expected one. We'll talk a lot more about assertions soon.

Ok, but how did this really work? It's beautifully simple. When you run the test, it does make a real

Blackfire profile in the background. However, if you go to your Blackfire homepage, you won't see it.

Why? Hold Cmd or Ctrl and click the assertBlackfire() method. I love it: this method uses the

SDK - just like we did! - to create a real profile. When it does that, it also adds a skip_timeline

option, which simply tells Blackfire to hide this from our profile page... so it doesn't get cluttered up with

all these test profiles. You can totally override that if you wanted... via the Configuration object.

In reality, the Blackfire PHPUnit integration is doing the exact same thing that we just finished doing in

our code: manually creating a new profile. This is really nothing new... and I love that!

Except... for this metrics thing. Where did that string come from? And what else can we do here? Let's

dive into metrics next.

Chapter 23: All about Metrics

Where did this metrics string come from - this metrics.http.requests.count?

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 16

17

18

 // ... lines 19 - 26

27

28

There are two things I want to say about this. First, Blackfire stores tons of raw data about your profile

in little "categories" called metrics. More on that soon. And second, inside the assert() call, you're

using a special "expression" language that's similar to JavaScript. It's technically Symfony's

ExpressionLanguage if you want to read more. Behind-the-scenes, metrics is probably some

object... and we're referencing an http property, then a requests ... property then a count

property & then we're comparing that to 1.

What Metrics are Available

Ok, cool. So... how the heck did I know to use this exact string to get the HTTP call count? This goes

back to the Blackfire timeline. On the profile, click the timeline link.

When we talked about the timeline earlier, we talked about how, on the left side, there are these

"timeline" metrics. At that point, these were just a nice way to add color to different sections of the

timeline.

But now we understand that there is a lot more power behind this info: this shows us all the pieces of

data we can use in our tests... and in other places that we'll talk about soon.

For example, there's a metric called symfony.events.count which equals seven. You could use

that in a metric if, for some reason, you wanted to assert that a certain number of events were

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 }

}

dispatched. If I needed to do an assertion about the number of HTTP requests, I would probably

search the metrics for http. Apparently there are two... and if you looked closer, you'd find that

http.requests is perfect. Most of these metrics have data about multiple dimensions: we can say

http.requests.count to get the actual number or http.requests.memory to get how much

memory they used.

In the test system, we start with metrics. then use anything we find here.

Fixing the Performance Bug

We now have a performance bug in our application that we've proven with a test. And at this point, the

actual way we fix that bug is not as important: all we care about is that we can change some code and

get this test to pass.

The logic for the API calls lives in src/GitHub/GitHubApiHelper.php : it has two public function

and each makes one API request:

src/GitHub/GitHubApiHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 15

16

17

18

 // ... lines 19 - 25

26

 // ... lines 27 - 30

31

32

33

 // ... lines 34 - 46

47

48

How can we make this page only make 1 HTTP request? Well, if you looked closely.. Ah! Too close!

Ahh. You'd find that you can get all the information you need by only making this second HTTP

request. The details aren't important - so let's just jump in.

Add a new property called $githubOrganizations set to an empty array:

class GitHubApiHelper

{

 public function getOrganizationInfo(string $organization):

GitHubOrganization

 {

 $response = $this->httpClient->request('GET',

'https://api.github.com/orgs/'.$organization);

 }

 public function getOrganizationRepositories(string $organization): array

 {

 $response = $this->httpClient->request('GET',

sprintf('https://api.github.com/orgs/%s/repos', $organization));

 }

}

src/GitHub/GitHubApiHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 66

67

As we loop over the repositories for a specific organization, we will store that organization's info. Add a

new variable called $publicRepoCount set to 0:

src/GitHub/GitHubApiHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 37

38

39

 // ... lines 40 - 44

45

46

 // ... lines 47 - 55

56

 // ... lines 57 - 65

66

67

the number of public repositories an organization has is one of the pieces of data we need.

Then, inside the foreach : if $repoData['private'] === false - that's one of the keys on

$repoData - say ++$publicRepoCount :

class GitHubApiHelper

{

 private $githubOrganizations = [];

}

class GitHubApiHelper

{

 private $githubOrganizations = [];

 public function getOrganizationRepositories(string $organization): array

 {

 $publicRepoCount = 0;

 foreach ($data as $repoData) {

 }

 }

}

src/GitHub/GitHubApiHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 37

38

39

 // ... lines 40 - 44

45

46

 // ... lines 47 - 52

53

54

55

56

 // ... lines 57 - 65

66

67

So, as we're looping over the repositories, we're counting how many are public.

Finally, at the bottom, if not isset($this->githubOrganizations[$organization]) , then

$this->githubOrganizations[$organization] = new GitHubOrganization() :

class GitHubApiHelper

{

 private $githubOrganizations = [];

 public function getOrganizationRepositories(string $organization): array

 {

 $publicRepoCount = 0;

 foreach ($data as $repoData) {

 if ($repoData['private'] === false) {

 ++$publicRepoCount;

 }

 }

 }

}

src/GitHub/GitHubApiHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 37

38

39

 // ... lines 40 - 44

45

46

 // ... lines 47 - 52

53

54

55

56

57

58

59

 // ... lines 60 - 61

62

63

 // ... lines 64 - 65

66

67

This needs two arguments. The first is the organization name. We can probably use the

$organization argument... or you can use $data[0] - to get the first repository - then

['owner']['login'] . For the second argument, pass $publicRepoCount :

class GitHubApiHelper

{

 private $githubOrganizations = [];

 public function getOrganizationRepositories(string $organization): array

 {

 $publicRepoCount = 0;

 foreach ($data as $repoData) {

 if ($repoData['private'] === false) {

 ++$publicRepoCount;

 }

 }

 if (!isset($this->githubOrganizations[$organization])) {

 $this->githubOrganizations[$organization] = new GitHubOrganization(

);

 }

 }

}

src/GitHub/GitHubApiHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 37

38

39

 // ... lines 40 - 44

45

46

 // ... lines 47 - 52

53

54

55

56

57

58

59

60

61

62

63

 // ... lines 64 - 65

66

67

Now, each time we call this method, we capture the organization's information and store it on this

property. So if we call this method first and then the other method... we could cheat and return the

GitHubOrganization object that's stored on the property. It's property caching!

Check it out: if isset($this->githubOrganizations[$organization]) then return that

immediately without doing any work:

class GitHubApiHelper

{

 private $githubOrganizations = [];

 public function getOrganizationRepositories(string $organization): array

 {

 $publicRepoCount = 0;

 foreach ($data as $repoData) {

 if ($repoData['private'] === false) {

 ++$publicRepoCount;

 }

 }

 if (!isset($this->githubOrganizations[$organization])) {

 $this->githubOrganizations[$organization] = new GitHubOrganization(

 $data[0]['owner']['login'],

 $publicRepoCount

);

 }

 }

}

src/GitHub/GitHubApiHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 17

18

19

20

21

22

23

 // ... lines 24 - 32

33

 // ... lines 34 - 66

67

So... are we calling these two methods in the "correct" order to get this to work? Check out the

controller:

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 54

55

56

 // ... line 57

58

59

 // ... lines 60 - 64

65

 // ... lines 66 - 120

121

Nope! Swap these two lines so the first call will set up the caching for the second:

class GitHubApiHelper

{

 public function getOrganizationInfo(string $organization):

GitHubOrganization

 {

 // optimization in case getOrganizationRepositories is called first

 if (isset($this->githubOrganizations[$organization])) {

 return $this->githubOrganizations[$organization];

 }

 }

}

class MainController extends AbstractController

{

 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)

 {

 $organization = $apiHelper->getOrganizationInfo($organizationName);

 $repositories = $apiHelper-

>getOrganizationRepositories($organizationName);

 }

}

src/Controller/MainController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 54

55

56

 // ... line 57

58

59

 // ... lines 60 - 64

65

 // ... lines 66 - 120

121

Phew! Let's see if that helps. It was a complicated fix... but thanks to our test, we will know for sure if it

worked. Go!

php bin/phpunit tests/Controller/MainControlerTest.php

They pass! This proves that we reduced the HTTP calls from two to one.

Typos in Metrics

What I love about the metrics system is that there are many to choose from. What I don't love is that

you need to manually look up everything that's available. Fortunately, if you make a typo - the error is

great. Change count to vount :

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 16

17

18

 // ... lines 19 - 26

27

28

And re-run the test:

class MainController extends AbstractController

{

 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)

 {

 $repositories = $apiHelper-

>getOrganizationRepositories($organizationName);

 $organization = $apiHelper->getOrganizationInfo($organizationName);

 }

}

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.vount == 1');

 }

}

php bin/phpunit tests/Controller/MainControlerTest.php

“An error occurred when profiling the test”

And when we follow the profile link... check out that error!

“The following assertions are not valid... Property "vount" does not exist, available ones are:”

... and it lists all the properties. That's super friendly. Fix the typo:

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 16

17

18

 // ... lines 19 - 26

27

28

Organizing Blackfire Assertions into Separate Test Cases

The one downside to adding Blackfire assertions in your tests is that they do slow things down

because instrumentation happens and we need to wait for Blackfire to create the profile.

Because of that, as a best practice, we usually like to isolate our performance tests from our normal

tests. Check it out: copy the test method name, paste it below, and call it

testGetGitHubOrganizationBlackfireHttpRequests() :

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 }

}

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 28

29

30

 // ... lines 31 - 38

39

40

And... copy the contents of the original method and paste here. Now... we only need to create the

$client , create $blackfireConfig and, inside assertBlackfire() , just make the request:

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 28

29

30

31

32

33

34

35

36

37

38

39

40

Back in the original method, we can simplify... in fact we can go all the way back to the way it was

before: create the client, make the request, assert something:

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganizationBlackfireHttpRequests()

 {

 }

}

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganizationBlackfireHttpRequests()

 {

 $client = static::createClient();

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 $this->assertBlackfire($blackfireConfig, function() use ($client) {

 $client->request('GET', '/api/github-organization');

 });

 }

}

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 34

35

Why is this useful? Because now we can skip the Blackfire tests if we're just trying to get something to

work. How? Above the performance test, add @group blackfire :

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 23

24

25

 // ... line 26

27

28

29

 // ... lines 30 - 37

38

39

Thanks to that, we can add --exclude-group=blackfire to avoid the Blackfire tests:

php bin/phpunit tests/Controller/MainControlerTest.php --exclude-group=blackfire

Yep! Just one test, two assertions. Another nice detail is to add

@requires extension blackfire :

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganization()

 {

 $client = static::createClient();

 $client->request('GET', '/api/github-organization');

 $this->assertResponseIsSuccessful();

 $data = json_decode($client->getResponse()->getContent(), true);

 $this->assertArrayHasKey('organization', $data);

 }

}

class MainControllerTest extends WebTestCase

{

 /**

 * @group blackfire

 */

 public function testGetGitHubOrganizationBlackfireHttpRequests()

 {

 }

}

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 23

24

 // ... line 25

26

27

28

29

 // ... lines 30 - 37

38

39

Now, if someone is missing the Blackfire extension, instead of the tests exploding, they'll be marked as

skipped.

Don't do Time-Based Assertions

The last thing I want to mention about assertions is this: please, please please avoid time-based

assertions. They're the easiest to create - I know. It's super tempting to want to create an assertion that

the request should take less than 500 milliseconds. If you do this, you will hate your tests.

Why? Because there's way too much variability in time: the request might run fast enough on one

machine, but not fast enough on another. Or your server might just have a bad day... and suddenly

your tests are failing. Relying on time makes your tests fragile.

Next, we're going to talk more about metrics and assertions. We know that we can add assertions to

profiles that are created inside our tests.

But we an also add global assertions: tests that run any time you create a profile for any page! If you

want to make sure that a specific page - or any page - doesn't make more than, I don't know, 10

database queries, you can add an "assertion" for that and see a big failure if you break the rules.

class MainControllerTest extends WebTestCase

{

 /**

 * @requires extension blackfire

 */

 public function testGetGitHubOrganizationBlackfireHttpRequests()

 {

 }

}

Chapter 24: Assertions / Profile "Tests"

Adding specific assertions inside a test is really cool:

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 27

28

29

 // ... lines 30 - 31

32

33

34

 // ... lines 35 - 37

38

39

But you can also add assertions globally. What I mean is, whenever you trigger a real Blackfire profile -

like through your browser - you can set up assertions that you want to run against that profile.

Recommendations Versus Assertions

Actually, we've already seen a system that's similar to this. Click into one of the profiles. Every profile

has a "Recommendations" tab on the left, which tells us changes that we should probably make. In

reality, recommendations are assertions in disguise! For example, the "Symfony debug mode should

be disabled in production" is displayed here because the assertion that

metrics.symfony.kernel.debug.count equals zero, failed. Yep, metrics are everywhere!

I love that Blackfire gives us so many of these recommendations for free. But we can also define our

own. When we do, they'll show up under the assertions tab.

Hello .blackfire.yaml

How do we do that? Just send an email to assertion-requests@blackfire.io , pay $19.95 for

shipping and handling, and wait 6-8 weeks for delivery. If you order now, we'll double your order and

include a signed-copy of the blackfire-player source code printed as a book.

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganizationBlackfireHttpRequests()

 {

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 }

}

Or you can configure global assertions with a special Blackfire config file. At the root of your project,

create a new file called .blackfire.yaml . A few different things will eventually go here - the first is

tests: .

Honestly, the trickiest thing about writing assertions is trying to figure out... a good assertion to use!

Writing time-based assertions is the easiest... but because they're fragile, we want to avoid those.

Adding your first "Test"

Let's start with one we've already done. Say:

"HTTP requests should be limited to 1 per page": . Below this, add path set to the

regular expression /.* :

.blackfire.yaml

1

2

3

 // ... lines 4 - 6

This means that this assertion will be executed against any profile for any page. Only want the

assertion to run against a single page or section? Use this option.

Now add assertions: with one item below. Go steal the metrics expression from our test... and

paste it here. Change this to be less than or equal to 1:

.blackfire.yaml

1

2

3

4

5

That's it! Let's try it out! Back in your browser... go back to our site, refresh, and create a new profile. I'll

call it: [Recording] Added first assertion .

Click into the call graph. Actually, go back. See this little green check mark? That already tells us that

this profile passed all our "tests". We can see that on the "Assertions" tab:

metrics.http.requests.count was 0, which is less than or equal to 1.

So at this point, these "tests" are basically a nice way to create your own custom recommendations.

These will become more interesting later when we talk about environments and builds.

"tests":

 "HTTP Requests should be limited to 1 per page":

 path: "/.*"

"tests":

 "HTTP Requests should be limited to 1 per page":

 path: "/.*"

 assertions:

 - "metrics.http.requests.count

Next, let's talk about a tool from the Blackfire ecosystem called the Blackfire player. It's a command

line utility that allows us to write simple files and execute them as functional tests... completely

independent of the Blackfire profiling system. What we learn from it will form the foundation for the rest

of the tutorial.

Chapter 25: Blackfire Player

Pretend for a few minutes that the Blackfire profiler that we've been learning so much about... doesn't

exist... at all. Why? Because we're now going to talk about something that has the word "Blackfire" in

it... but has absolutely nothing to do with the Blackfire profiler. At least, not yet.

Hello Blackfire Player

Google for "Blackfire player". The Blackfire Player is an open source library that makes it really easy to

write a few lines of code that will then be executed to crawl a site: clicking on links, filling out forms,

and doing things with the result. It's basically a simple language for surfing the web and a tool that's

able to read that language and... actually do it!

To install it, copy the curl command, find your terminal, and paste:

curl -OLsS https://get.blackfire.io/blackfire-player.phar

If you're on Windows, you can just download the blackfire-player.phar file from that URL and

put it into your project.

Now go back and copy the other two commands.

chmod +x blackfire-player.phar

mv blackfire-player.phar /usr/local/bin/blackfire-player

Paste and... that's it! For Windows users, skip this step. Let's see if it works. Run:

blackfire-player

Nice!

 Tip

For Windows, run php blackfire-player.php from inside your project.

So here's the idea: we create a file that contains one or more scenarios. Inside each scenario, we write

code that says: go visit this URL, expect a 200 status code, then click on this link, and so on. It can get

fancier, but that's the gist of it.

Creating our First Scenario & .bkf File

Let's create a our first Blackfire player file at the root of the project, though it could live anywhere. Call

it, how about, scenario.bkf . That's pure creativity.

At the top, I'll put a name - though it's not very important - then endpoint set to our server's URL. So

https://localhost:8000 :

scenario.bkf

1

2

3

4

You can override this when you execute this file by passing a --endpoint option.

Notice that this kind of looks like YAML, but it's not: there is no : between the key and value. This is a

custom Blackfire player language, which is friendly, but takes some getting used to.

At the bottom, add our first scenario - call it "Basic Visit". Inside, let's do two things: first,

visit url("/") . We can also give this page a name - it helps debugging:

scenario.bkf

1

2

3

4

5

6

7

8

9

10

 // ... lines 11 - 14

name "Various scenarios for the site"

override with --endpoint option

endpoint "https://localhost:8000"

name "Various scenarios for the site"

override with --endpoint option

endpoint "https://localhost:8000"

scenario

 name "Basic Visit"

 visit url("/")

 name "Homepage"

And second... once we're on the homepage, let's "click" this "Log In" link. Do that with click link()

and then use that exact text: Log In . Give this page a name too:

scenario.bkf

1

2

3

4

5

6

7

8

9

10

11

12

13

Executing blackfire-player

That's enough to start. We should be able to use the blackfire-player tool to... actually do this

stuff!. Let's try it:

blackfire-player run scenario.bkf

And... it fails:

“Curl error 60...”

If you Google'd this, you find out that this is an SSL problem - it's caused because or Symfony dev

server uses a, sort of, self-signed certificate that blackfire-player doesn't like. The simplest solution,

which is ok since we're just testing locally - is to pass --ssl-no-verify

blackfire-player run scenario.bkf --ssl-no-verify

And... hey! It worked! Scenarios 1, steps 2. It truly made a request to the homepage then clicked on

that link! By the way, the requests aren't using a real browser. And so, any JavaScript code on your

page won't run. That might change in the future - but I'm not sure.

name "Various scenarios for the site"

override with --endpoint option

endpoint "https://localhost:8000"

scenario

 name "Basic Visit"

 visit url("/")

 name "Homepage"

 click link("Log In")

 name "Login page"

Anyways, to see more fun output, use the -v flag:

blackfire-player run scenario.bkf --ssl-no-verify -v

Very cool! Blackfire player is now making two real HTTP requests to our site... but it's not doing

anything with that data. Next, let's add some tests to our scenario - like expecting that the status code

is 200 and checking for elements in the DOM.

Chapter 26: Expectations/Tests with Blackfire Player

We just used blackfire-player to execute our first "scenario". It's pretty simple: it goes to the

homepage then clicks the "Log In" link:

scenario.bkf

1

2

3

4

5

6

7

8

9

10

11

12

13

It works... but... we're not doing anything after we visit these pages. The true power of

blackfire-player is that you can add tests to your scenario - or even scrape pages and save that

data somewhere.

Adding an Expectation/Test to a Page

To add a "test" - or "assertion", or "expectation"... I love when things have 5 names... - say expect

followed by - you guessed it! - an expression! status_code() == 200 . Copy that and add it to the

login page as well:

name "Various scenarios for the site"

override with --endpoint option

endpoint "https://localhost:8000"

scenario

 name "Basic Visit"

 visit url("/")

 name "Homepage"

 click link("Log In")

 name "Login page"

scenario.bkf

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 17

Ok, try blackfire-player again!

blackfire-player run scenario.bkf --ssl-no-verify -v

Woo! It still passes and now it's starting to be useful!

What's Possible in the expect Expression?

Let's break this down. First, just like we saw with the metrics stuff:

tests/Controller/MainControllerTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 27

28

29

 // ... lines 30 - 31

32

33

 // ... lines 34 - 37

38

39

This is an expression - it's Symfony's ExpressionLanguage once again - basically JavaScript. And

second... this expression has a ton of built-in functions.

Search the blackfire-player docs for "status_code"... and keep searching until you find a big

function list. Here it is. Yep, we can use current_url() , header() to get a header value and

many others. The css() function is especially useful: it allows us to dig into the HTML on the page.

scenario

 visit url("/")

 name "Homepage"

 expect status_code() == 200

 click link("Log In")

 name "Login page"

 expect status_code() == 200

class MainControllerTest extends WebTestCase

{

 public function testGetGitHubOrganizationBlackfireHttpRequests()

 {

 $blackfireConfig = (new Configuration())

 ->assert('metrics.http.requests.count == 1');

 }

}

We'll use that in a minute. The docs also have good examples of how to do more complex things. But

we're not going to become Blackfire player experts right now... I just want you to get comfortable with

writing scenarios.

Asserting HTML Elements with css()

Let's try to write a failing expectation to see what it looks like. Let's see... we could find this table and

assert that it has more than 500 rows... which it definitely does not. Let's find a CSS selector we can

use... hmm. Ok, we could look for a <tbody> with this js-sightings-list class and then count

its <tr> elements.

Back inside the scenario file, add another expect. This time use the css() function and pass it a CSS

selector: tbody.js-sightings-list tr :

scenario.bkf

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

 // ... lines 13 - 18

Internally, The blackfire-player uses Symfony's Crawler object from the DomCrawler

component, which has a count() method on it. Assert that this is > 500 .

Let's see what happens!

blackfire-player run scenario.bkf --ssl-no-verify -v

And... yes! It fails - with a nice error:

“The count() of that CSS element is 25, which is not greater than 500.”

Go back and change this to 10:

scenario

 visit url("/")

 name "Homepage"

 expect status_code() == 200

 expect css("tbody.js-sightings-list tr").count() > 500

scenario.bkf

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 11

12

 // ... lines 13 - 18

The data is dynamic data... so we don't really know how many rows it will have. But since our fixtures

add more than 10 sightings... and because there will probably be at least 10 sightings if we ever ran

this against production, this is probably a safe value.

Try it now:

blackfire-player run scenario.bkf --ssl-no-verify -v

All better!

Typos in Expressions

Another thing that blackfire-player does well is its errors when I... do something silly. Make a

typo: change count() to ount() :

scenario.bkf

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 11

12

 // ... lines 13 - 18

And rerun the scenario:

blackfire-player run scenario.bkf --ssl-no-verify -v

“Unable to call method ount of object Crawler .”

scenario

 visit url("/")

 expect css("tbody.js-sightings-list tr").count() > 10

scenario

 visit url("/")

 expect css("tbody.js-sightings-list tr").ount() > 10

That's a huge hint to tell you what object you're working with so you can figure out what methods it

does have. Change that back to count() :

scenario.bkf

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 11

12

 // ... lines 13 - 18

Performance Assertions in the Scenarios?

So... blackfire-player has nothing to do with the Blackfire profiler. It's just a useful tool for visiting

pages, clicking on links and adding expectations. But... if it truly had nothing to do with the profiler, I

probably wouldn't have talked about it. In reality, the concept of "scenarios" is about to become very

important - it's a fundamental part of a topic we'll talk about soon: Blackfire "builds".

And actually, there is one little integration between blackfire-player and the profiler: you can add

performance assertions to your scenario. To do that, instead of expect , say assert and then use

any performance expression you want: the same strings that you can use inside a test. For example:

metrics.sql.queries.count < 30 :

scenario.bkf

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 13

14

 // ... lines 15 - 20

When we execute this:

blackfire-player run scenario.bkf --ssl-no-verify -v

It does still pass. But if you played with this value - like set it to < 1 and re-ran the scenario:

blackfire-player run scenario.bkf --ssl-no-verify -v

scenario

 visit url("/")

 expect css("tbody.js-sightings-list tr").count() > 10

scenario

 visit url("/")

 assert metrics.sql.queries.count < 30

Hmm, it still passes... even though this page is definitely making more than one query. The reason is

that the assert functionality won't work inside a scenario until we introduce Blackfire "environments"

- which we will soon. They are one of my absolute favorite parts of Blackfire.

For now, I'll leave a comment that this won't work until then:

scenario.bkf

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 12

13

14

 // ... lines 15 - 20

Next, let's deploy to production! Because once our site is deployed, we can finally talk about cool

things like "environments" and "builds". You can use anything to deploy, of course, but we will use

SymfonyCloud.

scenario

 visit url("/")

 # won't work until we're using Blackfire environment

 assert metrics.sql.queries.count < 30

Chapter 27: Deploying to SymfonyCloud

Transition point! Everything we've talked about so far has included profiling our local version of the

site. But things get even cooler when we start to profile our production site. Having real data often

shows performance problems that you just can't anticipate locally. And because of the way that

Blackfire works, we can create profiles on production without slowing down our servers and affecting

real users. Plus, once we're profiling on production, we can unlock even more Blackfire features.

So... let's get this thing deployed! You can use any hosting system you want, but I'm going to deploy

with SymfonyCloud: it's what we use for SymfonyCasts and it makes deployment dead-simple for

Symfony apps. It also has a free trial if you want to code along with me.

Initializing your SymfonyCloud Project

Find your terminal and make sure you're on your master branch. That's not required, but will make

life easier. Start by running:

symfony project:init

This will create a few config files that tell SymfonyCloud everything it needs to know to deploy our site.

The most important file is .symfony.cloud.yaml :

.symfony.cloud.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Ah, this says we want PHP 7.1. Let's upgrade by changing that to 7.3:

.symfony.cloud.yaml

 // ... lines 1 - 2

3

 // ... lines 4 - 39

Back at the terminal, copy the big git command: this will add all the new files to git and commit them:

name: app

type: php:7.1

runtime:

 extensions:

 - apcu

 - mbstring

 - ctype

 - iconv

build:

 flavor: none

web:

 locations:

 "/":

 root: "public"

 expires: 1h

 passthru: "/index.php"

disk: 512

mounts:

 "/var": { source: local, source_path: var }

hooks:

 build: |

 set -x -e

 curl -s https://get.symfony.com/cloud/configurator | (>&2 bash)

 (>&2 symfony-build)

 deploy: |

 set -x -e

 (>&2 symfony-deploy)

type: php:7.3

git add .symfony.cloud.yaml .symfony/services.yaml .symfony/routes.yaml php.ini

git commit -m "Add SymfonyCloud configuration"

Next, to tell SymfonyCloud that we want a new "server" on their system, run:

symfony project:create

Every "site" in SymfonyCloud is known as a "project" and we only need to run this command once per

app. You can ignore the big yellow warning - that's because I have a few other SymfonyCloud projects

attached on my account. Let's call the project "Sasquatch Sightings" - that's just a name to help us

identify it - and choose the "Development" plan.

The development plan includes a free 7 day trial... which is awesome. You do need to enter your credit

card info - that's a way to prevent spammers from creating free trials - but it won't be charged unless

you run symfony project:billing:accept later to keep this project permanently.

I already have a credit card on file, so I'll use that one. Once we confirm, this provisions our project in

the background... I assume it's waking up thousands of friendly robots who are carefully creating our

new space in... the "cloud". Hey! There's one now... dancing!

And... done!

Deploying & Security Checks

Ready for our first deploy? Just type:

symfony app:prepare:deploy --branch=master --confirm --this-is-not-a-real-command

Kidding! Just run:

symfony deploy

And... hello error! This is actually great. Really! The deploy command automatically checks your

composer.lock file to see if you're using any dependencies with known security vulnerabilities.

Some of my Symfony packages do have vulnerabilities... and if this were a real app, I would upgrade

those to fix that problem. But... because this is a tutorial... I'm going to ignore this.

Our First Deploy

Run the command again with a --bypass-checks flag:

symfony deploy --bypass-checks

We still see the big message... but it's deploying! This takes care of many things automatically, like

running composer install and executing database migrations. This first deploy will be slow -

especially to download all the Composer dependencies. I'll fast-forward. It also handles setting up

Webpack Encore... and even creates a shiny new SSL certificate. Those are busy robots!

And... done! It dumped out a funny-looking URL. Copy that. In a real project, you will attach your real

domain to SymfonyCloud. But this "fake" domain will work beautifully for us.

Spin back over and pop that URL into your browser to see... a beautiful 500 error! Wah, wah. Actually,

we're super close to this all working. Next, let's use a special command to debug this error, add a

database to SymfonyCloud - yep, that's the piece we're missing - and load some dummy data over a

"tunnel". Lots of good, nerdiness!

Chapter 28: Database Tricks on SymfonyCloud

We just deployed to SymfonyCloud!!! Well, I mean, we did... but it doesn't... ya know... work yet.

Because this is the production 500 error, we can't see the real problem.

No worries! Head back to your terminal. The symfony command has an easy way to check the

production logs. It is...

symfony logs

This prints a list of all the logs. The app/ directory is where our application is deployed to - so the first

item is our project's var/log/prod.log file. You can also check out the raw access log... or

everything. Hit 0 to "tail" the prod.log file. And... there it is:

“An exception has occurred... Connection refused.”

Adding a Database to SymfonyCloud

I recognize this: it's a database error.... which... hmm... makes sense: we haven't told SymfonyCloud

that we need a database! Let's go do that!

Google for "SymfonyCloud MySQL" to find... oh! A page that talks about exactly that. Ok, we need to

add a little bit of config to 2 files. The first is .symfony/services.yaml . This is where you tell

SymfonyCloud about all the "services" you need - like a database service, ElasticSearch, Redis,

RabbitMQ, etc.

Copy the config for .symfony/services.yaml ... then open that file and paste:

.symfony/services.yaml

1

2

3

4

The database is actually MariaDB, which is why the version here is 10.2: MariaDB version 10.2.

mydatabase:

 # mariadb

 type: mysql:10.2

 disk: 1024

Notice that we've used the key mydatabase . That can be anything you want: we'll reference this

string from the other config file that we need to change: .symfony.cloud.yaml .

Inside that file, we need a relationships key: this is what binds the web container to that database

service. Let's see... we don't have a relationships key yet, so let's add it: relationships and,

below, add our first relationship with a special string: database set to mydatabase:mysql :

.symfony.cloud.yaml

 // ... lines 1 - 24

25

26

 // ... lines 27 - 42

This syntax... is a little funny. The mydatabase part is referring to whatever key we used in

services.yaml - and then we say :mysql ... because that service is a mysql type.

The really important thing is that we called this relationship database . Thanks to that

SymfonyCloud will expose an environment variable called DATABASE_URL which contains the full

MySQL connection string: username, host, database name and all:

.env

 // ... lines 1 - 26

27

 // ... lines 28 - 29

It's literally DATABASE_URL and not PIZZA_URL because we called the relationship database

instead of pizza ... which would have been less descriptive, but more delicious.

This is important because DATABASE_URL happens to be the environment variable that our app will

use to connect to the database. In other words, our app will instantly have database config.

Back at the terminal, hit Ctrl+C to exit from logging. Let's add the two changes and commit them:

git add . git commit -m "adding SfCloud database"

Now, deploy!

symfony deploy

Oh, duh - run with the --bypass-checks flag:

relationships:

 database: "mydatabase:mysql"

DATABASE_URL=mysql://root:@127.0.0.1:3306/blackfire

symfony deploy --bypass-checks

The deploy will still take some time - it has a lot of work to do - but it'll be faster than before. When it

finishes... it dumps the same URL - that won't change. But to be even lazier than last time, let's tell the

command to open this URL in my browser... for me:

symfony open:remote

Tunneling to the Database

And... we have a deployed site! Woo! The database is empty... but if this were a real app, it would start

to be populated by real users entering their real Bigfoot sightings... cause Bigfoot is... totally real.

But... to make this a bit more interesting for us, let's load the fixture data one time on production.

This is a bit tricky because the fixture system - which comes from DoctrineFixturesBundle - is a

Composer "dev" dependency... which means that it's not even installed on production. That's good for

performance. If it were installed, we could run:

symfony ssh

To SSH into our container, and then execute the command to load the fixtures. But... that won't work.

No problem! We can do something cooler. Exit out of SSH, and run:

symfony tunnel:open

I love this feature. Normally, the remote database isn't accessible by anything other than our container:

you can't connect to it from anywhere else on the Internet. It's totally firewalled. But suddenly, we can

connect to the production database locally on port 30000. We can use that to run the fixtures

command locally - but send the data up to that database. Do it by running:

DATABASE_URL=mysql://root:@127.0.0.1:30000/main php bin/console doctrine:fixtures:loa

Ok, let's break this down. First, there is actually a much easier way to do all of this... but I'll save that

for some future SymfonyCloud tutorial. Basically, we're running the doctrine:fixtures:load

command but sending it a different DATABASE_URL : one that points at our production database.

When you open a tunnel, you can access the database with root user, no password - and the

database is called main .

The only problem is that this command... takes forever to run. I'm not sure exactly why - but it is doing

all of this over a network. Go grab some coffee and come back in a few minutes.

When it finishes... yes! Go refresh the page! Ha! We have a production site with at least enough data

to make profiling interesting.

Next, let's do that! Let's configure Blackfire on production! That's easy right? Just repeat the Blackfire

install process on a different server... right? Yep! Wait, no! Yes! Bah! To explain, we need to talk about

a wonderful concept in Blackfire called "environments".

Chapter 29: Blackfire Environments

Now that our site is deployed - woo! - how can we get Blackfire working on it? Well... we already know

the answer. If you find the Blackfire Install page... it makes it easy: I want to install on "a server"... and

let's pretend it uses Ubuntu.

Getting Blackfire installed on your production machine is as easy as running the commands below to

install the Blackfire PHP extension - the Probe, install the Agent and configure the agent with our

server id and token. Easy peasy!

Hello: Environments

But.... some Blackfire account levels - offer a kick-butt feature called environments. If you have access

to Blackfire environments - or if you're able to get a "plan" that offers environments, I highly

recommend them.

 Tip

Blackfire environments require a Premium plan or higher.

An environment is basically an isolated Blackfire account. When you have an environment, you send

your profiles to that environment. The first advantage is that you can invite multiple people to an

environment, which means that anyone can profile your production site and see other profiles made by

people on your team. It also has other superpowers - ahem, builds - that really make it shine.

Understanding Organizations

So let's create an environment! Go back to https://blackfire.io and click on the "Environments" tab.

Actually, click on the "Organizations" tab... that's where this all starts. Blackfire organizations are a bit

like GitHub organizations. With GitHub, you can subscribe to a "plan" directly on your personal account

or you can create an organization, have it subscribe & pay for a plan, and then invite individual users

to the organization. Blackfire organizations work exactly like that. And if you want to use environments,

you need to create an organization and subscribe to a Blackfire plan through that organization.

This did confuse me a bit at first. Basically, unless you just want the lowest Blackfire paid plan, you

should probably always create an organization and subscribe to Blackfire through it. It just has a few

https://blackfire.io/

more features than subscribing with your personal account.

Creating an Environment

Anyways, I've already got an organization set up and subscribed to a plan. Once you have an

organization, you can click into it to create a new environment. I already have one for

SymfonyCasts.com production. Click to create a new one. Let's call it: "Sasquatch Sightings

Production".

For the "Environment Endpoint", it wants the URL to the site. Again, if this were a real project, I would

attach a real domain... but copy the weird domain name, and paste. Select your timezone, sip some

coffee, and... "Create environment"!

On the second step, it asks us to provide URLs to test... and it starts with just one: the homepage.

We're going to talk more about this soon, so just leave it. I'll also uncheck the build notifications - more

on those later.

Environment vs Personal Server Credentials

Hit "Save settings" and... we're done! It rewards us with a shiny new "Server Id" and "Server Token".

This is super important. No matter how you install Blackfire on a server, you eventually need to

configure the "Server id" and "Server Token". This is basically a username & password that tells

Blackfire which account a profile should be sent to.

When you register with Blackfire, it immediately created a "Server Id" and "Server Token" connected

with your personal account. We used that when we installed Blackfire on our local machine. But now

that we have an environment, it has its own Server Id and token. The drop-down on the Install page is

allowing us to choose which credentials we want to see on this page.

Locally, we should still use our personal credentials: it keeps things cleaner. But on production, we

should use the new environment's Server Id and Token. The install page gives us all the commands

we need using those credentials.

Oh, and by the way: if you have a "free" personal account... but are attached to an organization with a

paid plan, any profiles you create with your personal Server Id and Token will inherit the features from

that organization's plan. That lets us use our personal credentials locally and still get all the Blackfire

features we're paying for. One exception to that rule, unfortunately, is "Add-Ons".

Configuring Blackfire on SymfonyCloud

Ok, let's get our production machine set up. I'll select "Symfony Cloud" as my host... which takes me to

a dedicated page on this topic.

Let's see... step one is, instead of installing Blackfire with something like apt-get , we'll add a line to

.symfony.cloud.yaml . I already have an extensions key... so just add blackfire :

.symfony.cloud.yaml

 // ... lines 1 - 4

5

6

 // ... lines 7 - 10

11

 // ... lines 12 - 42

Boom! Blackfire is installed. Add this file to Git... and commit it:

git add .

git commit -m "adding blackfire extension"

The other step is to configure Blackfire. Once again, it has a drop-down to select between my personal

credentials and credentials for an enivornment. Select our "Sasquatch production" environment. Cool!

This gives us a command to set two SymfonyCloud variables. Copy that, move over, and paste:

symfony var:set BLACKFIRE_SERVER_ID=XXXXXX BLACKFIRE_SERVER_TOKEN=XXXXXX

Ok... we're good! To make both changes take effect, deploy!

symfony deploy --bypass-checks

I'll fast-forward. Once this finishes... move over and refresh. Ok... everything still works. Now, moment

of truth: open the Blackfire browser extension and create a new profile. It's working! I'll call it:

[Recording] First profile in production .

Next, let's... look at this profile! It will contain a few new things and some data that is much more

relevant now that we're on production.

runtime:

 extensions:

 - blackfire

Chapter 30: Production Profile: Cache Stats & More
Recommendations

We just profiled our first page on production, which is using the Blackfire Server Id and Token for the

environment we created.

Profiles Belong to the Environment

Go to https://blackfire.io, click "Environments", open our new environment... and click the "Profiles" tab.

Yep! Whenever anyone creates a profile using this environment's credentials, it will now show up here:

the profile belongs to this environment. We haven't invited any other users to this environment yet, but

if we did, they would immediately be able to access this area and trigger new profiles with their

browser extension.

If you go to back to https://blackfire.io to see your dashboard, the new profile also shows up here. But

that's purely for convenience. The profile truly belongs to the environment. You can even see that right

here. But Blackfire places all profiles that I create on this page... to make life nicer.

Click the profile to jump into it. Of course... this looks exactly like any profile we created on our local

machine. But it does have a few differences.

Caching Information

Hover over the profile name to find... "Cache Information". We talked about this earlier: it shows stats

about various different caches on your server and how much space each has available. Now that we're

profiling on production, this data is super valuable!

For example, if your OPcache filled up, your site would start to slow down considerably... but it might

not be very obvious when that happens. It's not like there are alarms that go off once PHP runs out of

OPcache space. But thanks to this, you can easily see how things really look, right now, on production.

If any of these are full or nearly full, you can read documentation to see which setting you need to

tweak to make that cache bigger.

Quality & Security Recommendations

https://blackfire.io/
https://blackfire.io/

The other thing I want to show you is under "Recommendations" on the left. There are 3 types of

recommendations... and we have one of each: the first is a security recommendation, the second is a

quality recommendation and the third a performance recommendation. Only the performance

recommendations come standard: the other two require an "Add on"... which I didn't have until I started

using my organization's plan.

As always, to get a lot more info about a problem and how to fix it, you can click the question mark

icon.

Converting Recommendations into Assertions

One of my favorite things about recommendations is that you can easily convert any of these into an

assertion. If you click on assertions, you'll remember that we created one "test" that said that every

page should have - at maximum - one HTTP request.

We configured that inside of our .blackfire.yaml file: we added tests , configured this test to

apply to every URL, and leveraged the metrics system to write an expression.

Back on the recommendations, click to see more info on one of these... then scroll down. Every

recommendation contains code that you can copy into your .blackfire.yaml file to convert that

recommendation into a test... or "assertion".

That might not seem important right now... because so far, it looks like doing that would simply "move"

this from a "warning" under "Recommendations" to a "failure" under "Assertions"... which is cool... but

just a visual difference.

But! In a few minutes, we'll discover that these assertions are much more important than they seem. To

see why, we need to talk about the key feature and superpower of environments: builds.

Chapter 31: Automatic Performance Checks: Builds

Head back to https://blackfire.io, click "Environments" and click into our "Sasquatch Sightings

Production" environment.

Interesting. By default, it takes us not to the profiles tab... but to a tab called "Builds". And, look on the

right: "Periodic Builds": "Builds are started every 6 hours"... which we could change to a different

interval.

Further below, there are a bunch of "notification channels" where you can tell Blackfire that you want to

be notified - like via Slack - of the results of this "build" thingy.

Hello Builds

Ok, what the heck is a build anyways? To find out, let's trigger one manually, then stand back and see

what happens. Click "Start a Build". The form pre-fills the URL to our site... cool... and we can

apparently give it a title if we want. Let's... just start the build.

This takes us to a new page where.... interesting: it's running an "Untitled Scenario"... then it looks like

it went to the homepage... and created a profile?

Let's... back up: there are a lot of interesting things going on. And I love interesting things!

First, we've seen this word "scenario" before! Earlier, we used the blackfire-player : a command-

line tool that's made by the Blackfire people... but can be used totally outside of the profiling tool. We

created a scenario.bkf file where we defined a scenario and used the special

blackfire-player language to tell it to go to the homepage, assert a few things, then click on the

"Log In" link and check something else:

https://blackfire.io/

scenario.bkf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 20

At that time, this was a nice way to "crawl" a site and test some things on it. The "build" used the same

"scenario" word. That's not an accident. More on that soon.

Build "URLs to Test"

The second important thing is that this profiled the homepage because, when we created our

environment, we configured one "URL to test": the homepage. That's what the build is doing: "testing" -

meaning profiling - that page.

Let's add a second URL. One other page we've been working on a lot is

/api/github-organization : this JSON endpoint. Copy that URL and add it as a second "URL to

test". Click save... then manually create a second build.

Like before, it creates this "Untitled Scenario" thing. Ah! But this time it profiled both pages! The build

also shows up as green: the build "passed".

This is a critical thing about builds. It's not simply that a build is an automated way to create a profile

for a few pages. That would be pretty worthless. The real value is that you can write performance tests

that cause a build to pass or fail.

Check it out "1 successful constraint" - which is that "HTTP Requests should be limited to 1 per page".

Hey! That's the "test" that we set up inside .blackfire.yaml !

name "Various scenarios for the site"

override with --endpoint option

endpoint "https://localhost:8000"

scenario

 name "Basic Visit"

 visit url("/")

 name "Homepage"

 expect status_code() == 200

 expect css("tbody.js-sightings-list tr").count() > 10

 # won't work until we're using Blackfire environment

 assert metrics.sql.queries.count < 30

 click link("Log In")

 name "Login page"

 expect status_code() == 200

.blackfire.yaml

1

2

3

4

5

The real beauty of tests is not that the "Assertions" tab will look red when you're looking inside a

profile. The real beauty is that you can configure performance constraints that should pass whenever

these builds happen. If a build fails - maybe because you introduced some slow code - you can be

notified.

Build Log: blackfire-player

But there's even more cool stuff going on. Near the bottom, click to see the "Player output". Woh! It

shows us how builds work behind-the-scenes: the Blackfire server uses the blackfire-player !

Look closer: it's running a scenario: visit url() , method 'GET' , then visit url() of

/api/github-organization . It's a bit hard to read, but this converted our 2 "URLs to test" into a

scenario - using the same format as the scenario.bkf file - then passed that to

blackfire-player . You can even see it reloading both pages multiple times to get 10 samples.

That's one of the options it added in the scenario.

So with just a tiny bit of configuration, Blackfire is now creating a build every 6 hours. Each time, it

profiles these 2 pages and, thanks to our one test, if either page makes more than one HTTP request,

the build will fail. By setting up a notification, we'll know about it.

The fact that the build system uses blackfire-player makes me wonder: instead of configuring

these URLs, could we instead have the build system run our custom scenario file? I mean, it's a lot

more powerful: we can visit pages, but also click links and fill out forms. We can also add specific

assertions to each page... in addition to our one "global" test about HTTP requests.

The answer to this question is... of course! And it's where the build system really starts to shine. We'll

talk about that next.

History & Graphs from Automated Builds

But before we do, I want you to see what the build page looks like once it's had enough time to

execute a few automated builds. Let's check out the SymfonyCasts environment. Woh! It's graph time!

Because this environment has a history of automated builds, Blackfire creates some super cool

"tests":

 "HTTP Requests should be limited to 1 per page":

 path: "/.*"

 assertions:

 - "metrics.http.requests.count

graphs: like our cache hit percentage and our cache levels. You can see that my

OPcache Interned Strings Buffer cache is full. I really need to tweak some config to increase

that.

I can also see how the different URLs are performing over time for wall time, I/O, CPU, Memory &

network as well as other stuff. We can click to see more details about any build... and even look at any

of its profiles.

Anyways, next: let's make the build system smarter by executing our custom scenario.

Chapter 32: Builds with Custom Scenarios

A few chapters ago, we created this scenario.bkf file:

scenario.bkf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 20

It's written in a special blackfire-player language where we write one or more "scenarios" that,

sort of, "crawl" a web page, asserting things, clicking on links and even submitting forms. This a simple

scenario: the tool can do a lot more.

On the surface, apart from its name, this has nothing to do with the Blackfire profiler system:

blackfire-player is just a tool that can read these scenarios and do what they say. At your

terminal, run this file:

blackfire-player run scenario.bkf --ssl-no-verify

That last flag avoids an SSL problem with our local web server. When we hit enter... it goes to the

homepage, clicks the "Log In" link and... it passes.

Scenarios in .blackfire.yaml

name "Various scenarios for the site"

override with --endpoint option

endpoint "https://localhost:8000"

scenario

 name "Basic Visit"

 visit url("/")

 name "Homepage"

 expect status_code() == 200

 expect css("tbody.js-sightings-list tr").count() > 10

 # won't work until we're using Blackfire environment

 assert metrics.sql.queries.count < 30

 click link("Log In")

 name "Login page"

 expect status_code() == 200

This is cool... but we can do something way more interesting. Copy the entire scenario from this file,

close it, and open .blackfire.yaml . Add a new key called scenarios set to a | :

.blackfire.yaml

 // ... lines 1 - 6

7

 // ... lines 8 - 23

That's a YAML way of saying that we will use multiple lines to set this.

Below, indent, then say #!blackfire-player :

.blackfire.yaml

 // ... lines 1 - 6

7

8

 // ... lines 9 - 23

That tells Blackfire that we're about to use the blackfire-player syntax... which is the only format

supported here... but it's needed anyways. Below, paste the scenario. Make sure it's indented 4

spaces:

.blackfire.yaml

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

The cool thing is that we can still execute the scenario locally: just replace scenario.bkf with

.blackfire.yaml . The player is smart enough to know that it can look under the scenarios key

for our scenarios.

scenarios: |

scenarios: |

 #!blackfire-player

scenarios: |

 #!blackfire-player

 scenario

 name "Basic Visit"

 visit url('/')

 name "Homepage"

 expect status_code() == 200

 expect css("tbody.js-sightings-list tr").count() > 10

 # won't work until we're using Blackfire environment

 assert metrics.sql.queries.count

 click link("Log In")

 name "Log in page"

 expect status_code() == 200

blackfire-player run .blackfire.yaml --ssl-no-verify

But if you run this... error!

“Unable to crawl a non-absolute URI /. Did you forget to set an endpoint?”

Duh! Our scenario.bkf file had an endpoint config:

scenario.bkf

 // ... lines 1 - 2

3

4

 // ... lines 5 - 20

You can copy this into your .blackfire.yaml file. Or you can define the endpoint by adding

--endpoint=https://localhost:8000 :

blackfire-player run .blackfire.yaml --ssl-no-verify --endpoint=https://localhost:800

Now... it works!

Building the Custom Scenario

So... why did we move the scenario into this file? To find out, add this change to git... and commit it.

git add .

git commit -m "moving scenarios into blackfire config file"

Then deploy:

symfony deploy --bypass-checks

Once that finishes... let's go see what changed. First, if we simply went to our site and manually

created a profile - like for the homepage - the new scenarios config would have absolutely no effect.

override with --endpoint option

endpoint "https://localhost:8000"

Scenarios don't do anything to an individual profile. Instead, scenarios affect builds.

Let's start a new one: I'll give this one a title: "With custom scenarios". Go!

Awesome!! Now, instead of that "Untitled Scenario" that tested the two URLs we configured, it's using

our "Basic visit" scenario! It goes to the homepage, then clicks "Log In" to go to that page.

Yep, as soon as we add this scenarios key to .blackfire.yaml , it no longer tests these URLs.

In fact, these are now meaningless. Instead, we're now in the driver's seat: we control the scenario or

scenarios that a build will execute.

Per Page Assertions/Tests

Even better, we have a lot more control now over the assertions - or "tests"... Blackfire uses both

words - that make a build pass or fail.

For example, the "HTTP requests should be limited to one per page" will be run against all pages in

the scenarios - that's 2 pages right now. But the homepage also has its own assert : that the SQL

queries on this page should be less than 30. If you look back at the build... we can see that assertion!

We can even click into the profile, click on "Assertions", and see both there.

So not only do we have a lot of control over which pages we want to test - even including filling out

forms - but we can also do custom assertions on a page-by-page basis in addition to having global

tests. I love that. And now I can remove the comment I put earlier above assert :

.blackfire.yaml

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

 // ... lines 11 - 12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 23

Now that we're running this from inside an environment, this does work.

Next, let's use our power to carefully add more time-based assertions on a page-by-page basis. We'll

also learn how you can add your own metrics in order to, well, write performance assertions about

pretty much anything you can dream up.

scenarios: |

 scenario

 visit url('/')

 # won't work until we're using Blackfire environment

Chapter 33: Per-Page Time Metrics & Custom Metrics

We know that the scenario will be executed against our production server only. If we profiled a local

page, this stuff has no effect. That means that the results of these profiles should have less variability.

Not no variability: if your production server is under heavy traffic, the profiles might be slower than

normal. But, it will have less variability than trying to compare a profile that you created on your local

machine with a profile created on production: those are totally different machines and setups.

 Tip

I also recommend adding samples 10 to each scenario. This will then use 10 samples (like

normal Blackfire profiles) and further reduce variability:

 visit url("/")

 name "Homepage"

 samples 10

 ...

Cautiously Adding Time-Based Assertions

This means that you can... maybe add some time-based assertions... as long as you're conservative.

For example, on the homepage, let's assert that main.wall_time < 100ms :

.blackfire.yaml

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

 // ... lines 11 - 12

13

 // ... lines 14 - 17

18

 // ... lines 19 - 23

By the way, most metrics start with metrics. and you can look on the timeline to see what's

available. A few metrics - like wall time and peak memory - start with main. .

scenarios: |

 scenario

 visit url('/')

 assert main.wall_time

Anyways, as you can see inside Blackfire, our homepage on production normally has a wall time of

about 50ms... so 100ms is fairly conservative. But time-based metrics are still fragile. Doing this will

likely result in some random failures from time-to-time.

Let's commit this:

git status

git add .

git commit -m "adding homepage time assertions"

And deploy:

symfony deploy --bypass-checks

Custom Metrics

While that's deploying, I want to show you a super powerful feature that we won't have time to

experiment with: custom metrics. Google for "Blackfire metrics". In addition to the timeline, this page

also lists all of the metrics that are available.

But you can also create your own metrics inside .blackfire.yaml . In addition to tests and

scenarios , we can have a metrics key. For example, this creates a custom metric called

"Markdown to HTML". The real magic is the matching_calls config: any time the toHtml method

of this made-up Markdown class is called, its data will be grouped into the markdown_to_html

metric.

That's powerful because you can immediately use that metric in your tests. For example, you could

assert that this metric is called exactly zero times - as a way to make sure that some caching system is

avoiding the need for this to ever happen on production. Or, you could check the memory usage... or

other dimension.

You can use some pretty serious logic to create these metrics: making it match only a specific caller for

a function, OR logic, regex matching and ways to match methods, calls from classes that implement

an interface and many other things. You can even create separate metrics for the same method based

on which arguments are passed to them. They went a little nuts.

Checking the Time-Based Metric

Anyways, let's check on the deploy. Done! Go back - I'll close this tab - and let's create a new build.

Call it "With homepage wall time assert". Start build!

And... it passes! This time we can see an extra constraint on the homepage: wall time needs to be less

than 100ms. If it's greater than 100ms and you have notifications configured, you'll know immediately.

Next: now that we have this idea of builds being created every 6 hours, we can do some cool stuff, like

comparing a build to the build that happened before it. Heck we can even write assertions about this!

Want a build to fail if a page is 30% slower than the build before it? We can do that.

Chapter 34: Testing a Build Compared to the Last
Build

A long time ago in this tutorial, we talked about Blackfire's truly awesome "comparison" feature. If you

profile a page, make a change, then profile it again, you can compare those two profiles to see exactly

how that change impacted performance.

When you use the build system, you can do the exact same thing... and you can even write "tests" that

compare a build to the previous build. For example, you could say:

“Yo! If the wall time on the homepage is suddenly 30% slower than the previous build, I want this

build to fail.”

Adding a Comparison Test with percent()

How can we do that? It's dead simple. Add a new global metric - how about "Pages are not suddenly

much slower" - and set this to run on every page: path: /.* . For the assertion, we can use a

special function called percent: percent(main.wall_time) < 30% :

.blackfire.yaml

1

 // ... lines 2 - 5

6

7

8

9

 // ... lines 10 - 27

That's it! There's also a function called diff() . If you said

diff(metrics.sql.queries.count) < 2 it means that the difference between the number of

SQL queries on the new profile minus the old profile should be less than 2.

Let's see what this looks like! Find your terminal and commit these changes:

"tests":

 "Pages are not suddenly *much* slower":

 path: "/.*"

 assertions:

 - "percent(main.wall_time)

git status

git add .

git commit -m "adding global wall time diff assert"

Now... deploy!

symfony deploy --bypass-checks

Comparison Tests: Not for Manual Builds

But... bad news. If we waited for that to finish deploying... and then triggered a new custom build... that

test would not run. In fact, I want you to see that. Wait for the deploy to finish - okay, good - then move

back over and start a build.

This does what we expect: it executes our scenario and creates 2 profiles. Look at the 3 successful

constraints for the homepage: we see the other global test about "HTTP requests should be limited"...

but we don't see the new one. What gives?

So... when you create a build, you can specify a "previous" build that it should be compared to by

using an internal "build id". Our project is too new to see it, but this happens automatically with

"periodic" builds: our comparison assertion will execute on periodic builds.

 Tip

Triggering builds via a webhook requires an Enterprise plan.

But when we create a manual build... there's no way to specify a "previous" build... which is why the

comparison stuff doesn't work. Fortunately, since I don't want to wait 12 hours to see if this is working,

there is another way to trigger a build: through a webhook. Basically, if you want to create a build from

outside the Blackfire UI, you can do that by making a request to a specific URL. And when you do that,

you can optionally specify the "previous build" that this new build should be compared to.

Automatic Build on Deploy

This webhook-triggered-build is especially useful in one specific situation: creating a build each time

you deploy. If you did that correctly, your comparison assertion would compare the latest deploy to the

previous deploy... which is pretty awesome.

Because we're using SymfonyCloud, this is dead-simple to set up.

Find the Blackfire SymfonyCloud documentation and, down here under "Builds", I'll select our

environment. Basically, by running this command, we can tell SymfonyCloud to send a webhook to

create a Blackfire build each time we deploy.

Copy it, move over to your terminal and... paste:

symfony integration:add --type=webhook --url='https://USER:PASS@blackfire.io/api/v2/b

Hit enter to report all events and enter again to report all states. For the environments - this is asking

which SymfonyCloud environments should trigger builds. Answer with just master - I'll explain why

soon.

And... done! Let's redeploy our app. Oh, but before we do, refresh our builds page. Ok, we have 5

builds right now. Now run:

symfony redeploy --bypass-checks

This should be pretty quick. Then... go refresh the page. Yes! A new build - number 6 - triggered by

SymfonyCloud. And it passes. Awesome! Let's redeploy again:

symfony redeploy --bypass-checks

When that finishes... there's build 7! But to see the comparison stuff in action, I need to do a real

deploy so that the next build is tied to a new Git sha. I'll do a meaningless change, commit, then

deploy:

git commit -m "triggering deploy" --allow-empty

symfony deploy --bypass-checks

Seeing the Compared Builds

Actually, I could have skipped changing any files and committed with --allow-empty to create an

empty commit. When this finishes... no surprise! We have build 8!

On this build, it's super cool: each profile has a "Show Comparison" link to open the "comparison" view

of that profile compared to the same profile on the build from the last deploy - which - if you click "latest

successful build" - is build 7.

Back on build 8, click the "Show 4 successful constraints" link. There it is! We can see our "Pages are

not suddenly much slower" assertion! It's comparing the wall time of this profile to the one from the last

build.

Click to open up the profile... and make sure you're on the Assertions tab. I love this: 2 page-specific

assertions from the scenario, and 2 global assertions: one using the percent() function.

The "Recommendations" also got a bit better: Blackfire automatically has some built-in

recommendations using diff : this recommends that the new profile should have less than 2

additional queries compared to the last build. It looks like it failed... but that's just because the other

part of this recommendation - not making more than 10 total queries - failed.

Next: what about running builds on your staging server so you can catch performance issues before

going to production? Or what about executing Blackfire builds on each pull request? We can totally do

that - with a second environment.

Chapter 35: Staging Servers on SymfonyCloud

For your site, you hopefully have a staging environment - or maybe multiple staging environments

where you can deploy new features and test them. What about those machines? Should we also run

Blackfire builds on them?

Why Profile Staging Servers?

At first, that might not seem important. After all, if a staging machine is a bit slow, who cares? But

thanks to the assertions we've been writing, if we executed our Blackfire scenarios on a staging

machine, we could identify performance failures before deploying them to production. And if you have

a really cool setup, you can even have build results posted automatically to your pull request.

OooOOoo.

Separating Staging from Production on Blackfire

Getting Blackfire set up on a staging server seems simple enough: just repeat the Blackfire installation

process... on a different server! But stop! I don't want you to quite do that.

Why? I want your Blackfire production environment to only contains builds from your actual production

servers. I want this to be a perfect history and representation of production only. If we suddenly start

adding builds from a staging server - which maybe has different hardware specs... or is running a

buggy new feature - some of those builds will fail... and we'll get extra noise in our notifications.

Instead, I like to create a second Blackfire environment and send profiles to it. If I have multiple staging

servers, I make them all use this same new environment.

SymfonyCloud Environments

But... before we create that second Blackfire environment... I need you to - once again - pretend like

Blackfire doesn't exist at all... for a few minutes.

Because before we talk about how we profile a staging server, we need to create a staging server and

deploy to it. SymfonyCloud has an incredible way to do this. Unfortunately, the feature in Symfony

cloud that does this is called... environments. And it has absolutely nothing to do with Blackfire

environments.

Here's how it works: in addition to your master branch, which is your production server,

SymfonyCloud allows you to deploy different git branches. Each deploy will get its own unique URL.

Each branch deployment is called an "environment". If you run:

symfony envs

Yep! We currently have one environment: master . It's the "current" environment because we're

checked out to the master git branch locally.

Ok, pretend that we're working on a new feature. And so, we want to create a new local branch for it.

Instead of doing that manually, run:

symfony env:create some_feature

This does two things. First, it created a new local branch called some_feature . That's no big deal:

we could have done that by hand. Second, it deploys that branch! It does this by creating a "clone" of

the master environment: - even creating a copy of the production database!

I'll fast-forward through the deploy. When it finishes, it gives us a URL to the deploy. This is a different

URL than on production: it's a totally separate, isolated deployment. Let's open this the lazy way:

symfony open:remote

Say hello to our staging server for the some_feature branch, which you can see contains a copy of

the production database! How cool is that?

Configuring Blackfire on the Environments

Back on Blackfire, refresh to see the builds for the production environment. When we deployed to that

environment, it did not create a new build. We expected that. When we added the integration to

SymfonyCloud - we told it to trigger a build on this Blackfire environment whenever we deploy the

master branch only. We did that because we don't want these staging servers to create builds here.

Next, let's create a second environment and configure our staging servers to use it.

Chapter 36: Staging Environment Builds

We now have two versions of our site deployed: our production deploy and a, sort of, "staging" deploy

of a pretend feature we're working on. Blackfire is all set up on the production server, but not on the

staging server. Let's fix that!

Back on the "Install" page, select "SymfonyCloud" as our host to get to its docs. To set up Blackfire on

production, we did 3 things. One, added the extension. Two, ran this var:set command to configure

our Blackfire Server id and token. And three, ran integration:add so that every deploy to master

would trigger a Blackfire build in our environment.

Technically, on the staging server, the Blackfire extension is already enabled and it's set up to use the

Server Id and token from our production Blackfire environment. But, as we talked about in the last

chapter, I don't want to mix my production builds with builds from staging servers.

Creating a new Blackfire Environment

Instead, go back to our Blackfire organization and create a second environment. Let's call it

"Sasquatch Sightings Non-master". For the endpoint, use the production environment URL. But don't

worry, that URL won't actually be used. You'll see.

Hit "Create environment"... then remove the build notifications and save. View the new environment -

I'll get the credentials in a minute. Now, stop the periodic builds. Why? Well in our setup, at any point,

we may have zero or many different "staging" servers. There's not just one server to build... so if we

did a periodic build... which "staging" server would it use? It just doesn't make sense in our case. What

does make sense is to trigger a new build each time we deploy to a staging server.

Different Server Id and Token on Staging

Ok, let's think about this: we now have two Blackfire environments. We want the production server to

use the Blackfire server id and token for the production environment... and we want every other deploy

to use the Blackfire id and token from the new "Non-master" environment.

How you do that depends on how you deploy. For us, we can use a SymfonyCloud config trick. First,

list which variables we have set with:

symfony vars

We have the two that were set by the var:set command we ran earlier. Delete both of them:

symfony var:delete BLACKFIRE_SERVER_ID BLACKFIRE_SERVER_TOKEN

We're going to re-add these in a minute... but with some different options. Now, go back to the

installation page... and refresh... so this shows our new environment. For the var:set command,

select the Non-master environment. Copy the command, move over and paste:

symfony var:set BLACKFIRE_SERVER_ID=XXXXXXX BLACKFIRE_SERVER_TOKEN=XXXXXX

If we stopped now, it would mean that every server would send its profiles to the new Non-Master

environment... which is not exactly what we want. But here's the trick: on the "Install" page, change to

the "Production" Blackfire environment, and copy its command. We're going to override these

variables, but just on the SymfonyCloud master environment.

Paste the command, then add --env=master --env-level so that the variables are used as

"overrides" for only that environment. Finish with --inheritable=false so that when we create

new SymfonyCloud environments, they don't inherit these variables from master : we want them to

use the original values:

symfony var:set BLACKFIRE_SERVER_ID=XXXXXXX BLACKFIRE_SERVER_TOKEN=XXXXXX \

 --env=master --env-level --inheritable=false

This is a long way of saying that the master environment on SymfonyCloud will now use the server id

and token for the "Sasquatch Sightings Production" Blackfire environment. And every other deploy will

use the credentials for the "Non-Master" environment. To be sure, run:

symfony vars --env=master

Yep! 6900 is the server id for Production. Now try:

symfony vars --env=some_feature

Perfect: that uses the other Server id and token. We're good!

Staging: Builds on Deploy

The last thing I want to do is run this integration:add command again. We ran this earlier to tell

SymfonyCloud that it should notify our "Production" Blackfire environment whenever we deploy to

master . Now copy the "Non-Master" environment command... and run it:

symfony integration:add --type=webhook --url='https://USER:PASS@blackfire.io/api/v2/b

Say yes to all events, all states and all environments. Actually, what we really want to say is: create a

build on the "Non-Master" environment every time any branch except for master is deployed... but I

don't think that's possible.

Phew! Let's redeploy both SymfonyCloud environments to see all of this in action:

symfony redeploy --bypass-checks

Because we're currently checked out to the some_feature branch, this deploys that branch. When it

finishes, run the same command but with --env=master to redeploy production:

symfony redeploy --bypass-checks --env=master

We also could have switched to that branch - git checkout master - and then ran

symfony redeploy . That's the more traditional way.

Done! Let's go see what that did! First check out the Blackfire production environment. Yes! The

redeploy to master created one new build. Perfect. Now check out the Non-master environment. Oh,

this has two new builds: one for the some_feature deploy and another for the master deploy. We

don't really want or care about that second one... but it's fine. What we do care about is that now,

every time we deploy to a non-production server, we get a new build here.

If you use GitHub or Gitlab, you can take this one step further by doing 2 things. First, SymfonyCloud

has a feature where it can automatically deploy the code you have on a pull request. And because that

would trigger a new build, second, you can configure Blackfire to notify GitHub or Gitlab of your build

results so that they show up on the pull request itself. Pretty awesome.

I love our setup. But there's one more environment feature that we haven't checked out yet: the ability

to set variables that you use in your scenarios. Let's check that out next.

Chapter 37: Blackfire Environment Variables

Often, your production server will have different - hopefully bigger - hardware than your staging

server... which means that your staging builds may run slower than production. That's going to be a

problem if you have time based metrics: the wall time of a build may be less than 100ms on

production... but more than that on staging:

.blackfire.yaml

 // ... lines 1 - 10

11

 // ... lines 12 - 13

14

 // ... lines 15 - 16

17

 // ... lines 18 - 21

22

 // ... lines 23 - 27

That means the staging builds will always fail. Bummer!

Hello Build Variables

No worries. To help, each environment can define variables. Check it out: inside the metric expression,

I'll add a set of parentheses around the 100ms and then say times and call a var() function. I'll

invent a new variable: speed_coefficient and give it a default value - via the 2nd argument - of 1:

.blackfire.yaml

 // ... lines 1 - 10

11

 // ... lines 12 - 13

14

 // ... lines 15 - 16

17

 // ... lines 18 - 21

22

 // ... lines 23 - 27

Now, when this assertion is executed, it will assert that the wall time is less than 100ms times

whatever this speed_coefficient variable is. What is speed_coefficient? It's totally

scenarios: |

 scenario

 visit url('/')

 assert main.wall_time

scenarios: |

 scenario

 visit url('/')

 assert main.wall_time

something I just made up and it is not set anywhere. Where do we set it? Inside our Blackfire

environment!

Copy the variable name and go into the Non-Master environment. On the right, near the bottom, click

the pencil icon to edit our variables. Add the variable set to... how about 2: that will allow the staging

server to be twice as slow.

Do we also need to set this inside the "Production" environment? Nope: I'll just let it use the default

value of 1.

Let's try it! Spin back over to your terminal, add the change... and commit:

git add .

git commit -m "adding speed_coeffient variable for wall time assert"

As a reminder, we're on the some_feature branch. So when we run:

symfony deploy --bypass-checks

We're deploying to that environment.

Seeing the Variable in Action

When that finishes... move back over to the Blackfire environment, refresh and... hello new build! Look

inside. There are two cool things. First, under the homepage, you can see the speed_coefficient

in action - the little "2" tells us the value it's using. So, in reality, it's asserting that 50.8ms is less than

200 milliseconds.

Feature Branch Comparisons

The other thing I want you to notice is that, if you go back to the builds page, we have now built the

some_feature branch twice. When you click on the second, newer build, it has the comparison stuff!

It allows us to compare this build to the previous commit on the same branch. This allows you to see -

commit-by-commit - when a feature started having performance problems.

And... that's it for the Blackfire tutorial! I hope you loved this nerdy trip into the depths of performance

as much as I did. Blackfire can give you a lot of info immediately... or you can really dive in and make it

sing. Personally, I love having the builds and this performance history for SymfonyCasts.com. Oh, and

a special thanks to Jérôme Vieilledent - I almost definitely just slaughtered his name - for his endless

patience answering my hundreds of Blackfire questions.

And as always, if you have any questions... or we didn't explain something you wanted to know

about... or you want a cake recipe... we're here for you in the comments. If you have any serious

performance wins, we would love to hear about them.

Alright friends - I wish you a speedy day! Seeya next time!

https://github.com/lolautruche

With <3 from SymfonyCasts

