Blackfire.io: Revealing
Performance Secrets with
Profiling

Chapter 1: Performance, Profilers and APMs

Hey friends! Welcome to the fastest, most performant SymfonyCasts tutorial of all time, on

Blackfire. The end. What? We should say a bit more?

Uh, Blackfire is all about having fun while you discover ways to make your site absurdly fast.
We're going to see big graphs, numbers, statistics, animated gifs, and watch all those numbers
decrease as we hunt down and eliminate performance bottlenecks. This stuff is just fun. And

who doesn't want a faster site?

But... ok... just "being fun" probably isn't a good enough reason to use Blackfire. If you're trying
to "sell" using a tool to your team... or management, the real reason is profit. Performance is

money. Heck, Google even has a page that will measure the speed of your site and tell you how

much revenue you can gain by de creasing the rendering time of your site by various amounts.

On the flip side, I'm sure you've heard the famous saying:
“Premature optimization is the root of all evil”

| thought it was Nickelback. If that's true... doesn't a having a cool profiling tool like Blackfire
make you think more about prematurely optimizing? Actually, it's the opposite: it let's us focus on

creating features and then noticing performance problems if there are any.

Performance: Server + Network + Rendering

By the way, your site's performance is really three things put together. First, the time it takes
your server to build the page. Second, the time it takes to transmit that data over the network.
And third, the time it takes for the browser to display stuff - the frontend. You should focus on all
of these, but the main parts are the server and frontend. Your browser has tools to understand

and optimize your frontend. Blackfire helps optimize your backend.

Application Performance Monitoring (APM) Versus Blackfire

https://www.thinkwithgoogle.com/feature/testmysite

But it's not the only way to monitor performance on your server. The most well-known way is by
using an "application performance monitoring tool" - or APM... which is an acronym | had to look
up about 10 times before | could remember what it meant! An APM is something that runs on
your servers all the time, collecting information about load times, slow queries, slow functions,
errors and more. The most famous one is probably NewRelic, though Blackfire is planning to

release their own sometime soon.

The great thing about an APM is that you can see data from every request on your production
servers. The bad part is that, because an APM is always running, it needs to collect data without
slowing down the page. If it tries to collect too much, it would become the performance

bottleneck!

Blackfire is a profiler. The big difference is that, instead of running on every single request that
our users make... and needing to stay very lightweight, Blackfire only profiles a page when you
tell it to. It then makes its own request to the page and collects an incredible amount of
extremely detailed information. This process totally slows down that page load... which is fine,

because there's not a real user waiting for it to return.

The point is: use an APM and a profiler. The APM will give you a constant stream of information
from production. The profiler will give you the deep information you need when debugging

performance on specific pages.

Project Setup

Ok, enough chat! Let's do this! To remove any bottlenecks and maximize your learning
performance, you should fotally code along with me. Download the course code from this page.
When you unzip it, you'll find a start/ directory with the same code that you see here. Follow
the README . md file for all the setup details. This is a Symfony project - but that won't matter

much: we'll mostly focus on understanding and getting the most out of Blackfire.

The last setup step in the README will be to open a terminal, move into the project, use the

Symfony binary to start a local web server by typing:

symfony serve

https://symfony.com/download

Ok, let's see the site! Find your browser and head to https://localhost:8000. Now you
understand how important this project is. The world has been looking for Big Foot, or
"Sasquatch", for years. Thanks to the Big-Foot fanatic community on our site - "Sasquatch
Sightings" - we're closer than ever. In our case, better performance doesn't mean more profit, it

means, more big foot.

Do... I know where the performance problems are? Nope. No idea. Honestly, | was too focused
on getting this site to production to obsess over performance. And... | feel great about that! We'll

use Blackfire to find the bottlenecks - if any - and Sasquash them!

Next, let's get Blackfire installed on my local machine and start profiling this local website. And
yes, you can use Blackfire on production - which is awesome - and something we'll do later in

the tutorial.

Chapter 2: Blackfire Install: Agent, Probe, Chrome
Extension

So let's get Blackfire installed on our local computer. Head over to https://blackfire.io

and log in or register for a new account. As you can see, I've been busy using Blackfire already.

Agent & Probe: How it all Works

Click the Docs link on top... then installation on the left. Before we jump in and install everything,
| want you to understand just a little bit about how this all works: understanding this helped me a
bunch. If you want to skip this and head to the next video you can... just prepare to miss out on

some cool diagrams!

Click the "main components of Blackfire" link and scroll down to find... woh! A diagram that

shows you exactly how Blackfire works.

The Probe: PHP Extension that Collects Data

How about... we look at a simplified version. There are 3 things we need to install. The first is
called the "probe", which is really just a PHP extension. You'll install this wherever your code is
running - like on your local machine, and later on production. The probe's job is simple, but
huge! It's responsible for collecting all of the information: all the function calls, how long each
took, which function called which other function, how much memory did something take,
network requests... you get the idea. By the way, the process of "collecting all the data" is
sometimes called instrumentation... which | only mention so that if you see this fancy word... it

hopefully won't confuse you... it confused me.

The Probe: Collector and Sender

The second thing we will need to install is called the "agent". This is a service - or "daemon" -

that runs on your computer - or on your production machine. It... just sits there and waits. When

the PHP extension - the probe - finishes collecting all the data, it sends that data to the agent.
The agent does some processing on it - like removing unimportant information and anonymizing

things - then ultimately sends that data to the Blackfire server. It's... the middleman.

So basically, the probe and agent work together to collect the info and send it to Blackfire.

The Browser Extension: Profiling Activator

The last piece you'll need to install is a browser extension. Remember: the probe is not profiling
every single request. Normally, when a request comes in, it yawns... and does nothing. The

browser extension's job is to activate profiling. It basically says:

“Hey probe! Wake up! I'm going to make a request and | actually want you to do your thing -

collect all the data and sent it to the agent. Cool? Text me when it's done.”

And... that's it! This bottleneck-fighting superhero trio is our ticket to performance glory. Next,

let's get them installed.

Chapter 3: Installing the Agent, Probe & Chrome
Extension

So... let's get these pieces installed! Back on the install page, the setup details will vary based
on your operating system. Fortunately, Blackfire has details for pretty much all situations. I'm on

a Mac and will use Homebrew to get everything working.

I'll copy the brew tap command, move to my terminal, open a new tab and paste:

brew tap blackfireio/homebrew-blackfire

Installing_the Agent

That gives me access to the Blackfire packages. Now, install the agent - that's the "daemon"

that runs in the background - with:

brew install blackfire-agent

Perfect! It says | need to "register" my agent. And... the browser instructions confirm that! I'll

copy that command, clear the screen and paste:

sudo blackfire-agent --register

This is going to ask us for our "Server Id" and "Server Token". These are... basically an internal
"username and password" that the agent will use to tell the Blackfire servers which account the
profiles should be attached to. Copy the Server |d, paste, copy the Server Token, paste and...

we're good!

Finally, remember how the "agent" is a service that runs in the background? We just installed
the agent, but it's not running yet. Back in the docs, the next two commands set up the agent as

a "service" in Brew, so that it will always be running. Copy the first, paste.

In -sfv /usr/local/opt/blackfire-agent/*.plist ~/Library/LaunchAgents/

Then spin back over again, copy the launchctl load command... and paste that.

launchctl load -w ~/Library/LaunchAgents/homebrew.mxcl.blackfire-agent.plist

Cool! If everything worked, the Blackfire agent is now running in the background. You wont

really ever see it or care that it's there... but it is... waiting for data.

Installing_the Probe

Back on the install docs, the next piece we need is the PHP extension - the probe. Skip this CLI

tool for now - we won't need it until later.

To install the PHP extension, we'll once again use brew. But... hopefully you're not still using

PHP 5.6. Let me head over to my terminal and see what version I'm running:

php --version

7.3.6. Brilliant! So I'll run:

brew install blackfire-php73

Notice that the extension doesn't need any authentication info - like a server Id or token. It's
beautifully dumb: its job is to profile data, send it to the agent, and let it worry about

authentication with the Blackfire servers.

We do, however, as it says, need to restart our web server. For us, that means going to the

other terminal tab, hitting Control + C, and then running

symfony serve

Is the Blackfire extension working? | don't know! Because we're using Symfony, an easy way to
check is to hover over the web debug toolbar and click the "View phpinfo()" link. Let's see... yep!

The Blackfire PHP extension is here.

@ Tip

If you have XDebug installed, disable it for the best results.

Installing_the Browser Extension

At this point, our server is set up and ready to profile! Victory! The only thing we need now is a

way to tell the probe when to activate. That's the job of the browser extension.

Go almost all the way back to the top of the install page where they talk about the different

pieces. I'm using Chrome, so I'll click the Google Chrome extension link. | don't have it installed

yet, so let's fix that: Add to Chrome.

There it is! If you refresh the docs... yep! It sees the extension.

Profiling_our First Page

Hey! We're ready to profile! Ahhhh! Where should we start? Let's... just click to view details
about any Big Foot sighting. All of this data comes from some data fixtures that we used to pre-
populate the database while setting up the project. It uses a bunch of random data up here...

and each sighting has a bunch of random comments.

When we loaded this page a second ago, the PHP extension - the probe - did nothing. To

activate it, click the browser extension.

https://blackfire.io/docs/integrations/browsers/chrome

Moment of truth! When we click profile, the plugin will send a request to this page with a special

header that tells the probe to activate and start profiling. Click "Profile"!

There it goes! It goes from 0 to 100% as it actually makes 70 requests and averages their data.
We can also give this "profile" a name to keep our account organized: I'll say

[Recording] Show page initial and hit enter.

Troubleshooting_Failure

If you got to 100%, congrats! If you got an error... wah wah. This is the most common place for
something to go wrong... and the error will almost always be the same: Probe not found. This
might mean that you forgot to install the PHP extension, or that the PHP extension was installed
on a different PHP binary... or that the agent isn't running... or that the agent is running but you

misconfigured the server id and token. They have great docs to help with this.

But we had success! Click the "View Call Graph" button to go to a URL on their site. Hello

beautiful Blackfire profile. Wow.

Next, let's start diving into this mountain of information and see how we can use it to find hidden

sasquatch... | mean, hidden performance bugs.

Chapter 4: Wall Time, Exclusive Time & Other
Wonders

We just made Blackfire profile our first page. One of the best things about Blackfire is that,

instead of just... giving me some raw data-dump and saying:
“Good luck navigating that black pit of data!”

... they expose this treasure trove of info on their site with a beautiful interface. This is called the
"call graph". The most challenging part of Blackfire for me was learning what all this stuff
means... so | could really get the most out of it. If you stick with me for the next few minutes,

your profiling game will get a huge boost.

By the way, throughout the tutorial, I'll give you links to view the exact profile on Blackfire that
I'm navigating in the video. Feel free to open it up and play around. The first one is here:
https://bit.ly/sfcasts-bf-profile.

And yes, | know, the cool-looking graph in the middle is calling to us, but let's start by looking at
the the left side: the list of function calls, ordered from the functions that took the longest to
execute on top... down to the quickest on the bottom. Well actually, Blackfire "prunes" or

"removes" function calls that took very little time... so you won't see everything here.

Viewing_by Different Dimensions

The functions are ordered by "time" because we're viewing the call graph in the time
"dimension". You can also look at all of this information ordered by several other dimensions -
like which functions took the most memory. It's kind of like the process manager on your
computer: you can see which applications are currently taking up the most CPU, the most
memory, reading the most info from your disk or even using the most network. But more on

these dimensions later.

Wall Time

https://bit.ly/sfcasts-bf-profile1

In the profiling world, time is called "wall time". But, it's nothing fancy: wall time is the difference
between the time at which a function was entered and the time at which the function was left.

So... wall time is a fancy word for... um... time: the amount of "time" a function took to run.

Inclusive vs Exclusive

So... we just find the function with the highest wall time and optimize it, right? Well... what if a
function is taking a really long time... but actually, 99% of that time is due to a function that it

calls. In that case, the other function is probably the problem.

To help sort this all out, wall time is divided into two parts: exclusive time and inclusive time. If
you hover over the red graph, you'll see this: exclusive time 37.9 milliseconds, inclusive time

101 milliseconds.

Inclusive time is the full time it took for the function to execute. Exclusive time is more
interesting: it's the time a function took to execute excluding the time spent inside other

functions it called: it's a pure measurement of the time that the code inside this function took.

Right now, we're actually ordering this list by exclusive time, because that usually shows you the
biggest problems. You can also order by inclusive time... which is probably not very useful: the
top item is where our script starts executing, the second is the next function call, and so on. Go

back to exclusive.

Navigating What Calls What

So apparently, the biggest problem, according to exclusive time, is this
UnitOfWork: :createEntity function... whatever that is. If you use Doctrine, you might know

what this is - but let's pretend we have no idea.

Before we dive further into the root cause behind this slow function, the other way to order the
calls is by the number of times each is called. Wow! Apparently the function that's called the
most times - over 6 thousand times - is ReflectionProperty: :setValue. Huh. | wonder who

calls that?

Deeper Function Details

Click to expand that function. | love this! Even though we're viewing the call graph in the "time"
dimension, this gives us all the info about this function: the wall time, 1/0 wait time, CPU time,

memory footprint and network.

Wall Time = 1/0O Time + CPU Time

This isn't a particularly time consuming function - its wall time is 9.13 milliseconds. Wall time
itself is broken down into two pieces, and this is important: wall time = /O time + CPU time.
There is nothing else: either a function is using CPU or it's doing some 1/O operation, like talking
to the filesystem or making network calls. In this case, the 9.13 milliseconds wall time is all CPU

time.

Finding_Callers

Okay, but who actually calls this function so many times? Above this, see those 3 down arrow
buttons? These represent the three other functions that call this one - the size is relative to how
many times each calls this. Click the first one. Ah ha! It's UnitOfWork: :createEntity! That's
the function with the highest exclusive time - it calls this function 4,959 times. Wow. So... it's

definitely a problem.

If you click the other two arrows, you can see the other two callers: one calls this 984 times and

the other 216 times. Both are from Doctrine.

Viewing_Callees

Close all of this up and go back to ordering by the highest exclusive time. Open up
UnitOfWork: :createEntity() . As | mentioned, even though we're currently viewing the call

graph in the "time" dimension, we can see all this function's dimensions right here.

Hover over the time graph: even though the exclusive time is significant - 37.9 milliseconds -
most of this function's time is still inclusive: it's taken up by other functions that it calls. That

helps give us a hint as to if the problem is inside this function... or inside something it calls.

And actually, every dimension has inclusive and exclusive measurements: like CPU time and

even memory. If any of these had a high inclusive value - meaning some function it calls is really

taking up that resource - you can see what functions it calls by clicking one of the arrow buttons

below this.

What | really want to know though is... what's happening in our code to cause this function -
UnitOfWork: :createEntity() - be called so many times? Click the biggest arrow above. Ah:

ObjectHydrator::getEntity() is the main culprit.

But... honestly... | don't know what that function is either: this is still way too low-level in Doctrine
- | have no idea what's really going on. So next, let's use the call graph - the pretty diagram on

the right - to get a full picture of what's happening going on... and how to fix it.

Chapter 5: Finding Issues via the Call Graph

There are two different ways to optimize any function: either optimize the code inside that
function or you can try to call the function less times. In our case, we found that the most
problematic function is UnitOfWork: :createEntity. But this is a vendor function: it's not our
code. So it's not something that we can optimize. And honestly, it's probably already super-

optimized anyways.

But we could try to call it less times... if we can understand what in our app is causing so many

calls! The call graph - the big diagram in the center of this page - holds the answer.

Call Graph: Visual Function List

Start by clicking on the magnifying glass next to createEntity. Woh! That zoomed us straight

to that "node" on the right. Let's zoom out a little.

The first thing to notice is that the call graph is basically a visual representation of the
information from the function list. On the left, it says this function has two "callers". On the right,
we can see those two callers. But when you're trying to figure out the big picture of what's going

on, the call graph is way nicer.

The Critical Path

Let's zoom out a bunch further. Now we can see a clear red path... that eventually leads to the
dark red node down here. This is called the critical path. One of Blackfire's main jobs is to help
us make sense out of all this data. One way it does that is exactly this: by highlighting the "path"

to the biggest problem in our app.

I'm going to hit this little "home" icon - that will reset the call graph, instead of centering it around
the createEntity node. In this view, Blackfire does hide some less-important information
around the createEntity node, but it gives us the best overall summary of what's going on:
we can clearly see the critical path. The critical thing to understand is: why is that path in our

app so slow?

Let's trace up from the problem node... to find where our code starts. Ah, here's our controller
being rendered... and then it renders a template. That's interesting: it means the problem is
coming from inside a template... from inside the body block apparently. Then it jumps to a Twig
extension called getUserActivityText() ... that calls something else

CommentHelper: : countRecentCommentsForUser (). That's the last function before it jumps

into Doctrine.

Finding_the Problem

So the problem in our code is something around this getUserActivityText() stuff. Let's open
up this template: main/sighting show.html.twig - at

templates/main/sighting show.html.twig.

If you look at the site itself, each commenter has a label next to them - like "hobbyist" or "bigfoot
fanatic" - that tells us how active they are in the great and noble quest of finding BigFoot. Over

in the Twig template, we get this text via a custom Twig filter called user_activity text:

templates/main/sighting_show.html.twig

T // ... lines 1 - 4
5 {% block body %}
6 <div class="col">

T // ... lines 7 - 19

20 {% for comment in sighting.comments %}
21 <div class="comment-container mb-3">
22 <div class="row">

T // ... lines 23 - 25

26 <div class="col">

T // ... line 27

28 ({{ comment.owner|user_activity text }})
T // ... lines 29 - 33

34 </div>

35 </div>

36 </div>

37 {% endfor %}

38

39 </div>

40 {% endblock %}

T // ... lines 41 - 42

If you're not familiar with Twig, no problem. The important piece is that whenever this filter code

is hit, a function inside src/Twig/AppExtension.php is called... it's this

getUserActivityText() method:

src/Twig/AppExtension.php

T // ... lines 1 - 10

11 class AppExtension extends AbstractExtension
12 {

T // ... lines 13 - 26

27 public function getUserActivityText(User $user): string
28 {

29 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);
30

31 if ($commentCount > 50) {

32 return 'bigfoot fanatic';

33 }

34

35 if ($commentCount > 30) {

36 return 'believer’;

37 }

38

39 if ($commentCount > 20) {

40 return 'hobbyist';

41 }

42

43 return 'skeptic’;

44 }

45 %}

This counts how many "recent" comments this user has made... and via our complex &

proprietary algorithm, it prints the correct label.

Back over in Blackfire, it told us that the last call before Doctrine was

CommentHelper: : countRecentCommentsForUser() - that's this function call right here!

src/Twig/AppExtension.php

$ /7 ... lines 1 - 10

11 class AppExtension extends AbstractExtension

12 {

$ // ... lines 13 - 26

27 public function getUserActivityText(User $user): string

28 {

29 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);
$ // ... Lines 30 - 43

44 }

45 3}

Let's go open that up - it's in the src/Service directory:

src/Service/CommentHelper.php

T /...

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

lines 1 - 6

class CommentHelper

{

}

public function countRecentCommentsForUser(User $user): int

{

$comments = $user->getComments();
$commentCount = 0;
$recentDate = new \DateTimeImmutable('-3 months');
foreach ($comments as $comment) {
if ($comment->getCreatedAt() > $recentDate) {
$commentCount++;

return $commentCount;

Ah. If you don't use Doctrine, you might not see the problem - but it's one that can easily happen

no matter how you talk to a database. Hold Command or Ctrl and click the getComments()

method to jump inside:

src/Entity/User.php

T /...

16
17
0
51
52
53
54
0
188
189
190
191
192
193
194

207

lines 1 - 15

class User implements UserInterface

{

s

/.

}

/

* x

Lines 18 - 50

* @ORM\OneToMany (targetEntity="App\Entity\Comment", mappedBy="owner")

*/

private $comments;

I AETE

/

* %k

Lines 55 - 187

* @return Collection|Comment[]

*/

public function getComments(): Collection

{

return $this->comments;

Lines 195 - 206

Here's the story: each User on our site has a database relationship to the comment table: every
user can have many comments. The way our code is written, Doctrine is querying for all the
data for every comment that a User has ever made... simply to then loop over them, and count

how many were created within the last 3 months:

src/Service/CommentHelper.php

T // ... lines 1 - 6

7 class CommentHelper

8 {

9 public function countRecentCommentsForUser(User $user): int
10 {

11 $comments = $user->getComments();

12 $commentCount = 0;

13 $recentDate = new \DateTimeImmutable('-3 months');
14 foreach ($comments as $comment) {
15 if ($comment->getCreatedAt() > $recentDate) {
16 $commentCount++;
17 }
18 }
19
20 return $commentCount;
21 }
22}

It's a massively inefficient way to get a simple count. This is problem number one.

It seems obvious now that I'm looking at it. But the nice thing is that... it's not a huge deal that |
did this wrong originally - Blackfire points it out. And not over-obsessing about performance

during development helps prevent premature optimization.

Attempting_the Performance Bug_Fix

So let's fix this performance bug. Open up src/Repository/CommentRepository.php. I've
already created a function that will use a direct COUNT query to get the number of recent

comments since a certain date:

src/Repository/CommentRepository.php

0
8

0
16
17

0
23
24
25
26
27
28
29
30
31
32
33

0
63

// ... lines 1 - 7

use App\Entity\User;

// ... lines 9 - 15

class CommentRepository extends ServiceEntityRepository
{

// ... lines 18 - 22

public function countForUser(User $user, \DateTimeImmutable $sinceDate): int
{
return (int) $this->createQueryBuilder('comment")
->select('COUNT(comment.id)")
->andWhere('comment.owner = :user')
->andWhere('comment.createdAt >= :sinceDate')
->setParameter('user', $user)
->setParameter('sinceDate', $sinceDate)
->getQuery()
->getSingleScalarResult();

// ... Lines 34 - 62
}

Let's use this... instead of my current, crazy logic.

To access CommentRepository inside CommentHelper - this is a bit specific to Symfony -

create a public function ___construct() and autowire it by adding a

CommentRepository $commentRepository argument:

src/Service/CommentHelper.php

0
6
7
8
9
0

12
13

0

15

0
22

// ... lines 1 - 5
use App\Repository\CommentRepository;

class CommentHelper

{

// ... lines 10 - 11
public function _ construct(CommentRepository $commentRepository)
{

// ... line 14
}

// ... lines 16 - 21

}

Add a private $commentRepository property... and set it in the constructor:

$this->commentRepository = $commentRepository:

src/Service/CommentHelper.php

T // ... lines 1 - 5
use App\Repository\CommentRepository;

6
7
8 class CommentHelper
9

{
10 private $commentRepository;
11
12 public function __construct(CommentRepository $commentRepository)
13 {
14 $this->commentRepository = $commentRepository;
15 }
T // ... lines 16 - 21
22}

Now... | don't need any of this logic. Just return
$this->commentRepository->countForUser() . Pass this $user... and go steal the
DateTimeImmutable from below and use that for the second argument. Celebrate by killing the

rest of the code:

src/Service/CommentHelper.php

T /7 ... lines 1 - 7

8 class CommentHelper

9 {

$ // ... lines 10 - 16

17 public function countRecentCommentsForUser(User $user): int
18 {
19 return $this->commentRepository
20 ->countForUser($user, new \DateTimeImmutable('-3 months'));
21 }
22}

If we've done a good job, we will hopefully be calling that UnitOfWork function many less times
- the 23 calls into Doctrine from CommentHelper eventually caused many, many things to be

called.

So... let's profile this and see the result! We'll do that next and use Blackfire's "comparison”

feature to prove that this change was good... except for one small surprise.

Chapter 6: Comparisons: Validate Performance
Changes, Find Side Effects

We've just updated our code to make a COUNT query instead of querying for all the comments
for a user... just to count them. So, the page will definitely be faster. Right? Are you absolutely
sure? Well, / think it will be faster... but sometimes making one part of your code faster... will

make other parts slower. Fortunately, Blackfire has a special way to prove that a performance

tweak does in fact help.

Let's profile the page now - I'll refresh... then click to profile. Give it a name to stay organized

[Recording] Show page after count query.

Ok! Let's go see the call graph! https://bit.ly/sfcast-bf-profile2

Hey! 270 milliseconds total time - the last one was 415. So it is faster. We win! Tutorial over!

Well... yeah, | agree: it does look faster. But an important aspect of optimization is
understanding why something is faster. Like, did this reduce CPU time? I/O wait time? And,
maybe more importantly, did this change cause anything to be worse? For example, a change
might decrease CPU time, but increase memory. If that happened, would the change really be a

good one? It depends.

Comparing_Profiles

This leads me to one of my favorite tools from Blackfire: the ability to compare profiles. Click
back to your dashboard: the top two profiles are from the initial profile and then the page after
using the COUNT query. On the right, hover over the "Compare" button on the original, click,

then click the new one.

Say hello to the comparison view: https://bit.ly/sf-bf-compare1-2. Everything that's faster, or

"better" is in blue. Anything that's slower or worse will be in red. And yea, it looks like the new
profile is better in every single category. Ok, the I/O wait is higher - but .1 millisecond higher -

that's just "noise".

https://bit.ly/sfcast-bf-profile2
https://bit.ly/sf-bf-compare1-2

Anyways, the comparison proves that this was a good change. Really, it's a huge win! On the
call graph, in the darkest blue, the critical path this time is the path that improved the most. Click
the UnitOfWork call now. Wow. The inclusive time is down by 90 milliseconds and even the

memory plummeted: down 1.39 megabytes.

@ Tip

The SQL Query information requires a Profiler plan or higher.

But wait. One of the items on top is called "SQL Queries". The total query time is less than
before... but we've added 5 more queries. We removed these 18 queries... but added 23 new

ones.

Is that a problem? Probably not. Overall, this change was good. And if having too many queries
does create a real problem - not just an imaginary one of "too many queries" - Blackfire will help
us discover that. The big takeaway here is: don't just assume that a performance
enhancement... is actually better. We'll see this later - not every change we'll do in this tutorial

will prove to be a good one.

Next: Blackfire has a deep understanding of PHP, database queries, Redis calls and even
libraries like Symfony, Doctrine, Magento, Composer, eZ platform, Wordpress and others.

Thanks to that, it automatically detects problems and recommends solutions.

Chapter 7: Recommendations

Head back to the Blackfire dashboard... and click into the latest profile - the one with our

COUNT query improvement - https://bit.ly/sfcast-bf-profile2.

The critical path is now much less clear... there are kind of two critical paths... but neither end in
a node with a red background... which would indicate an obvious issue. This might mean that

there aren't any more easy performance "wins" on this page... it might be fast enough!

Focus in Improvement, Not Absolute Time

The response time from the profile was 270 milliseconds. If you're not satisfied with that,
remember two things. First, we're profiling Symfony in its dev environment. Switching to prod
would be faster... we'll do that soon. And second, the time you see in a profile will never be quite
as fast as the real thing, because when the probe is activated - the PHP extension that does all
the profiling - it slows things down. So don't obsess over any absolute numbers. Instead, focus

on finding ways to improve each number.

Switching_to Symfony's prod Environment

The function that takes up the most exclusive time is from something called
DebugClassLoader. Ah. Our local Symfony app is currently running in its dev environment,
which adds a lot of debugging tools, like the web debug toolbar. That stuff also slows things
down... which makes profiling less useful: the profiler is cluttered up with function calls that won't

really be there in production. That extra noise makes finding the true performance issues harder.
So, let's switch our app to the prod environment while profiling.
Open up .env, find the APP_ENV variable, and change it to prod:
.env
$ // ... lines 1 - 16

17 APP_ENV=prod
T // ... lines 18 - 29

https://bit.ly/sfcast-bf-profile2

That will make things more realistic... but it also means that after... pretty much any change to

our code, we will need to clear & warm the cache. No big deal: at your terminal, run:

php bin/console cache:clear

and then:

php bin/console cache:warmup

Ok, let's profile again! I'll refresh... just to make sure the page is working and... profile! I'll call

this one [Recording] Show page in prod mode. Cool! 106 milliseconds is a huge

improvement! Click to open the call graph: https://bit.ly/sf-bf-profile3

Now the function list and the call graph look a bit more useful. There's no super problematic,
red-background node on the graph... but the function that takes up the most exclusive time -

PDOStatement: :execute() - at least makes sense: that's executing database queries.

Hello Recommendations

@ Tip

The Recommendations information requires a "Profiler" plan level or higher.

Back on our site, you may have noticed that each time we've profiled, a little exclamation icon
showed up. If you clicked that, it would take you to a "Recommendations" section of the profile.

The exclamation point was telling us that we're failing one or more Blackfire recommendations.

| dig this feature. Because Blackfire is written for PHP, it has special knowledge of how queries
are made, how Composer works, Symfony, Magento and so many other things. The Blackfire
team has used that knowledge to add a bunch of things that they call "recommendations”. | call

them "sanity checks".

For example, Blackfire counted our queries and said:

https://bit.ly/sf-bf-profile3

“Hey! FYI - you've got a bunch of queries on this page... maybe you should try to have less
than 10.”

Yea, our 43 queries is pretty high. Does that mean we should immediately run into our code and

fix it? Nah. It's just a good thing to keep on your radar.

There's also a recommendation that Doctrine annotation metadata should be cached in
production. Honestly... I'm not sure why that's there - Symfony apps come with a
config/packages/prod/doctrine.yaml file that takes care of caching these when you're in
the prod environment. When | tried to reproduce this later... it went away. So let's ignore it for

now. If it comes back /ater when we deploy to production, then | will want to look into it further.

Composer Autoloader Recommendation

The last recommendation is awesome:

“The Composer autoloader class map should be dumped in production”

By the way. if you don't know what something means, the cute question mark can help.

Look back at the function list: the second highest function was something related to Composer's

autoload system. Blackfire nailed that this is an issue.

You may already know this, but when you deploy, you're supposed to run a special command -
or add a special option - that tells Composer to dump an optimized autoload file. Blackfire is

telling us that we forgot to do this locally.

Let's fix this: it will help clean up even more stuff on the profile. At your terminal, run:

composer dump-autoload --optimize

Perfect! Refresh the page... it works... and create another profile - I'll call this:
[Recording] Show page after optimized autoloader. Click to view the call graph:

https://bit.ly/sf-bf-profile4 and close the old one.

https://bit.ly/sf-bf-profile4

It's not significantly faster, but we've removed at least one heavy-looking function call from our
list. That will help us focus on any real problems. Check out the recommendations now. Yea!
The Composer one is gone. Later, we'll learn how to add custom assertions - which are

basically a way to write your own custom recommendations.

Next, let's look deeper at what's going on with this PDOStatement: :execute stuff. Is our page

fast enough? Or can we discover some further, hidden optimizations?

Chapter 8: Property Caching

Now that we've got our application in production mode and we've dumped the autoloader, it's

easier to see what the biggest performance problem is on this page: https://bit.ly/sf-bf-profile4

And actually, there might not be any more problems worth solving. | mean, it's loading in 104

milliseconds... even with the Probe doing all the profiling work.

But... let's see for sure. The function with the highest exclusive time now is

PDOStatement: :execute() ... which is a low-level function that executes SQL queries.

@ Tip

The SQL Query information requires a Profiler plan or higher.

If we hover over the query info, these are only taking 12.5 milliseconds... but we are making 43
SQL calls on this page. Is that a problem? It's not ideal, but is it worth fixing? | guess it depends
on how much you care... and whether the fix would be easy or if it would add a lot of complexity

to our app.

Navigating_the Call Graph: Top to Bottom, Bottom to Top

When you're trying to identify where the problem is, there are two ways to look at the call graph
- and | often do both to help me understand what's going on. First, you can read from top to
bottom - trace through your whole application flow to figure out what's going on down the hot
path. Or, you can do the opposite: start at the bottom - start where the problem is... and trace up

to find where your code starts.

Let's start from the top: handleRaw() is the framework booting up... and as we trace down... it
renders our controller, renders our template... and we're once again inside the body block. This
is really the same as last time! Our AppExtension: :getUserActivityText() calls the

countRecentCommentsForUser() function 23 times. That makes sense: we probably have 23
comments on the page... and for each comment, we need to count all the author's comments to

print out this label.

https://bit.ly/sf-bf-profile4

Navigating_Dimensions

Before we think about if, and how we might fix this, let's back up and look at other dimensions of
this profile. In addition to wall time, we can completely re-draw the call graph based on only 1/O
time or CPU time. Remember, wall time is I/O time + CPU time. Or we could do something
totally different: look at which functions are using the most memory... or even the most network
bandwidth.

When we look at this in the network dimension, PDOStatement: :execute() - the function that
makes SQL calls - shows up here as a big problem. That's because SQL queries are technically

network requests.

Re-draw the call graph for the I/O Wait time dimension. We see the same problem here

because network calls - and so SQL calls - are part of I/0 wait time.

The point is: while "wall time" is typically the most useful dimension, don't forget about these
other ones: they can give us more information about what's going on. Is a function slow because

of inefficient code inside? Or is it, for example, because of a network call?

Click back to I/0O wait time - PDOStatement: :execute() is definitely the issue according to this
- and the critical path is pretty clear. This one function is taking over half the 1/0 wait time... but
that's only 6 milliseconds. Optimizing this might not be worth it... but let's at least see if we can

figure out how to call it less times.

As we already discovered, the problem is coming from
CommentRepository: :countForUser() which is called by

AppExtension: :getUserActivityText().

Over in src/Twig/AppExtension.php, each time we render a comment, it calls

countForUser() and passes the User object attached to this comment:

src/Twig/AppExtension.php

T // ... lines 1 - 10
11 class AppExtension extends AbstractExtension
12 {
T // ... lines 13 - 26
27 public function getUserActivityText(User $user): string
28 {
29 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);
T // ... lines 30 - 43
44 }
45 }
Property Caching

Can we optimize this? Well... sometimes, the same user will comment many times on the same

sighting - like this vborer user. When that happens, we're making a query to count that user's

comments for every comment. That's wasteful!

So here's one idea: leverage "property caching". Basically, we'll keep track of the "status" strings

for each user and use that to avoid calculating the status more than once for a given user.

Start by moving most of the logic into a private function called

calculateUserActivityText() : this will have a User argument and return a string:

src/Twig/AppExtension.php

T // ... lines 1 - 10
11 class AppExtension extends AbstractExtension
12 {
T // ... lines 13 - 37
38 private function calculateUserActivityText(User $user): string
39 {
40 $commentCount = $this->commentHelper->countRecentCommentsForUser($user);
41
42 if ($commentCount > 50) {
43 return 'bigfoot fanatic';
44 }
45
46 if ($commentCount > 30) {
47 return 'believer';
48 }
49
50 if ($commentCount > 20) {
51 return 'hobbyist';
52 }
53
54 return ‘'skeptic';
55 }
56 }

Next, add a new property to the top of the file: private $userStatuses = []:

src/Twig/AppExtension.php

T // ... lines 1 - 10

11 class AppExtension extends AbstractExtension
12 {

T // ... lines 13 - 14

15 private $userStatuses = [];

T // ... lines 16 - 55

56 }

Back in the public function, here's the magic: if not
isset($this->userStatuses[$user->getId()]), then set it by saying
$this->userStatuses[$user->getId()] = $this->calculateUserActivityText($user).

At the bottom of the function, return $this->userStatuses[$user->getId()]:

src/Twig/AppExtension.php

T // ... lines 1 - 10

11 class AppExtension extends AbstractExtension

12 {

T // ... Lines 13 - 28

29 public function getUserActivityText(User $user): string

30 {

31 if (!isset($this->userStatuses[$user->getId()])) {

32 $this->userStatuses[$user->getId()] = $this-
>calculateUserActivityText($user);

33 }

34

35 return $this->userStatuses[$user->getId()];

36 }

$ // ... lines 37 - 55

56}

This is one of my favorite performance tricks because it has no downside, except for some extra
code. If getUserActivityText() is called and passed the same User multiple times within a

single request, we won't duplicate any work.

So... we probably made our site faster, right? Let's find out! Since we're in Symfony's prod

environment, just to be safe, let's clear the cache:

php bin/console cache:clear

and warm it up:

php bin/console cache:warmup

Back in the browser, refresh the page and... let's profile! I'll name this one

[Recording] show page try property caching. View the call graph: https:/bit.ly/sf-bf-

profile-prop-caching.

Ok - PDOStatement still looks like a main problem... but | think we're a little faster. You know
what? Let's just compare the two profiles. Go back to the dashboard and compare the previous

profile to this one. https://bit.ly/sf-bf-compare-prop-caching. I'll close the old profile.

https://bit.ly/sf-bf-profile-prop-caching
https://bit.ly/sf-bf-profile-prop-caching
https://bit.ly/sf-bf-compare-prop-caching

Ok, so it did help - lower time in each dimension... and we saved 5 queries. So, this is a win,
right? Maybe. If you profiled other Big foot sighting pages, which | did, you would find that this
often did not help... or helped very little. In fact, this is the first time I've seen it help nearly this

much.

So, does the improvement justify the added complexity in our code? If we can repeat this 13%

improvement consistently, yea, it is. But if it's more like 1%, probably not.

And even 13% is not that much... and PDOStatement: :execute() is still the biggest problem. |

feel like the profile is trying to ask us: is there a better way to optimize this?

Next, let's try another approach: using a real cache layer. Truly caching things has its own
downside: added complexity in your code and possibly - depending on what you're caching - the

need to worry about invalidating cache. We'll want to be sure it's worth it.

Chapter 9: Using a Caching Layer & Proving its
Worth

Whenever we make something more performant, we often also make our code more complex.

So, was the property-caching trick we just used worth it? Maybe... but I'm going to revert it.

Remove the property caching logic and just return

$this->calculateUserActivityText($user):

src/Twig/AppExtension.php

T // ... lines 1 - 10

11 class AppExtension extends AbstractExtension

12 {

$ // ... lines 13 - 26

27 public function getUserActivityText(User $user): string
28 {

29 return $this->calculateUserActivityText($user);

30 }

$ // ... lines 31 - 49

50 }

And... we don't need the $userStatuses property anymore:

src/Twig/AppExtension.php

T // ... lines 1 - 10

11 class AppExtension extends AbstractExtension
12 {

$ // ... lines 13 - 14

15 private $userStatuses = [];

$ // ... lines 16 - 55

56 }

We could stop here and say: this spot is not worth optimizing. Or, we can try a different solution
- like using a real caching layer. After all, this label probably won't change very often... and it's
probably not critical that the label changes at the exact moment a user adds enough comments

to get to the next level. Caching could be an easy win.

Adding_Caching

Back in AppExtension, autowire Symfony's cache object by adding an argument type-hinted
with CacheInterface - the one from Symfony\Contracts\Cache. I'll press Alt+Enter and

select "Initialize fields" to make PhpStorm create a new property with this name and set it in the

constructor:
$ // ... lines 1 - 7
8 use Symfony\Contracts\Cache\CachelInterface;
T // ... lines 9 - 12
13 class AppExtension extends AbstractExtension
14 {
$ // ... line 15
16 private $cache;
17
18 public function _ construct(CommentHelper $commentHelper, CachelInterface
$cache)
19 {
T // ... Line 20
21 $this->cache = $cache;
22 }
T // ... Llines 23 - 59
60 }

Down in the method, let's first create a cache key that's specific to each user. How about:

$key = sprintf('user_activity_text_'.and then $user->getId():

src/Twig/AppExtension.php

T // ... lines 1 - 12

13 class AppExtension extends AbstractExtension

14 {

T // ... lines 15 - 30

31 public function getUserActivityText(User $user): string
32 {

33 $key = sprintf('user_activity_text_'.$user->getId());
T /7 ... lines 34 - 39

40 }

$ // ... lines 41 - 59

60 }

Wow, | just realized that my sprintf here is totally pointless.

Then, return $this->cache->get() and pass this $key. If that item exists in the cache, it

will return immediately:

src/Twig/AppExtension.php

0
13
14

0
31
32
33
34
35

0
39
40

0

60

// ... Llines 1 - 12
class AppExtension extends AbstractExtension

{
// ... Lines 15 - 30

public function getUserActivityText(User $user): string

{
$key = sprintf('user_activity text_ '.$user->getId());

return $this->cache->get($key, function(CacheItemInterface $item) use

($user) {

// ... Lines 36 - 38
})s
}
// ... Llines 41 - 59
}

Otherwise, it will execute this callback function, pass us a CacheItemInterface object and our

job will be to return the value that should be stored in cache.

Hmm... | need the $user object inside here. Add use then $user to bring it into scope. Then

return $this->calculateUserActivityText($user):

src/Twig/AppExtension.php

0
13
14

0
31
32
33
34
35

38
39
40

60

// ... lines 1 - 12

class AppExtension extends AbstractExtension

{
// ... lines 15 - 30

public function getUserActivityText(User $user): string

{
$key = sprintf('user_activity text '.$user->getId());

return $this->cache->get($key, function(CacheItemInterface $item) use
($user) {
// ... lines 36 - 37

return $this->calculateUserActivityText($user);

1)

// ... lines 41 - 59
}

| think it's probably safe to cache this value for one hour: that's long enough, but not so long that
we need to worry about adding a system to manually invalidate the cache. Set the expiration
with $item->expiresAfter(3600):

src/Twig/AppExtension.php

T /7 ... lines 1 - 12

13 class AppExtension extends AbstractExtension

14 {

$ // ... lines 15 - 30

31 public function getUserActivityText(User $user): string

32 {

33 $key = sprintf('user_activity_text_'.$user->getId());

34

35 return $this->cache->get($key, function(CacheItemInterface $item) use
($user) {

36 $item->expiresAfter(3600);

37

38 return $this->calculateUserActivityText($user);

39 1)

40 }

T // ... lines 41 - 59

60 }

So... does this help? Of course it willl More importantly, because we decided we don't need to
worry about adding more complexity to invalidate the cache, it's probably a big win! But let's find

out for sure.

Move over and refresh. Boo - 500 error. We're in the prod environment... and | forgot to rebuild

the cache:

php bin/console cache:clear

And:

php bin/console cache:warmup

Profiling_with Cache

Refresh again. And... profile! I'll name this one: [Recording] Show page real cache. Open

up the call graph: https://bit.ly/sf-bf-real-caching.

This time things look way better. But let's not trust it: go compare the original profile - before we

even did property caching - to this new one: https://bit.ly/sf-bf-compare-real-cache.

Wow. The changes are significant... and there's basically no downside to the changes we made.
Even our memory went down! You can also compare this to the property caching method:

https://bit.ly/sf-bf-compare-prop-real-caching. Yea... it's way better

And really, this is no surprise: fully caching things will... of course be faster! The question is how
much faster? And if adding caching means that you also need to add a cache invalidation
system, is that performance boost worth it? Since we don't need to worry about invalidation in

this case, it was totally worth it.

Next: let's find & solve a classic N+1 query problem. The final solution might not be what you

traditionally expect.

https://bit.ly/sf-bf-real-caching
https://bit.ly/sf-bf-compare-real-cache
https://bit.ly/sf-bf-compare-prop-real-caching

Chapter 10: The N+1 Problem & EXTRA_LAZY

At this point, I'm pretty happy with the show page that we've been profiling. So let's look at
something different: let's profile the homepage at https://localhost:8000/.

Ok, this page has a list of all of the sightings... and on the right, that shows some SymfonyCasts

repository info from GitHub. Let's refresh... though... that's not really needed - and profile! I'll call

this one: [Recording] Original homepage - https://bit.ly/sf-bf-homepage-original.

Ok! 165 milliseconds! Let's view the call graph. Well... this looks familiar! We have the same
number 1 exclusive-time function as before: UnitOfWork: :createEntity() . In that situation, it
meant that we were querying for too many items and so Doctrine was hydrating too many

objects. Is it the same problem now? And if so, why? Can we optimize it?

Time to put on our profiling detective hats. Let's follow the hot path! We enter
MainController: :homepage() and render a template... so the problem is coming from our
template. Interesting. Next _sightings.html.twig is rendered... and then something called
twig length_filter executes loadOneToManyCollection(), which is from Doctrine. Let's

do some digging in that template: templates/main/_sightings.html.twig.

We saw that it was referencing something called twig_length_filter. Search the template

for length. Ah: sighting.comments|length:

templates/main/_sightings.html.twig

1 {% for sighting in sightings %}

2 <tr>

T // ... lines 3 - 10

11 <td>

12 <a class="text-white table-content text-center" href="{{
path('app_sighting show', {id: sighting.id}) }}">{{ sighting.comments|length }}

13 </td>

14 </tr>

15 {% endfor %}

Finding_ the N+1 Problem

https://localhost:8000/
https://bit.ly/sf-bf-homepage-original

Look back on the site: one of the things it does is prints the number of comments for each
article. The length filter counts how many items are in sighting.comments, which is a

database relationship from the big_foot_sighting table to the comment table.

If you're not familiar with Doctrine, when you call sighting.comments, at that moment,
Doctrine queries for all of the comments for that specific BigFootSighting record. I'll open up
src/Entity/BigFootSighting.php. Yep, we're accessing the comments property, which is a

OneToMany relationship to Comment:

src/Entity/BigFootSighting.php

T // ... lines 1 - 11

12 class BigFootSighting

13 {

$ // ... lines 14 - 56

58 * @ORM\OneToMany (targetEntity="App\Entity\Comment",

mappedBy="bigFootSighting")

59 * @ORM\OrderBy({"createdAt"="DESC"})
60 */

61 private $comments;

T // ... lines 62 - 205
206 }

The point is: for each BigFootSighting that we are rendering, Doctrine is making an extra
query to fetch all the comments for that sighting. This is basically the classic N+1 problem. If we
want to print 25 BigFootSighting rows, in addition to the 1 query to fetch the 25 rows, the
system will also make 25 additional queries to fetch the comments for each sighting. That's 25 +

1 queries.

You can see this in the SQL queries in Blackfire: we have one query from big_foot_sighting

- the query above is related to the pagination logic - then 25 queries from the comment table.

Counting_ with fetch="EXTRA LAZY"

Okay, we have identified the problem: we are not only making a lot of queries... but those

queries are also fetching all the comment data... just to count them. Silliness!

One simple solution might be... just to tell Doctrine to make a COUNT query instead of fetching

all the data. We would still have 25 extra queries... but they would be much faster.

In Doctrine, we can do this really easily. If you access a relationship - like the comments
property - and only count it, we can ask Doctrine to do a COUNT query instead of loading all the

comment data. How? Above the comments property, add fetch="EXTRA_LAZY":

src/Entity/BigFootSighting.php

T /7 ... lines 1 - 11

12 class BigFootSighting

13 {

$ // ... lines 14 - 56

58 * @ORM\OneToMany (targetEntity="App\Entity\Comment",

mappedBy="bigFootSighting", fetch="EXTRA_LAZY")

T /7 ... Line 59

60 */

61 private $comments;

$ // ... lines 62 - 205
206 }

Before we try this, don't forget that we're in the prod environment: run cache:clear:

php bin/console cache:clear

And cache:warmup:

php bin/console cache:warmup

Ok, let's see if this helps! Spin over, refresh the page and... profile! I'll call this one:

[Recording] homepage EXTRA_LAZY - https://bit.ly/sf-bf-extra-lazy. I'll close the other tab and

view the call graph.

Was this better? Well, createEntity() isn't the biggest problem anymore... so that's a good
sign! Let's compare to be sure: go from the original homepage... to the most recent profile:

https://bit.ly/sf-bf-extra-lazy-compare.

And... wow! Yea, this is a huge win in every category! So, was this a good change? Absolutely:

this was an awesome change.

https://bit.ly/sf-bf-extra-lazy
https://bit.ly/sf-bf-extra-lazy-compare

But, even though the queries are much faster... we're still making the same number of queries.
Is that something we care about? | don't know? But that's the great thing about profiling with
Blackfire: you don't need to absolutely optimize everything. If you're not sure if something is a
problem, you can deploy and check it on production to see if it's really slowing things down
under realistic conditions. Especially because sometimes improving performance comes at a

cost of extra complexity.

Next, let's see if we can reduce the number of queries. Will it help performance? If so, is it

enough for the added complexity?

Chapter 11: Fixing N+1 With a Join?

We made a huge leap forward by telling Doctrine to make COUNT queries to count the
comments for each BigFootSighting... instead of querying for all the comments just to count

them. That's a big win.

Could we go further... and make a smarter query that can grab all this data at once? That is the
classic solution to the N+1 problem: need the data for some Bigfoot sightings and their

comments? Add a JOIN and get all the data at once! Let's give that a try!

Adding he JOIN

The controller for this page lives at src/Controller/MainController.php -it's the

homepage () method:

src/Controller/MainController.php

$ // ... lines 1 - 16
17 class MainController extends AbstractController
18 {
20 * @Route("/", name="app_homepage")
21 */
22 public function homepage(BigFootSightingRepository
$bigFootSightingRepository)
23 {
24 $sightings = $this->createSightingsPaginator(1,
$bigFootSightingRepository);
25
26 return $this->render('main/homepage.html.twig', [
27 'sightings' => $sightings
28 1)
29 }
$ // ... Lines 30 - 120
121 }

To help make the query, this uses a function in

src/Repository/BigFootSightingRepository.php - this findLatestQueryBuilder():

src/Repository/BigFootSightingRepository.php

T // ... lines 1 - 15

16 class BigFootSightingRepository extends ServiceEntityRepository
17 {

T // ... lines 18 - 22

23 public function findLatestQueryBuilder(int $maxResults): QueryBuilder
24 {

25 return $this->createQueryBuilder('big_foot_sighting')
26 ->setMaxResults($maxResults)

27 ->orderBy('big foot_sighting.createdAt', 'DESC');
28 }

$ // ... lines 29 - 57

58 }

This method ... if you did some digging ... creates the query that returns these results.

And... it's fairly simple: it grabs all the records from the big_foot_sighting table, orders them

by createdAt and sets a max result - a LIMIT.

To also get the comment data, add leftJoin() on big_foot_sighting.comments and alias
that joined table as comments. Then use addSelect('comments') to not only join, but also

select all the fields from comment:

src/Repository/BigFootSightingRepository.php

T // ... lines 1 - 15

16 class BigFootSightingRepository extends ServiceEntityRepository
17 {

T // ... lines 18 - 22

23 public function findLatestQueryBuilder(int $maxResults): QueryBuilder
24 {

25 return $this->createQueryBuilder('big foot_sighting')

26 ->leftJoin('big_foot_sighting.comments', 'comments')
27 ->addSelect('comments")

28 ->setMaxResults($maxResults)

29 ->orderBy('big_foot_sighting.createdAt', 'DESC');

30 }

T // ... lines 31 - 59

60 }

Let's... see what happens! To be safe, clear the cache:

php bin/console cache:clear

And warm it up:

php bin/console cache:warmup

Now, move over, refresh and profile! I'll call this one: [Recording] Homepage with join:
https://bit.ly/sf-bf-join.

Go check it out! Woh! This... looks weird... it looks worse! Let's do a compare from the

EXTRA_LAZY profile to the new one: https://bit.ly/sf-bf-join-compare.

Wow... this is much, much worse: CPU is way up, I/O... it's up in every category, especially
network: the amount of data that went over the network. We did make less queries - victory! -

but they took 8 milliseconds longer. We're now returning way more data than before.

So this was a bad change. It seems obvious now - but in a different situation where you might
be doing different things with the data, this same solution could have been the right one! Let's

remove the join and rely on the EXTRA_LAZY solution.

A Smarter Join?

Yes, this will mean that we will once again have 27 queries. If you don't like that, there is

another solution: you could make the JOIN query smarter - it would look like this:

// src/Repository/BigFootSightingRepository.php

public function findLatestQueryBuilder(int $maxResults): QueryBuilder

{

return $this->createQueryBuilder('big foot_sighting')

->leftJoin('big_foot_sighting.comments', 'comments')
->groupBy('big foot_sighting.id")
->addSelect('COUNT(comments.id) as comment_count')
->setMaxResults($maxResults)

->orderBy('big_foot_sighting.createdAt', 'DESC');

The key is that instead of selecting all the comment data... which we don't need... this selects
only the count. It gets the exact data we need, in one query. From a performance standpoint, it's

probably the perfect solution.

https://bit.ly/sf-bf-join
https://bit.ly/sf-bf-join-compare

But... it has a downside: complexity. Instead of returning an array of BigFootSighting objects,
this will return an array of... arrays... where each has a @ key that is the BigFootSighting
object and a comment_count key with the count. It's just... a bit weird to deal with. For example,

the template would need to be updated to take this into account:

{% for sightingData in sightings %}
{% set sighting = sightingData.@ %}

{% set commentCount = sightingData.comment_count %}

{# ... #}
{{ sighting.title }}

{{ commentCount }}
{# ... #}
{% endfor %}

And... because of the pagination that this app is using... the new query would actually produce
an error. So let's keep things how they are now. If the extra queries ever become a real problem
on production, then we can think about spending time improving this. Sometimes profiling is

about knowing what not to fix... because it may not be worth it.

Next, if you were surprised that we didn't see any evidence of the network request that the
homepage is making to render the SymfonyCasts repository info from GitHub, that's because
the homepage is more complex than it might seem. Let's use a cool "Profile all" feature to see

all requests that the homepage makes.

Chapter 12: Profile All Requests (Including Ajax)

When you open the browser extension to create a profile, it has a few options that we've been...

ignoring so far.

Debugging_Mode

@ Tip

Debugging mode is available via the Debugging add-on.
For example, "debugging mode" will tell Blackfire to disable pruning - that's when it removes
data for functions that don't take a lot of resources - and also to disable anonymization - that's

when it hides exact details used in SQL queries and HTTP requests. Debugging mode is nice if

something weird is going on.. and you want to fully see what's happening inside a request.

Distributed Profiling

@ Tip

Distributed profiling is available to Premium plan users or higher.

Another superpower of Blackfire is called distributed profiling... which you either won't care
about... or it's the most awesome thing ever. Imagine you have a micro-service architecture
where, when you load the page, it makes a few HTTP requests to some microservices. If you
have Blackfire installed on all of your microservices, Blackfire will automatically create profiles
for every request made to every app. The final result is a profile with sub-profiles that show you

how the entire infrastructure is working together. It's... pretty incredible.

But, if you want to disable it and only profile this main app, you can do that with this option.

Disabling Aggregation

The last option is to "disable aggregation”. That's a fancy way of telling Blackfire that you want

to make & profile just one request, instead of making 10 requests and averaging the results.

Profiling All Requests

But what | really want to look at is this "Profile all requests” link. Hit "Record"... then refresh.
Woh! Cool! It already made 2 requests! And if | scroll down a little bit... there's a third! Let's stop

right there.

That jumps us to our Blackfire dashboard. These /ast three profiles were just created: one for
the homepage and two others: these are both AJAX calls! Surprise! Without even thinking about

it, we discovered a few extra requests that are part of that page.

This first one - /api/github-organization - is what loads this GitHub repository info on the
right. This makes an API call for the most popular repositories under the Symfonycasts
organization... which is kind of silly... but it was a great way to show how network requests look

in Blackfire. We'll see that in a minute.

This other request - for /_sightings - is an AJAX call that powers the forever scroll on the

page.

Basically... | like using "profile all requests" in 3 situations. One, to get an idea of what's all
happening on a page. Two, to profile AJAX requests... though I'll show you another way to do

that soon. And three, to profile form submits: fill out the form, hit "Record", then submit.

Checking_out the Network Requests

Let's look closer at the /api/github-organization AJAX profile: https://bit.ly/sf-bf-github-org.

As | mentioned, this makes a network request to the GitHub API to load repository information.
The profile... is almost comical! Out of the 438 millisecond wall time - 82% of it is from

curl multi_select() - that's the time spent making any API calls.

It's kind of fun to look at this in the CPU dimension, which is only 74 milliseconds.
curl_multi_exec() is still the biggest offender... but it's a lot less obvious what the critical
path is. Compare that with the 1/0O wait dimension, which includes network time. The critical path
is ridiculously obvious here. This is an extreme example of how different dimensions can be

more or less useful depending on the situation.

https://bit.ly/sf-bf-github-org

One of the interesting things is that... this is not the full call graph. According to this, the code
goes straight from handleRaw() - which is the first call into the Symfony Framework - to our
controller. In reality, there are many more function calls in between. Switch back to the CPU

dimension. Yep! This shows more nodes.

This is the result of that "pruning" | mentioned a few minutes ago. Blackfire removes function
calls that don't consume any significant resources so that the critical path - from a performance
standpoint - is more obvious. The call graph also automatically hides or shows some info based

on what you're zoomed in on.

In this situation, the critical path is obvious. You can also see the network requests on top. There

are actually two: one that returns 1.5 kilobytes and another that returns 5.

This shows the network time too... but at least if you're using the Symfony HTTP client like | am,
these numbers aren't right - they're far too small... | think that's due to the asynchronous nature
of Symfony's HTTP Client. That's ok - because the overall cost is showing up correctly in all the

other dimensions.

So how do we fix this? Should we add some caching? Or somehow try to make only one API
call instead of two? We're actually going to revisit and fix this problem later. For now, | wanted
you to be aware of the "Profile All" feature. Next, let's check out the Blackfire command-line tool,

which has two superpowers... one of which has nothing to do with the command line.

Chapter 13: The Blackfire CLI Tool for AJAX
Requests

We know that the probe - that's the Blackfire PHP extension - doesn't run on every single

request: it only runs when it detects that our browser extension is telling it to run.

There's actually a second way that you can tell the probe to do its work. It's with a super handy

command-line tool.

Installing_the Blackfire CLI Tool

Go back to the Blackfire site, click on their docs... and once again find the installation page.
When we went through this earlier, we purposely skipped one step: installing the Blackfire CLI
tool. Actually, Blackfire recently updated this page... and | like the newer version a lot better. In
both versions of the docs - the new one and the old one you see here - if you followed the

commands to install the "agent" then you've already also installed the CLI tool. Nice!

To make sure, find your terminal and try running:

blackfire version

Blackfire CLI Confiug: Client ID & Token

Got it! Before using this, we do need to add a little bit of configuration by running a
blackfire config command. On the old version of the docs, I'll copy the "client ID": I'll need
that in a second. On the newer version of the docs, you'll be able to copy a blackfire config

command that already includes the client id and client token. For me, I'll run

blackfire config

https://blackfire.io/docs/up-and-running/installation

If your version of the command has the --client-id and --client-token options already,

you're done! If not, like me, paste in the Client Id... then also copy and paste in the token.

The client id and token work... almost like a username and password to your Blackfire account.
When we use the browser extension, we're logged into Blackfire in the browser. When we click
profile, the Blackfire APl is able to give the extension some credentials that it passes to the

probe to prove that we're allowed to profile this page.

When you use the Blackfire command line tool to profile something... the client id and client
token are used to talk to the Blackfire APl and get those same credentials that it then passes to
the probe to prove we're authorized to profile. They basically identify & prove which user we are

on Blackfire.

Profiling AJAX Requests

The Blackfire CLI tool has two superpowers. The first is that you can run blackfire curl and
then pass a URL to any page on your site that you want to create a profile for. Now... that might
seem totally worthless. After all... if we want to profile a page... isn't it easier just to go to that

page in our browser and use the extension to profile it?

Yep! Unless... you can't easily "go" to that page - like if you want to profile an AJAX request or
an API endpoint. Check this out: I'll open up the dev tools, go to the "Network" section and
refresh. Notice I'm already filtered to XHR requests - so the /api/github-organization
AJAX request pops up. Want to easily profile just that request? Right click on it and select "Copy
as cURL".

Now head back to your terminal and paste. Cool, right? It creates a full curl command that you
can use to make that same request... including any session cookies, which means this request
will be authenticated as the same user you're logged in as in the browser. We can use this with

Blackfire: say blackfire then paste!

Try it! It's profiling and using the same process as the browser: making 10 requests and profiling
each one. This is my favorite way to profile AJAX requests. When it finishes, it gives us the URL

to the call graph and some basic stats below. Go open that profile: http://bit.ly/sf-bf-curl!

It works! Use that to easily profile any AJAX requests you want to.

http://bit.ly/sf-bf-curl

So what is the second superpower of the CLI tool? It's actually its main superpower: the ability

to profile command-line scripts. Let's do that next.

Chapter 14: Profiling Command Line scripts

As handy as the CLI tool is for profiling AJAX requests, its frue purpose is something different:
it's to allow us to profile our custom command-line scripts. Let's check out an example. I've

already created a command line script that you can execute by calling:

php bin/console app:update-sighting-scores

What does it do? Let me show you! Each Bigfoot sighting on the site has, what we call, a
"Bigfoot believability score". Right now, this shows zero for every sighting. That's because we
use a highly-complex and proprietary algorithm to calculate this. It's such a heavy process that,
instead of figuring it out on page-load, we store the current value in a column on each row of the

table. To populate that column, we run this command once a day: it loops over all the sightings,

calculates the newest "believability score" and saves it back to the database. Try it:

php bin/console app:update-sighting-scores

It takes a few seconds... and when we go back to the site and refresh... we find out that this

Bigfoot sighting in kind of believable - a score of 5 out of 10.

The code for this lives at src/Command/UpdateSightingScoresCommand.php:

src/Command/UpdateSightingScoresCommand. php

T /... lines 1 - 2

3 namespace App\Command;

4

5 use App\Repository\BigFootSightingRepository;

6 use Doctrine\ORM\EntityManagerInterface;

7 use Symfony\Component\Console\Command\Command;

8 use Symfony\Component\Console\Input\InputInterface;

9 use Symfony\Component\Console\Output\OutputInterface;

10 use Symfony\Component\Console\Style\SymfonyStyle;

11

12 class UpdateSightingScoresCommand extends Command

13 {

14 protected static $defaultName = 'app:update-sighting-scores’;
15

16 private $bigFootSightingRepository;

17 private $entityManager;

18

19 public function ___construct(BigFootSightingRepository

$bigFootSightingRepository, EntityManagerInterface $entityManager)

20 {

21 $this->bigFootSightingRepository = $bigFootSightingRepository;
22 $this->entityManager = $entityManager;

23

24 parent::__construct();

25 }

26

27 protected function configure()

28 {

29 $this

30 ->setDescription('Update the "score" for a sighting')
31 K

32 }

33

34 protected function execute(InputInterface $input, OutputInterface $output)
35 {

36 $io = new SymfonyStyle($input, $output);

37

38 $sightings = $this->bigFootSightingRepository->findAll();
39 $io->progressStart(count($sightings));
40 foreach ($sightings as $sighting) {
41 $io->progressAdvance();
42 $characterCount = 0;
43 foreach ($sighting->getComments() as $comment) {
44 $characterCount += strlen($comment->getContent());
45 }

46

47 $score = ceil(min($characterCount / 500, 10));

48 $sighting->setScore($score);
49 $this->entityManager->flush();
50 }

51 $io->progressFinish();

52 }

53 }

You might already see a problem. But if you don't... that's ok! Let's see what Blackfire thinks.

This time, run that same command, but put blackfire run atthe beginning:

blackfire run bin/console app:update-sighting-scores

Woh. It's a lot slower now: we're seeing evidence of how the PHP extension slows down the
process... and wow... it's just getting slower, and slower. I'm going to use the magic of TV to

speed things up.

Ok, let's look at that profile! http://bit.ly/sf-bf-console-original

Woh! Some computeChangeSet() function was called almost 500,000 times! Ah! That's taking
up half of the exclusive time! Because this call is such a problem, Blackfire is hiding a /ot of

data, all of which is unimportant relative to what we are seeing.

That's cool because the result is a super simple call graph: here's our command... here's

EntityManager: :flush() ... and then it goes into deep Doctrine stuff.

Let's check out the command and look for the EntityManager: :flush() call:

http://bit.ly/sf-bf-console-original

src/Command/UpdateSightingScoresCommand. php

$ // ... lines 1 - 11

12 class UpdateSightingScoresCommand extends Command
13 {

$ // ... lines 14 - 33

34 protected function execute(InputInterface $input, OutputInterface $output)
35 {

$ // ... lines 36 - 39

40 foreach ($sightings as $sighting) {

$ // ... lines 41 - 48

49 $this->entityManager->flush();

50 }

T // ... line 51

52 }

53 }

Yep! | flush once each time at the end of the loop, which updates that database row. If you're
familiar with Doctrine, you might know the problem: you don't need to call flush() inside the

loop. Instead, move this after the loop:

src/Command/UpdateSightingScoresCommand. php

T // ... lines 1 - 11

12 class UpdateSightingScoresCommand extends Command
13 {

$ // ... lines 14 - 33

34 protected function execute(InputInterface $input, OutputInterface $output)
35 {

T // ... lines 36 - 39

40 foreach ($sightings as $sighting) {

$ // ... lines 41 - 48

49 }

50 $this->entityManager->flush();

$ // ... line 51

52 }

53 }

With this change, Doctrine will try to perform all update queries at the same time... which even
lets it try to optimize those queries if it can. But the big problem with our old code was
something related to Doctrine's UnitOfWork: : computeChangeSet (). Each time you call
flush() in Doctrine, it looks at all the objects it has queried for - so all of the
BigFootSighting objects - and checks every single one to see if any data has changed that
needs to be sync'ed back to the database with an UPDATE query. Yep, with the old code, it was
checking every property of every record for updated data on every loop. Hence...the 450,000

calls!

Let's profile again with the updated code.

blackfire run php bin/console app:update-sighting-scores

This time it's much faster - | don't even think we need to compare the profiles: 56 seconds down

to 1. Open it up: http://bit.ly/sf-bf-console2.

Complexity, Speed & Reliability

Could we optimize this further? Maybe! But this performance enhancement already came at a
cost: reduced reliability. | originally put the call to flush() inside the loop not because | didn't
know better... but to make the command a little more resilient. If, for example, the command
gets through half of the records and then has an error, with the new code, none of the scores

will be saved.

It's beyond the scope of this tutorial, but | love to make my command-line scripts super forgiving.
If this were a real app, | would probably save the datetime that I last calculated the score for
each record and use that to query for only the rows that have not been updated in the last 24

hours. | would also move the flush() back into the loop:

$sightings = $this->bigFootSightingRepository
->findAllScoreNotUpdatedSince(new \DateTime('-1 month'));

foreach ($sightings as $sighting) {
7l ooc

$sighting->setScore($score);
$sighting->setScoreLastUpdatedAt(new \DateTime());
$this->entityManager->flush();

Thanks to those changes, if this command failed half-way through, the first half of the records
would already be updated and we could run the command again to resume with the ones that

are still not updated.

But wouldn't that make the command super-slow again? Yep! And with the help of Blackfire, you

can test solutions that improve performance without making the command less reliable. For

http://bit.ly/sf-bf-console2

example, we could make the first query only return an array of integer ids. Then, inside the loop,
use that id to query for the one object you need. That would mean we only have one

BigFootSighting object in memory at a time instead of all of them:

$sightingIds = $this->bigFootSightingRepository
->findIdsScoreNotUpdatedSince(new \DateTime('-1 month'));

foreach ($sightinglds as $id) {
$sighting = $this->bigFootSightingRepository->find($id);

$sighting->setScore($score);
$sighting->setScoreLastUpdatedAt(new \DateTime());
$this->entityManager->flush();

You can go further by calling EntityManager: :clear() after flush() to, sort of, "clear"
Doctrine's memory of the BigFootSighting object you just finished... so that it doesn't check it

for changes when we call flush() during the next time through the loop:

$sightinglds = $this->bigFootSightingRepository
->findIdsScoreNotUpdatedSince(new \DateTime('-1 month'));

foreach ($sightinglds as $id) {
$sighting = $this->bigFootSightingRepository->find($id);

$sighting->setScore($score);
$sighting->setScoreLastUpdatedAt(new \DateTime());
$this->entityManager->flush();
$this->entityManager->detach($sighting);

The point is: like with everything, make your code do what it needs to... then use Blackfire to

solve the real performance issues... if you have any.

Next, there's a giant screen in Blackfire that we haven't even looked at yet. What!? It's... the

Timeline!

Chapter 15: Timeline: Go Behind-the-Scenes with
your Code

Click log in to find our super-secure login system. We not only give you a valid email address,

but even the password! We're very generous to our users.

You can't tell, but now that we're logged in, a new piece of code is... silently running in the

background on each request. Blackfire is going to help us notice this.

Back to the dev Environment

Before we profile this page, open up the .env file and switch back to the dev environment:

.env

T // ... lines 1 - 16
17 APP_ENV=dev

$ // ... Lines 18 - 29

What I'm about to show you is more of a debugging tool than a profiling tool. We're switching
back to the dev environment both to make our life a little bit easier - no need to clear the cache
after changes - and because when your code executes more slowly, Blackfire tends to prune, or
remove, less stuff. That's bad for trying to find performance issues, but good if your goal is to

debug something... or understand how your app is working.

I'll refresh the page to make sure that it works. Yep! Our handy web debug toolbar on the bottom
is back! Let's profile! I'll call this one [Recording] Homepage authenticated dev:
http://bit.ly/sf-bf-timeline. Poetry.

When that finishes, as usual, click to view the call graph. Okay: there's not too much interesting
here... especially because the DebugClassLoader stuff is once again adding "noise" that won't
be there on production. It's not clear what the critical path is... and the page, at this point, is

probably fast enough for me.

Hello Timeline

http://bit.ly/sf-bf-timeline

So let's look at something else: click the "Timeline" link. O0oO0O0O0o0. The timeline... other than
just looking cool... is the place to go to... just... basically figure out how your app is working: how

does the code flow through all the layers? What hidden things might be happening?

For example, this page apparently has 28 SQL queries. But where are these happening? Are
they all in the controller? Are some in the controller and others are in the template? Are some
coming from somewhere else we didn't even think of? That's something that the call graph can't

really tell us.

| love the timeline... but I'll admit that the first few times | looked at this page... | didn't really
understand what was going on... or how to make this useful. It looks simple enough - we can
see the function calls and their child calls from left to right through the lifecycle of the request -

but there's more to it.

Metrics

Let's start on the left: these timeline metrics. Metrics are basically a way that Blackfire groups
function calls together and give them a label. For example, Blackfire knows that a specific
function call means that an event is being dispatched. It finds those, labels all of them as
symfony.events and give them this purple color so that they show up more clearly on the

right. Here's one Symfony event right here... and there's another one.

It does the same thing for SQL queries: it knows that PDOStatement: :execute(),
PDO: :query() and several other functions mean that an SQL query is being made. It groups
them together, calls them sql and labels them as yellow. It's a great idea... and is just that

simple.

Below this, there is another section called "Other Metrics". These are the same thing:
meaningful groups of function calls. The only difference is that Blackfire does not give these a
special color and they don't show up on the timeline. These are... just... raw data... that sit right
here. If you're wondering why that would useful... | was too! For the purpose of the timeline, they
are not useful. They'll come in handy later when we talk more about metrics. Metrics are their

own big topic.

Finding_Metrics in the Timeline

Let's look at one of the timeline metrics doctrine.entities.hydrated. What does this one
mean? Sometimes the title of a metric will tell you a bit more... but often the metric name is all

you really have. Most metrics are self-explanatory.

Depending on how well you know Doctrine, this might be obvious... or not. This metric refers to
whenever one or more entities are hydrated into an object. Notice the count is 3. For this metric,
it's not that there are only 3 objects being hydrated during this request, but that our code asks

Doctrine to hydrate one or more objects on three occasions.

So where are the 3 times that we're hydrating objects? One of the cool things is that, when you
hover over a timeline metric, it adds a border to the matching boxes on the right. It's... a little
subtle... but it does the trick. | wish you could double-click and... maybe zoom to the matching

boxes... but it's tricky because they may be spread out over the whole request.

If we hover over doctrine.entities.hydrated... hmm... | don't see those. You need to do a
little bit of digging... I'll hover back over. There they are. It turns out that the 3 calls are not all in
the same place: they're coming from three very different parts of our code. The first is part of the
firewall... probably querying for the logged in user... and the other two are down in some

template rendering... along with a few similarly-colored doctrine.dql.parsed items.

| want to look at what's happening inside of this template... but a lot of these things are really
small. On top, we can see the entire timeline. Click where we want to start, move over, and let

go! Zoom!

Much easier to see! In this spot, Doctrine parses its DQL, it makes an SQL query here... and a

different query a bit later.

So as far as getting insight into what's really going on in your application, you can't get much
better than this. You can even see our N+1 problem visually: it makes a query to count the

comments little-by-little as the template renders.

Hit the "Home" icon to zoom back out. This is cool... but | mentioned that, as soon as we logged
in, there was some new code that was now running in the background. Next, let's look a bit

closer at the timeline to discover what that is and a hidden performance problem.

Chapter 16: Timeline: Finding a Hidden Surprise

One of the big spots on the timeline is the RequestEvent. It's purple because this is an event:
the first event that Symfony dispatches. It happens before the controller is called... which is

pretty obvious in this view.

Let's zoom in: by double-clicking the square. Beautiful! What happens inside this event?
Apparently... the routing layer happens! That's RouterListener. You can also see Firewall:
this is where authentication takes place. Security is a complex system... so being able to see a
bit about what happens inside of it is pretty cool. At some point... it calls a method on
EntityRepository and we can see the query for the User object that we're logged in as.

Pretty cool.

The Hidden Slow Listener

There's one more big chunk under RequestEvent : something called
AgreeToTermsSubscriber... which is taking 30 milliseconds. Let's open that class and see

what it does: src/EventSubscriber/AgreeToTermsSubscriber.php:

src/EventSubscriber/AgreeToTermsSubscriber.php

T // ... lines 1 - 2

3 namespace App\EventSubscriber;

4

5 wuse App\Entity\User;

6 use App\Form\AgreeToUpdatedTermsFormType;

7 use Symfony\Component\EventDispatcher\EventSubscriberInterface;

8 use Symfony\Component\Form\FormFactoryInterface;

9 use Symfony\Component\HttpFoundation\Response;

10 use Symfony\Component\HttpKernel\Event\RequestEvent;

11 use Symfony\Component\Security\Core\Security;

12 use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

13 wuse Twig\Environment;

14

15 class AgreeToTermsSubscriber implements EventSubscriberInterface

16 {

17 private $security;

18 private $formFactory;

19 private $twig;

20 private $entrypointLookup;

21

22 public function _ construct(Security $security, FormFactorylInterface

$formFactory, Environment $twig, EntrypointLookupInterface $entrypointLookup)

23 {

24 $this->security = $security;

25 $this->formFactory = $formFactory;

26 $this->twig = $twig;

27 $this->entrypointLookup = $entrypointLookup;

28 }

29

30 public function onRequestEvent(RequestEvent $event)

31 {

32 $user = $this->security->getUser();

33

34 // only need this for authenticated users

35 if (!$user instanceof User) {

36 return;

37 }

38

39 // in reality, you would hardcode the most recent "terms" date
40 // change so you can see if the user needs to "re-agree". I've
41 // set it dynamically to 1 year ago to avoid anyone hitting
42 // this - as it's just example code...
43 //$latestTermsDate = new \DateTimeImmutable('2019-10-15");
44 $latestTermsDate = new \DateTimeImmutable('-1 year');
45
46 $form = $this->formFactory->create(AgreeToUpdatedTermsFormType::class);

47

48 $html = $this->twig->render('main/agreeUpdatedTerms.html.twig', [
49 "form' => $form->createView()

50 1)

51 // resets Encore assets so they render correctly later
52 // only technically needed here because we should really
53 // "exit" this function before rendering the template if
54 // we know the user doesn't need to see the form!

55 $this->entrypointLookup->reset();

56

57 // user 1is up-to-date!

58 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {
59 return;

60 }

61

62 $response = new Response($html);

63 $event->setResponse($response);

64 }

65

66 public static function getSubscribedEvents()

67 {

68 return [

69 RequestEvent::class => 'onRequestEvent',

70 15

71 }

72 }

Ah yes. Every now and then, we update the "terms of service" on our site. When we do that, our
lovely lawyers have told us that we need to require people to agree to the updated terms. This

class handles that: it gets the authenticated user and, if they're not logged in, it does nothing:

src/EventSubscriber/AgreeToTermsSubscriber.php

T // ... lines 1 - 14

15 class AgreeToTermsSubscriber implements EventSubscriberInterface
16 {

T // ... lines 17 - 29

30 public function onRequestEvent(RequestEvent $event)
31 {

32 $user = $this->security->getUser();

33

34 // only need this for authenticated users

35 if (!$user instanceof User) {

36 return;

37 }

T // ... lines 38 - 63

64 }

$ // ... lines 65 - 71

72 }

But if they are logged in, then it renders a twig template with an "agree to the terms" form:

src/EventSubscriber/AgreeToTermsSubscriber.php

T // ... lines 1 - 14

15 class AgreeToTermsSubscriber implements EventSubscriberInterface

16 {

$ // ... lines 17 - 29

30 public function onRequestEvent(RequestEvent $event)

31 {

T // ... lines 32 - 38

39 // in reality, you would hardcode the most recent "terms" date
40 // change so you can see if the user needs to "re-agree". I've
41 // set it dynamically to 1 year ago to avoid anyone hitting

42 // this - as it's just example code...

43 //$latestTermsDate = new \DateTimeImmutable('2019-10-15");

44 $latestTermsDate = new \DateTimeImmutable('-1 year');

45

46 $form = $this->formFactory->create(AgreeToUpdatedTermsFormType::class);
47

48 $html = $this->twig->render('main/agreeUpdatedTerms.html.twig', [
49 "form' => $form->createView()

50 1)

51 // resets Encore assets so they render correctly later

52 // only technically needed here because we should really

53 // "exit" this function before rendering the template if

54 // we know the user doesn't need to see the form!

55 $this->entrypointLookup->reset();

56

57 // user is up-to-date!

58 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

59 return;

60 }

$ // ... Lines 61 - 63

64 }

$ // ... lines 65 - 71

72 }

Eventually, if the terms have been updated since the last time this User agreed to them, it sets

that form as the response instead of rendering the real page.

We haven't seen this form yet... and... it's not really that important. Because we rarely update

our terms, 99.99% of the requests to the site will not display the form.

So... the fact that this is taking 30 milliseconds... even though it will almost never do anything...

is kind of a lot!

Blue Memory Footprint

Oh, and see this blue background? | love this: it's the memory footprint. If we trace over this call
- this is about when the AgreeToTermsSubscriber happens - the memory starts at 3.44
megabytes... and finishes around 4.46. That's 1 megabyte of memory - kinda high for such a

rarely-used function.

The point is: this method doesn't take that long to run. And so, it may not have shown up as a
performance critical path on the call graph. But thanks to the timeline, this invisible layer jumped

out at us. And... | think it /s taking a bit too long.

Fixing_the Slow Code

Back in the code, the mistake | made is pretty embarrassing. I'm using some pretend logic to

see whether or not we need to render the form. But... | put the check too late!

src/EventSubscriber/AgreeToTermsSubscriber.php

T // ... lines 1 - 14

15 class AgreeToTermsSubscriber implements EventSubscriberInterface
16 {

$ // ... lines 17 - 29

30 public function onRequestEvent(RequestEvent $event)

31 {

T // ... lines 32 - 56

57 // user is up-to-date!

58 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {
59 return;

60 }

$ // ... lines 61 - 63

64 }

$ // ... lines 65 - 71

72 }

We're doing all the work of rendering the form... even if we don't use it.

Let's move that code all the way to the top. Ah, too far - it needs to be after the fake

$latestTermsDate variable:

src/EventSubscriber/AgreeToTermsSubscriber.php

T /7 ... lines 1 - 14

15 class AgreeToTermsSubscriber implements EventSubscriberInterface

16 {

$ // ... lines 17 - 29

30 public function onRequestEvent(RequestEvent $event)

31 {

T // ... lines 32 - 38

39 // in reality, you would hardcode the most recent "terms" date
40 // change so you can see if the user needs to "re-agree". I've
41 // set it dynamically to 1 year ago to avoid anyone hitting
42 // this - as it's just example code...

43 //$latestTermsDate = new \DateTimeImmutable('2019-10-15");
44 $latestTermsDate = new \DateTimeImmutable('-1 year');

45

46 // user is up-to-date!

47 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

48 return;

49 }

1 // ... Llines 50 - 63

64 }

$ // ... lines 65 - 71

72}

That looks better. Let's try it! I'll refresh the page. Profile again and call it

[Recording] Homepage authenticated fixed subscriber: http://bit.ly/sf-bf-timeline-fix

Let's jump straight to view the Timeline... double-click RequestEvent and this time...
AgreeToTermsSubscriber is gone! We can see RouterListener and Firewall... but not
AgreeToTermsSubscriber. That's not because our app isn't calling it anymore: it is. It's

because Blackfire hides function calls that take almost no resources. That's great.

Next, we know that we can write code inside a function that is slow. But did you know that
sometimes even the instantiation of an object can eat a lot of resources? Let's see how that
looks in Blackfire and leverage a Symfony feature - service subscribers - to make instantiation

lighter.

http://bit.ly/sf-bf-timeline-fix

Chapter 17: Spotting Heavy Object Instantiation

| want to show a... more subtle performance problem. To even see it, we need to go back to the

prod environment:

.env

T // ... lines 1 - 16
17 APP_ENV=prod

$ // ... lines 18 - 29

Make sure to run cache:clear:

php bin/console cache:clear

cache:warmup:

php bin/console cache:warmup

And also:

composer dump-autoload --optimize

Let's create a fresh profile of the homepage. I'll call this one: [Recording] Homepage prod.

Click to view the timeline: http://bit.ly/sf-bf-instantiation

Overall, this request is pretty fast. Click into the "Memory" dimension. The biggest call is
Composer\Autoload\includeFile: that's literally Composer including files that we need... not

a lot of memory optimization we can do about that.

But, if we look closer, the memory dimension reveals something else. See this "Container" thing

- the 2nd item on the function list? This is related to Symfony's container, which is responsible

http://bit.ly/sf-bf-instantiation

for instantiating all of our objects. This specific function is interesting: it's highlighting a section of
a file that lives in our cache directory. If you looked in that file, you would see that this part of the
code is responsible for including some of the main files that our app needs. It's basically another

version of the top node: it's code that includes files for classes we're using.

Seeing_Object Instantiation

Ok, so the first few aren't really that interesting. Things get much more intriguing down on the
4th function call: some
Container{BlahBlah}/getDoctrine_Orm_DefaultEntityManagerService.php call. What
is this? Well, the details of how this is organized are specific to Symfony: but this is evidence of
something that every app does: this is showing the amount of resources used to instantiate
Doctrine's EntityManager object. | know, we don't often think about how much time or how much
memory it takes to instantiate an object, but it can sometimes be a problem. The next function

call is for the instantiation of Doctrine's Connection service.

Go down a little bit... I'm looking for something specific... here it is:
getLoginFormAuthenticatorService() . This is responsible for instantiating a
LoginFormAuthenticator object in our app. It's not a particularly problematic function though:

it's 10th on the list... only takes 2.56 milliseconds and uses about 500 kilobytes.

Checking the Instantiation of LoginFormAuthenticator

Let's check out the class: src/Security/LoginFormAuthenticator.php:

src/Security/LoginFormAuthenticator.php

T // ... lines 1 - 2

3 namespace App\Security;

$ // ... lines 4 - 21
22 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator
23 {
24 use TargetPathTrait;
25
26 private $entityManager;
27 private $urlGenerator;
28 private $csrfTokenManager;
29 private $passwordEncoder;
30
31 public function __ construct(EntityManagerInterface $entityManager,

UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface $csrfTokenManager,
UserPasswordEncoderInterface $passwordEncoder)

32 {

33 $this->entityManager = $entityManager;

34 $this->urlGenerator = $urlGenerator;

35 $this->csrfTokenManager = $csrfTokenManager;

36 $this->passwordEncoder = $passwordEncoder;

37 }

38

39 public function supports(Request $request)

40 {

41 return 'app_login' === $request->attributes->get(' route')
42 && $request->isMethod('POST");

43 }

44

45 public function getCredentials(Request $request)

46 {

47 $credentials = [

48 ‘email' => $request->request->get('email'),

49 ‘password' => $request->request->get('password'),

50 ‘csrf_token' => $request->request->get('_csrf_token'),
51 15

52 $request->getSession()->set(

53 Security::LAST_USERNAME,

54 $credentials['email"']

55)5

56

57 return $credentials;

58 }

59

60 public function getUser($credentials, UserProviderInterface $userProvider)
61 {

62 $token = new CsrfToken('authenticate', $credentials['csrf_token']);

63 if (!$this->csrfTokenManager->isTokenValid($token)) {

64 throw new InvalidCsrfTokenException();

65 }

66

67 $user = $this->entityManager->getRepository(User::class)-
>findOneBy (['email' => $credentials['email']]);

68

69 if (!$user) {

70 // fail authentication with a custom error

71 throw new CustomUserMessageAuthenticationException('Email could not
be found.");

72 }

73

74 return $user;

75 }

76

77 public function checkCredentials($credentials, UserInterface $user)

78 {

79 return $this->passwordEncoder->isPasswordvalid($user,
$credentials['password']);

80 }

81

82 public function onAuthenticationSuccess(Request $request, TokenInterface
$token, $providerKey)

83 {

84 if ($targetPath = $this->getTargetPath($request->getSession(),
$providerkey)) {

85 return new RedirectResponse($targetPath);

86 }

87

88 return new RedirectResponse($this->urlGenerator-
>generate('app_homepage'));

89 }

90

91 protected function getLoginUrl()

92 {

93 return $this->urlGenerator->generate('app_login');

94 }

95 }

As its name suggests, this is responsible for authenticating the user when they submit the login

form.

But, there's something special about this class. Due to the way the Symfony security system
works, Symfony instantiates this object on every request. It does that so it can then call

supports() to figure out if this service should be "activated" on this request or not:

src/Security/LoginFormAuthenticator.php

T // ... lines 1 - 21

22 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator
23 {

$ // ... lines 24 - 38

39 public function supports(Request $request)

40 {

41 return 'app_login' === $request->attributes->get(' route')
42 && $request->isMethod('POST");

43 }

$ // ... lines 44 - 94

95 }

For this class, it only needs to its work when the URL is /login and this is a POST request. In

every other situation, supports() returns false and no other methods are called on this class.

So let's think about this. Instantiating this class takes about 3 milliseconds and 500 kilobytes...
which is not a ton... but since all it needs to do for most requests is check the current URL...

then exit... that is kind of heavy.

Why Instantiation is Slow?

The question is: why does it take so many resources to instantiate? Well, 500 kilobytes is not a
ton, but this is - according to Blackfire - one of the most expensive objects that is created on this

request. Why?

Check out the constructor:

src/Security/LoginFormAuthenticator.php

T /7 ... lines 1 - 21

22 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator
23 {

$ // ... lines 24 - 30

31 public function __ construct(EntityManagerInterface $entityManager,
UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface $csrfTokenManager,
UserPasswordEncoderInterface $passwordEncoder)

32 {

33 $this->entityManager = $entityManager;

34 $this->urlGenerator = $urlGenerator;

35 $this->csrfTokenManager = $csrfTokenManager;
36 $this->passwordEncoder = $passwordEncoder;
37 }

$ // ... Llines 38 - 94

95 }

In order to instantiate this class, Symfony needs to make sure the EntityManager is
instantiated... and the UrlGenerator.. and the CsrfTokenManager ... and the
UserPasswordEncoder. If any of these services have their own dependencies, even more
objects may need to be instantiated. In rare situations, creating a service can be a huge

performance problem.

In the case of the EntityManager and the UrlGenerator... those are pretty core objects that
would probably be needed and thus instantiated by something on this request anyways. But
CsrfTokenManager and UserPasswordEncoder are not normally needed. In other words,
we're forcing Symfony to instantiate both of those services on every request... even though we

only need them when the user is submitting the login form.

This is a classic situation where you have an object that is instantiated on every request... but
only needs to do real work in rare cases. Certain event subscribers - like our
AgreeToTermsSubscriber - Symfony security voters & Twig extensions are other examples
from Symfony. These services might be quick to instantiate... so no problem! But they also might

be expensive.

So... how could we make it quicker to instantiate LoginFormAuthenticator ? In Symfony, with

a service subscriber.

Chapter 18: Service Subscribers

Because this service is instantiated on every request... it means that all four of the objects in its

constructor also need to be instantiated:

src/Security/LoginFormAuthenticator.php

T // ... lines 1 - 21

22 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator
23 {

$ // ... lines 24 - 30

31 public function ___construct(EntityManagerInterface $entityManager,
UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface $csrfTokenManager,
UserPasswordEncoderInterface $passwordEncoder)

32 {

33 $this->entityManager = $entityManager;

34 $this->urlGenerator = $urlGenerator;

35 $this->csrfTokenManager = $csrfTokenManager;
36 $this->passwordEncoder = $passwordEncoder;
37 }

$ // ... lines 38 - 94

95 }

That's not a huge deal... except that two of these services probably wouldn't be instantiated
during a normal request and aren't even used unless the current request is a login form submit.

In other words, we're always instantiating these objects... even though we don't need them!

How can we fix this? By using a service subscriber: it's a strategy in Symfony that allows you to
get a service you need... but delay its instantiation until - and unless - you actually need to use

it. It's great for performance. But, like many things, it comes at a cost: a bit more complexity.

Implementing_ServiceSubscriberinterface

Start by adding an interface to this class: ServiceSubscriberInterface:

src/Security/LoginFormAuthenticator.php

T // ... lines 1 - 21
22 use Symfony\Contracts\Service\ServiceSubscriberInterface;
23

24 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements
ServiceSubscriberInterface

25 {
$ // ... Lines 26 - 100
101 }

Then I'll move to the bottom of the file, go to the "Code"->"Generate" menu - or Command+N on
a Mac - and select "Implement Methods" to generate the one method this interface requires:

getSubscribedServices():

src/Security/LoginFormAuthenticator.php

T // ... lines 1 - 23

24 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements
ServiceSubscriberInterface

25 {

$ // ... lines 26 - 91

92 public static function getSubscribedServices()
93 {

T // ... lines 94 - 99
100 }
101 }

What does this return? An array of type-hints for all the services we need. For this class, it's
these four. So, return EntityManagerInterface::class, UrlGeneratorInterface::class,
CsrfTokenManagerInterface::class and OtherLongInterfaceName::class, uh,

UserPasswordEncoderInterface::class:

src/Security/LoginFormAuthenticator.php

T // ... lines 1 - 23

24 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements
ServiceSubscriberInterface

25 {

$ // ... lines 26 - 91

92 public static function getSubscribedServices()
93 {

94 return [

95 EntityManagerInterface::class,

96 UrlGeneratorInterface::class,

97 CsrfTokenManagerInterface::class,

98 UserPasswordEncoderInterface::class,
99 1;
100 }
101 }

By doing this, we can now remove these four arguments. Replace them with

ContainerInterface - the one from Psr\Container - $container:

src/Security/LoginFormAuthenticator.php

T // ... lines 1 - 6
7 use Psr\Container\ContainerInterface;
T // ... lines 8 - 23

24 class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements
ServiceSubscriberInterface

25 {
T // ... Lines 26 - 29
30 public function _ construct(ContainerInterface $container)
31 {
T /... line 32
33 }
$ // ... lines 34 - 100
101 }

When Symfony sees the new interface and this argument, it will pass us a, sort of, "mini-
container" that holds the 4 objects we need. But it does this in a way where those 4 objects

aren't created until we use them.

Finish this by removing the old properties... and having just one: $container. Set it with

$this->container = $container:

src/Security/LoginFormAuthenticator.php

0

24

25

0
28
29
30
31
32
33

0

101

// ... Llines 1 - 23

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements
ServiceSubscriberInterface

{
// ... lines 26 - 27
private $container;
public function __ construct(ContainerInterface $container)
{
$this->container = $container;
}
// ... lines 34 - 100
}

Using_the Container Locator

Because those properties are gone, using the services looks a bit different. For example, down

here for CsrfTokenManager, now we need to say $this->container->get() and pass it the

type-hint CsrfTokenManagerInterface::class:

src/Security/LoginFormAuthenticator.php

24

25

0
56
57

0

59

0

61

0

71

0

101

// ... lines 1 - 23

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements
ServiceSubscriberInterface

{

// ... lines 26 - 55
public function getUser($credentials, UserProviderInterface $userProvider)
{

// ... Lline 58

if (!$this->container->get(CsrfTokenManagerInterface::class)-
>isTokenValid($token)) {

// ... Lline 60
¥
// ... lines 62 - 70
}
// ... lines 72 - 100
}

This will work just like before except that the CsrfTokenManager won't be instantiated until this

line is hit... and if this line isn't hit, it won't be instantiated.

For entityManager, use $this->container->get(EntityManagerInterface::class), for

passwordEncoder, $this->container->get(UserPasswordEncoderInterface::class)

and finally, for urlGenerator, use

$this->container->get->(UrlGeneratorInterface::class). l'll copy that and use it again

inside getLoginUrl():

src/Security/LoginFormAuthenticator.php

0

24

25

0
56
57

0

59

61
62
63

71
72
73
74
75

76
77
78

79

84

85
86
87
88
89

90

101

// ... Llines 1 - 23

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements
ServiceSubscriberInterface

{

// ... lines 26 - 55
public function getUser($credentials, UserProviderInterface $userProvider)
{

// ... line 58

if (!$this->container->get(CsrfTokenManagerInterface::class)-
>isTokenValid($token)) {

// ... Line 60
}

$user = $this->container->get(EntityManagerInterface::class)-
>getRepository(User::class)->findOneBy(['email' => $credentials['email’']]);
// ... lines 64 - 70

public function checkCredentials($credentials, UserInterface $user)
{

return $this->container->get(UserPasswordEncoderInterface::class)-
>isPasswordValid($user, $credentials['password']);

}

public function onAuthenticationSuccess(Request $request, TokenInterface
$token, $providerKey)
{
// ... lines 80 - 83
return new RedirectResponse($this->container-
>get(UrlGeneratorInterface::class)->generate('app_homepage'));

}

protected function getLoginUrl()
{

return $this->container->get(UrlGeneratorInterface::class)-
>generate('app_login');
}
// ... Lines 91 - 1600

}

So, a little bit more complicated... but it should take less resources to create this class. The
question is: did this make enough difference for us to want this added complexity? Let's find out.

First, clear the cache:

php bin/console cache:clear

And warm it up:

php bin/console cache:warmup

Comparing_the Results

Move back over... I'll close some tabs and... refresh. Profile again: I'll call this one:

[Recording] Homepage service subscriber: https://bit.ly/sf-bf-service-subscriber. View the

call graph.

Excellent! Go back to the "Memory" dimension and search for "login". The call is still here but it's

taking a lot less memory and less time. Let's compare this to be sure though. Click back to the

homepage and go from the previous profile to this one: https://bit.ly/sf-bf-service-subscriber-

compare.

Nice! The wall time is down by 4%... CPU is down and memory also decreased... but just a little
bit.

So was this change worth it? Probably. But this doesn't mean you should run around and use
service subscribers everywhere. Why? Because they add complexity to your code and, unless
you have a specific situation, it won't help much or at all. Use Blackfire to find the real problems

and target those.

For example, we also could have made this same change to our AgreeToTermsSubscriber:

https://bit.ly/sf-bf-service-subscriber
https://bit.ly/sf-bf-service-subscriber-compare
https://bit.ly/sf-bf-service-subscriber-compare

src/EventSubscriber/AgreeToTermsSubscriber.php

T // ... lines 1 - 2

3 namespace App\EventSubscriber;

$ // ... lines 4 - 14
15 class AgreeToTermsSubscriber implements EventSubscriberInterface
16 {
17 private $security;
18 private $formFactory;
19 private $twig;
20 private $entrypointLookup;
21
22 public function _ construct(Security $security, FormFactorylInterface

$formFactory, Environment $twig, EntrypointLookupInterface $entrypointLookup)
23 {

24 $this->security = $security;

25 $this->formFactory = $formFactory;

26 $this->twig = $twig;

27 $this->entrypointLookup = $entrypointLookup;

28 }

29

30 public function onRequestEvent(RequestEvent $event)

31 {

32 $user = $this->security->getUser();

33

34 // only need this for authenticated users

35 if (!$user instanceof User) {

36 return;

37 }

38

39 // in reality, you would hardcode the most recent "terms" date
40 // change so you can see if the user needs to "re-agree". I've
41 // set it dynamically to 1 year ago to avoid anyone hitting

42 // this - as it's just example code...

43 //$latestTermsDate = new \DateTimeImmutable('2019-10-15');

44 $latestTermsDate = new \DateTimeImmutable('-1 year');

45

46 // user 1is up-to-date!

47 if ($user->getAgreedToTermsAt() >= $latestTermsDate) {

48 return;

49 }

50

51 $form = $this->formFactory->create(AgreeToUpdatedTermsFormType::class);
52

53 $html = $this->twig->render('main/agreeUpdatedTerms.html.twig', [
54 "form' => $form->createView()

55 1)

56 // resets Encore assets so they render correctly later

57 // only technically needed here because we should really

58 // "exit" this function before rendering the template if
59 // we know the user doesn't need to see the form!
60 $this->entrypointLookup->reset();

61

62 $response = new Response($html);

63 $event->setResponse($response);

64 }

65

66 public static function getSubscribedEvents()

67 {

68 return [

69 RequestEvent::class => 'onRequestEvent',

70 1

71 }

72}

This class is also instantiated on every request... but rarely needs to do its work. That means we

are causing the FormFactory object to be instantiated on every request.

But, go back to the latest profile... click to view the memory dimension... and search for "agree".
There itis! It took 1.61 milliseconds and 41 kilobytes to instantiate this. That's... a lot less than
the login authenticator. So, is making this class a service subscriber worth it? For me, no. I'd

rather get back to writing features or fixing bigger performance issues.

Next, we can take a lot more control of the profiling process, like profiling just a portion of our
code or automatically triggering a profile based on some condition, instead of needing to

manually use the browser extension. Let's talk about the Blackfire SDK next.

Chapter 19: Manually Profile (Instrument) Part of
your Code

Profiling a page looks like this.

Profiling: What happens Behind the Scenes

First, something tells the Blackfire PHP extension - the "Probe":
“Hey! Start profiling!”

Which basically means that it starts collecting tons of data. The process of collecting data is
called instrumentation... because when a concept is too simple, sometimes we tech people like

to invent confusing words. Instrumentation means that the PHP extension is collecting data.

The second step is that - eventually - something tells the PHP extension to stop
"instrumentation" and to send the data. The collection of data is known as a "profile". The PHP
extension sends the profile to the agent, which aggregates it, prune some stuff and ultimately

sends it to the Blackfire server.

So: what is the "thing" that tells the PHP extension to activate? We know that the PHP extension

doesn't profile every request... so what is it that says:
“Hey PHP extension "probe" thing: start profiling!”

The answer - so far - is: the browser extension: it sends special information that tells the probe
to do its thing. Or, if you use the blackfire command line utility, which we did earlier to profile

a command, then it is what tells the PHP extension to activate.

In either situation, the extension is activated before even the first line of code is executed. That
means that every single line of PHP code is "instrumented": our final profile contains everything.

This is called auto-instrumentation: instrumentation starts automatically.

This naturally leads to three interesting questions.

First, who is baby Yoda? | mean, is he... like, related to Yoda? Or just the same species?

The second question is: could we trigger, or create a Blackfire profile in a different way? Could
we, for example, dynamically tell the PHP extension to create a profile from inside our code

under some specific condition?

And third, regardless of who triggers the profile, could we "zoom in" and only collect profiling
data for part of our code? Like, could we create a profile that only collects data about the code

from our controller instead of the entire request?

Let's actually start with that last question: profiling a specific part of our code, instead of the
whole thing. To be fully honest, | don't know if this part has a ton of practical use-cases, but it

will give you an even better idea of how Blackfire works behind the scenes.

Installing_the Blackfire SDK

To help with this crazy experiment, we're going to install Blackfire's PHP SDK. Find your

terminal, dial up your modem to the Internet, and run:

composer require blackfire/php-sdk

This is a normal PHP library that helps interact directly with Blackfire from inside your code.

You'll see how.

When it finishes, move over and open src/Controller/MainController.php:

src/Controller/MainController.php

$ // ... lines 1 - 16
17 class MainController extends AbstractController
18 {
19 Yk
20 * @Route("/", name="app_homepage")
21 */
22 public function homepage(BigFootSightingRepository
$bigFootSightingRepository)
23 {
24 $sightings = $this->createSightingsPaginator(1,
$bigFootSightingRepository);
25
26 return $this->render('main/homepage.html.twig', [
27 ‘sightings' => $sightings
28 1)
29 }
$ // ... lines 30 - 120
121 }

Ok: this is the controller for our homepage. Let's pretend that when we profile this page, we
don't want to collect data about all of our code. Nope, we want to, sort of, "zoom in" and see

only what's happening inside the controller.

Manually Instrumenting Code

We can do that by saying $probe = \BlackfireProbe::getMainInstance():

src/Controller/MainController.php

T // ... lines 1 - 16

17 class MainController extends AbstractController

18 {

$ // ... lines 19 - 21

22 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

23 {

24 $probe = \BlackfireProbe::getMainInstance();

T // ... lines 25 - 34

35 }

$ // ... lines 36 - 126
127 }

Remember: the PHP extension is called the "probe"... that's important if you want this to make

sense. Then call $probe->enable():

src/Controller/MainController.php

0
17
18

0

22

23
24
25
0
35
0
39
0

127

// ... Llines 1 - 16

class MainController extends AbstractController
{

// ... lines 19 - 21

public function homepage(BigFootSightingRepository
$bigFootSightingRepository)

{
$probe = \BlackfireProbe::getMainInstance();
$probe->enable();
// ... Llines 26 - 34
}
// ... lines 36 - 38
*/
// ... Lines 406 - 126

}

At the bottom, I'll set the rendered template to a $response variable, add $probe->disable()

and finish with return $response:

src/Controller/MainController.php

0

17
18

0
22

23
24
25

0
28
29
30
31
32
33
34
35

0

127

// ... lines 1 - 16

class MainController extends AbstractController
{

// ... Llines 19 - 21

public function homepage(BigFootSightingRepository
$bigFootSightingRepository)

{
$probe = \BlackfireProbe::getMainInstance();

$probe->enable();
// ... lines 26 - 27
$response = $this->render('main/homepage.html.twig', [
'sightings' => $sightings
s

$probe->disable();

return $response;

// ... Llines 36 - 126
}

Okay, so... what the heck does this do? The first thing | want you to notice is that if | refresh the

homepage a bunch of times... and then go to https://blackfire.io, | do not have any new profiles.

https://blackfire.io/

Adding this code does not "trigger" a new profile to be created: it does not tell the PHP

extension - the "probe" - that it should to do its work.

Instead, if a profile is currently being created, this tells the probe when to start collecting data.
Hmm, this isn't going to quite make sense until we see it in action. Trigger a new profile on the

homepage. I'll call this one: [Recording] Only instrument some code.

Click to view the call graph: https://bit.ly/sf-bf-partial-profile.

Fascinating. This contains less information than normal. It has a few things on top - main() and

handleRaw() ... but basically it jumps straight to the homepage() method.

How Disabling Auto-Instrumentation Works

What's happening here is that the only code that the probe "instrumented", the only code that it

collected information on, is the code between the enable() and disable() calls:

src/Controller/MainController.php

T // ... lines 1 - 16

17 class MainController extends AbstractController

18 {

$ // ... lines 19 - 21

22 public function homepage(BigFootSightingRepository

$bigFootSightingRepository)

23 {

T // ... line 24

25 $probe->enable();

26 $sightings = $this->createSightingsPaginator(1,

$bigFootSightingRepository);

27

28 $response = $this->render('main/homepage.html.twig', [
29 'sightings' => $sightings

30 1)

31

32 $probe->disable();

$ // ... lines 33 - 34

35 }

T // ... lines 36 - 126
127 }

This... completely confused me the first time | saw it. What really happens is this: as soon as we

use the browser extension to tell the probe to do its job, the PHP extension starts instrumenting

https://bit.ly/sf-bf-partial-profile

- S0, collection data - immediately. Initially, it is collecting data about every line of PHP code.

But as soon as it sees $probe->enable(), it basically forgets about all the data collected so

far. The $probe->enable() call says:

“Hey! Start instrumenting here. If you've already collected some data before thanks to auto-

instrumentation, get rid of it.”

This effectively disables auto-instrumentation: we're now controlling which code is instrumented
instead of it happening automatically. Once the code hits $probe->disable() instrumentation

stops.

You can actually use $probe->enable() and $probe->disable() multiple times in your code
if you want to profile different pieces: $probe->enable() only forgets data it's already collected

the first time you call it.

Oh, and you can also optionally call $probe->close() - you'll see this in their documentation:

src/Controller/MainController.php

T // ... lines 1 - 16
17 class MainController extends AbstractController
18 {
T // ... lines 19 - 21
22 public function homepage(BigFootSightingRepository
$bigFootSightingRepository)
23 {
T // ... lines 24 - 31
32 $probe->disable();
33 $probe->close(); // optional - will auto-close at end of script
T // ... lines 34 - 35
36 }
$ // ... lines 37 - 127
128 }

That tells the PHP extension that you're definitely done profiling and it can send the data to the
agent. But, it's not strictly required, because it'll be sent automatically when the script ends

anyways.

So... this feature is maybe useful... but it's definitely a nice intro into taking more control of the

profiling process.

We haven't used the SDK Yet

And.. fun fact! We installed the blackfire/php-sdk library... but we haven't actually used it
yet! This \BlackfireProbe class is not from the php-sdk library: it's from the Blackfire PHP
extension. As long as you have the extension installed, that class will exist. We're interacting

directly with the extension.

So... why did we install the SDK if we didn't need it? Because... it gave us auto-complete on that

class. And you all know that | freakin' love auto-complete.

The SDK has a, sort of, "stub" version of this class. This is not the code that was actually
executed when we called those methods... but having this at least shows us what methods and

arguments exist.

Next, let's actually use the PHP SDK to do something a bit more interesting. | want to create a
profile automatically in my code without needing to use the browser extension. This does have

real-world use-cases.

Chapter 20: SDK: Automatically Create a Profile

Imagine you have a performance "problem" on production. No worries! Except... the issue is
only caused in some edge-case situation... and you're having a hard time repeating the exact
condition... which means that you can't create a meaningful Blackfire profile by using the

browser extension.

For example, imagine we want to profile the AJAX request that loads the GitHub repository
info... but we think that the performance problem only happens for certain types of users -

maybe users that have many comments. I'm just making this up.

To do that, instead of triggering a new profile by clicking the browser extension button - which
maybe is hard because we can't seem to replicate the correct situation - let's trigger a new

profile automatically from inside our code. We can do this using the PHP SDK.

Spin over, go back to MainController and scroll down to loadSightingsPartial() ...

actually to the gitHubOrganizationInfo() method:

src/Controller/MainController.php

T // ... lines 1 - 16

17 class MainController extends AbstractController

18 {

T // ... lines 19 - 58

59 /x*

60 * @Route("/api/github-organization"”, name="app_github_organization_info")
61 */

62 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)
63 {

64 $organizationName = 'SymfonyCasts’;

65 $organization = $apiHelper->getOrganizationInfo($organizationName);
66 $repositories = $apiHelper-

>getOrganizationRepositories($organizationName);

67

68 return $this->json([

69 ‘organization' => $organization,

70 'repositories’' => $repositories,

71 1)

72 }

$ // ... lines 73 - 127
128 }

This is the controller that returns the content on the right side of the page.

Start by creating a fake variable $shouldProfile = true:

src/Controller/MainController.php

T // ... lines 1 - 17
18 class MainController extends AbstractController
19 {
$ // ... Lines 20 - 55
56 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)
57 {
58 // replace with some conditional logic
59 $shouldProfile = true;
$ // ... lines 60 - 73
74 }
$ // ... lines 75 - 129
130 }

In a real app, you would replace this with logic to determine whether or not this is one of those
requests that you think might have a performance problem: maybe you check to see if the user

has many comments or something.

Creating_& Starting_the Profile

Then, if $shouldProfile, it means that we want Blackfire to profile this request. To do that, say
$blackfire = new Client() - the one from Blackfire. This is an object that helps
communicate with the Blackfire servers. Next, create a probe - basically create a new "profile" -

with $probe = $blackfire->createProbe():

src/Controller/MainController.php

T // ... lines 1 - 17

18 class MainController extends AbstractController
19 {

$ // ... Llines 20 - 55

56 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)
57 {

58 // replace with some conditional logic
59 $shouldProfile = true;

60

61 if ($shouldProfile) {

62 $blackfire = new Client();

63 $probe = $blackfire->createProbe();
64 }

$ // ... lines 65 - 73

74 }

$ // ... lines 75 - 129
130 }

Earlier, when we used BlackfireProbe: :getMainInstance(), we were, kind of asking for a
"probe" if there was a profile happening. But this time, we're creating a probe: creating a new

profile and telling it to start "instrumenting" - collecting data - right now.

In fact, the second argument to createProbe() is $enabled=true: whether or not we want
the probe to immediately start instrumentation or if we will enable it later with

$probe->enable().

Now, because this will create a new profile, you need to make sure you do this only rarely on
production. Why? Because creating profiles is heavy and this slow request will be felt by

whichever user triggered it. So, choose your logic for $shouldProfile carefully.

Anyways, let's try it! Move over and refresh your list of Blackfire profiles. The most recent one is
the "Only instrumenting some code" profile. Now refresh the homepage. This triggers the AJAX

call... but notice it's slower. And when we refresh Blackfire... boom! We have a brand new

profile! Open that up and... let's give it a name: [Recording] First automatic profile:

http://bit.ly/f-bf-1st-auto-profile. I'm so proud.

This only Profiles the Controller

You can now create new profiles from your code... whenever you want to. But... there's a small
problem: this only profiled a tiny part of our code. And, that makes sense: when our PHP code
started executing, the PHP extension didn't yet know that we wanted to profile this request. And
so, it couldn't start collecting data until we told it to, which happened in the controller. To make
matters worse, as soon as PHP garbage collected the $probe variable... which happened once
the variable isn't used anymore... so at the end of the controller, internally, the probe called
close() on itself. That means that we just collected data on nothing more than the code in our

controller.

How can we fix that? By starting the probe super early and closing it manually as late as we

can. Let's do that next.

http://bit.ly/f-bf-1st-auto-profile

Chapter 21: Creating an Automatic Probe Early in
your Code

Once we determine that we want to create a probe dynamically in our code, we really want to do

that as early as possible so that Blackfire can "instrument" as much of our code as possible.

Generating_the Event Subscriber

In Symfony, we can do that with an event subscriber... which we will generate to be super lazy.

First, in .env, make sure that you're back in the dev environment:

.env

$ // ... lines 1 - 16
17 APP_ENV=dev

T // ... lines 18 - 29

Then, find your terminal and run:

php bin/console make:subscriber

Call it BlackfireAutoProfileSubscriber... and we want to listen to RequestEvent: Go

check out the code src/EventSubscriber/BlackfireAutoProfileSubscriber.php:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 2

3 namespace App\EventSubscriber;

4

5 use Symfony\Component\EventDispatcher\EventSubscriberInterface;
6 use Symfony\Component\HttpKernel\Event\RequestEvent;

7

8 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
9 {

10 public function onRequestEvent(RequestEvent $event)

11 {
12 /]l ...
13 }
14
15 public static function getSubscribedEvents()
16 {
17 return [
18 RequestEvent::class => 'onRequestEvent',
19 15
20 }
21}

So, when this RequestEvent happens - which Symfony dispatches super early when handling

a request, we want to create & enable the probe. Copy all of the $shouldProfile code,

remove it from the controller and paste it here:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

10
11
12

17
18
19
20
21

29

o

lines 1 - 4

use Blackfire\Client;

I ooc
class BlackfireAutoProfileSubscriber implements EventSubscriberInterface

{

/..

I ETT

Llines 6 - 8

public function onRequestEvent(RequestEvent $event)

{
lines 13 - 16
if ($shouldProfile) {
$blackfire = new Client();
$probe = $blackfire->createProbe();
}
}

Llines 22 - 28

Creating_the Prove in the Subscriber

Now add $request = $event->getRequest(). To make this only profile the GitHub

organization AJAX call - whose URL is /api/github-organization - set $shouldProfile

equal to $request->getPathInfo() === '/api/github-organization':
T /7 ... lines 1 - 8
9 <class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
10 {
11 public function onRequestEvent(RequestEvent $event)
12 {
13 // replace with some conditional logic
14 $request = $event->getRequest();
15 $shouldProfile = $request->getPathInfo() === '/api/github-organization';
16
17 if ($shouldProfile) {
18 $blackfire = new Client();
19 $probe = $blackfire->createProbe();
20 }
21 }
$ // ... lines 22 - 28
29 }

In a real app, | would add more code to make sure $shouldProfile is only true on the very

specific requests we want to profile.

Now I'll re-type the t on Client and select the correct Client class so that PhpStorm adds

that use statement to the top of the class for me:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 4
5 use Blackfire\Client;
T // ... lines 6 - 8

9 <class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
10 {

11 public function onRequestEvent(RequestEvent $event)
12 {

T // ... lines 13 - 16

17 if ($shouldProfile) {

18 $blackfire = new Client();

T // ... Line 19

20 }

21 }

$ // ... lines 22 - 28

29 }

Thanks PhpStorm!

But before we try this, | want to code for one edge case: if not $event->isMasterRequest(),

then return:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

$ // ... lines 1 - 10

11 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
12 {

T // ... lines 13 - 17

18 public function onRequestEvent(RequestEvent $event)
19 {

20 if (!$event->isMasterRequest()) {

21 return;

22 }

T // ... lines 23 - 31

32 }

T // ... lines 33 - 48

49 }

It might not be important in your app, but Symfony has a "sub-request" system... and the short
explanation is that we don't want to profile those: they are not real requests... and would make a

big mess of things.

Ok, let's try this! I'll close a tab... then refresh the homepage... which causes the AJAX request

to be made. You can see it's slow. Now reload the list of profiles on Blackfire... there it is! Open it

up.

And... oh wow, oh weird! 281 microseconds. Give this a name:

[Recording] Auto from subscriber: http:/bit.ly/sf-bf-broken-auto-profile

This profile is... broken. That's 281 microseconds - so .281 milliseconds. And the entire profile is

just the Probe: :enable() call itself!

Probe Auto-Close Too Early

What happened!? Well... remember: the $probe object automatically calls close() on itself as
soon as that variable is garbage collected... which happens at the end of the subscriber method.

That means.... we profiled exactly one line of code.

http://bit.ly/sf-bf-broken-auto-profile

The solution is to call $probe->close() manually... which - more importantly - will require us to

store the Probe object in a way where PHP won't garbage collect it too early.

So here's the goal: call $probe->close() as late as possible during the request lifecycle. We
can do this by listening to a different event: when TerminateEvent: :class is dispatched -

that's very late in Symfony - call the onTerminateEvent() method:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

$ /... lines 1 - 8

9 use Symfony\Component\HttpKernel\Event\TerminateEvent;
10

11 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
12 {

$ // ... lines 13 - 40

41 public static function getSubscribedEvents()

42 {

43 return [

T // ... lines 44 - 45

46 TerminateEvent::class => 'onTerminateEvent',
47 15

48 }

49 }

I'll hit an Alt+Enter shortcut to create that method... then add the argument

TerminateEvent $event:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T /7 ... lines 1 - 10

11 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
12 {

$ // ... lines 13 - 33

34 public function onTerminateEvent(TerminateEvent $event)

35 {

$ // ... Llines 36 - 38

39 }

T // ... lines 40 - 48

49 }

To be able to call $probe->close(), we need to store the probe object on a property. Add
private $probe with some documentation that says that this will either be a Probe instance

from Blackfire or null:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 10

11 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
12 {

14 * @var Probe|null

15 */

16 private $probe;

$ /7 ... lines 17 - 48

49 }

Update the code below to be $this->probe = $blackfire->createProbe():

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 10

11 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
12 {

13 /¥

14 * @var Probe|null

15 */

16 private $probe;

T /... line 17

18 public function onRequestEvent(RequestEvent $event)
19 {

$ // ... lines 20 - 27

28 if ($shouldProfile) {

T // ... Line 29

30 $this->probe = $blackfire->createProbe();
31 }

32 }

$ // ... Llines 33 - 48

49 }

Finally, inside onTerminateEvent, if $this->probe - | should not have put that exclamation

point, that's a mistake - then $this->probe->close():

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 10

11 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
12 {

$ // ... lines 13 - 33

34 public function onTerminateEvent(TerminateEvent $event)
35 {

36 if ($this->probe) {

37 $this->probe->close();

38 }

39 }

$ // ... lines 40 - 48

49 }

If you assume that | did not include the exclamation point... then this makes sense! If we created
the probe, then we will close it. Problem solved. And... really... the fact that we set the probe
onto a property is the real magic: that will prevent PHP from garbage-collecting that object...

which will prevent it from closing itself until we're ready.

Increasing_the Event Priority

While we're here, let's make this a little bit cooler. Change onRequestEvent to be an array...

and add 1000 as the second item:

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 10

11 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
12 {

T // ... lines 13 - 40

41 public static function getSubscribedEvents()

42 {

43 return [

44 // warning: adding a priority will run before routing & security
45 RequestEvent::class => ['onRequestEvent', 1000],

T // ... line 46

47 1;

48 }

49 }

This syntax is... weird. But the result is good: it says that we want to listen to this event with a
priority of 1000. That will make our code run even earlier so that even more code will get

profiled.

Configuration: Name your Profile

Oh, and there's one other cool thing we can do: we can configure the profile. Add
$configuration = new Configuration() from Blackfire\Profile. Thanks to this, we
can control a number of things about the profile... the best being ->setTitle():

Automatic GitHub org Profile. Pass this to createProbe():

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 6

7 use Blackfire\Profile\Configuration;

T /7 ... lines 8 - 11

12 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
13 {

$ // ... lines 14 - 18

19 public function onRequestEvent(RequestEvent $event)

20 {

T // ... lines 21 - 28

29 if ($shouldProfile) {

30 $configuration = new Configuration();

31 $configuration->setTitle('Automatic GitHub org profile');
32 $blackfire = new Client();

33 $this->probe = $blackfire->createProbe($configuration);
34 }

35 }

$ // ... lines 36 - 51

52 }

That's it! Let's see how things whole thing works. Back at the browser, I'll close the old profile...
and refresh the homepage. Once the AJAX call finishes... reload the Blackfire profile list. Ah! We

were too fast - it's still processing. Try again and... there it is!

Open it up! http://bit.ly/sf-bf-auto-profile-subscriber

Much better. A few things might still look a bit odd... because we're still not profiling every single
line of code. For example, Probe: :enable() seems to wrap everything. But all the important

data is there.

To avoid making a million of these profiles as we keep coding, I'll go back to the subscriber and

avoid profiling entirely by setting $shouldProfile = false:

http://bit.ly/sf-bf-auto-profile-subscriber

src/EventSubscriber/BlackfireAutoProfileSubscriber.php

T // ... lines 1 - 11

12 class BlackfireAutoProfileSubscriber implements EventSubscriberInterface
13 {

$ /7 ... lines 14 - 18

19 public function onRequestEvent(RequestEvent $event)
20 {

$ // ... lines 21 - 28

29 // stop our testing code from profiling

30 $shouldProfile = false;

31

32 if ($shouldProfile) {

$ // ... lines 33 - 36

37 }

38 }

$ // ... lines 39 - 54

55 }

Next: you already write automated tests for your app to help prove that key features never have

bugs. You... ah... do write tests right? Let's... say you do. Me too.

Anyways, have you ever thought about writing automated tests to prevent performance bugs?
Yep, that's possible! We can use Blackfire inside our test suite to add performance assertions.

It's pretty sweet... and now that we understand the SDK, it will feel great.

Chapter 22: Performance Tests

Let's profile the Github API endpoint again. I'll cheat and go directly to
/api/github-organization... and click to profile this. I'll call it:
[Recording] GitHub Ajax HTTP requests because we're going to look closer at the HTTP

requests that our app makes to the GitHub API.

Click to view the call graph: https://bit.ly/sf-bf-http-requests

Oh wow - this request was super slow - 1.83 seconds - a lot slower than we've seen before. We
can see that curl_multi_select() is the problem: this is our code making requests to the

GitHub API, which is apparently running a bit slow at the moment.

We have a Performance "Bug"

Lucky for us, that's exactly what | wanted to talk about! At the top, Blackfire tells me that this

page made two HTTP requests. And HTTP requests are always expensive for performance.

If you studied the data from the two API endpoints that we're using, you would discover that it's
possible - by writing some clever code - to get all the info our app needs with just one HTTP

request.

What I'm saying is: our page is making one more HTTP request than it truly needs to. If you
think about it... that's kind of a performance "bug": we're making 2 HT TP requests and we only

need 1.

In an ideal world, when we find a bug, the process for fixing it looks like this. First, write a test
for the expected behavior. Second, run that test and watch it fail. And third, fix the bug and make

sure the test passes.

Whelp, when it comes to a performance bug... we can do the exact same thing! We can write a
functional test that asserts that this endpoint only makes one HTTP request. It's... pretty

awesome.

https://bit.ly/sf-bf-http-requests

Running_the Functional Test

Find your editor and open tests/Controller/MainControllerTest.php. | already set up a
functional test that makes a request to /api/github-organization and checks some basic

data on the response:

tests/Controller/MainControllerTest.php

T // ... lines 1 - 2

3 namespace App\Tests\Controller;

4

5 use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

6

7 class MainControllerTest extends WebTestCase

8 {

9 public function testGetGitHubOrganization()
10 {
11 $client = static::createClient();
12
13 $client->request('GET', '/api/github-organization');
14 $this->assertResponselIsSuccessful();
15 $data = json_decode($client->getResponse()->getContent(), true);
16 $this->assertArrayHasKey('organization', $data);
17 }
18 }

Let's makes sure this passes. Run PHPUnit and point it directly at this class:

php bin/phpunit tests/Controller/MainControlerTest.php

The first time you run this script, it will probably download PHPUnit in the background. When it

finishes... go tests go! All green.

Adding_a Performance Assertion

Here's the idea: in addition to asserting that this response contains JSON with an
organization key, | also want to assert that it only made one HTTP request. To do that, first
add a trait from the SDK: use TestCaseTrait. Next, in the method, add

$blackfireConfig = new Configuration() - the one from Blackfire\Profile: the same

Configuration class we used earlier when we gave our custom-created profile a title. This

time call assert() and pass it a very special string: metrics.http.requests.count ==

tests/Controller/MainControllerTest.php

$ // ... lines 1 -5

6 use Blackfire\Profile\Configuration;

T // ... lines 7 - 8

9 class MainControllerTest extends WebTestCase

10 {

T /7 ... lines 11 - 12

13 public function testGetGitHubOrganization()
14 {

15 $client = static::createClient();

16

17 $blackfireConfig = (new Configuration())
18 ->assert('metrics.http.requests.count == 1');
$ // ... lines 19 - 26

27 }

28 '}

I'll show you where that came from soon. Finally, below this, call $this->assertBlackfire()

and pass this $blackfireConfig and a callback function:

tests/Controller/MainControllerTest.php

T // ... lines 1 -5

6 use Blackfire\Profile\Configuration;

T // ... lines 7 - 8

9 class MainControllerTest extends WebTestCase

10 {

T // ... lines 11 - 12

13 public function testGetGitHubOrganization()

14 {

$ // ... lines 15 - 16
17 $blackfireConfig = (new Configuration())
18 ->assert('metrics.http.requests.count == 1');
19
20 $this->assertBlackfire($blackfireConfig, function() use ($client) {
T // ... lines 21 - 25
26 })s
27 }
28 }

So... this confused me at first. When we call $this->assertBlackfire() it will execute this
callback. Inside, we will do whatever work we want - like making the request. Finally, when the

callback finishes, Blackfire will execute this assertion against the code that we ran:

tests/Controller/MainControllerTest.php

10

0
13
14

0
17
18
19
20
21
22
23
24
25
26
27
28

// ... lines 1 - 5

use Blackfire\Profile\Configuration;

// ... Llines 7 - 8

class MainControllerTest extends WebTestCase

{

// ... lines 11 - 12
public function testGetGitHubOrganization()
{

// ... lines 15 - 16

$blackfireConfig = (new Configuration())
->assert('metrics.http.requests.count == 1");

$this->assertBlackfire($blackfireConfig, function() use ($client) {
$client->request('GET', '/api/github-organization');

$this->assertResponselsSuccessful();
$data = json_decode($client->getResponse()->getContent(), true);

$this->assertArrayHasKey('organization', $data);

s

}

To get this to work, we need to use ($client):

tests/Controller/MainControllerTest.php

// ... Lines 1 - 8
class MainControllerTest extends WebTestCase
{
// ... lines 11 - 12

public function testGetGitHubOrganization()

{
// ... lines 15 - 19

$this->assertBlackfire($blackfireConfig, function() use ($client) {

// ... Llines 21 - 25

s

If this doesn't make sense yet... don't worry: we'll dive a bit deeper soon. But right now... try it!

Run the test again:

php bin/phpunit tests/Controller/MainControlerTest.php

And... it fails! Woo! Failed that metrics.http.requests.count == 1!

Performance Tests Create Real Profiles

Behind the scenes, the Blackfire SDK created a real Blackfire profile for the request! You can
even copy the profile URL and go check it out! This takes us to an "assertions" tab. We're

making 2 requests instead of the expected one. We'll talk a lot more about assertions soon.

Ok, but how did this really work? It's beautifully simple. When you run the test, it does make a
real Blackfire profile in the background. However, if you go to your Blackfire homepage, you

won't see it.

Why? Hold Cmd or Ctrl and click the assertBlackfire() method. | love it: this method uses
the SDK - just like we did! - to create a real profile. When it does that, it a/so adds a
skip_timeline option, which simply tells Blackfire to hide this from our profile page... so it
doesn't get cluttered up with all these test profiles. You can totally override that if you wanted...

via the Configuration object.

In reality, the Blackfire PHPUnit integration is doing the exact same thing that we just finished

doing in our code: manually creating a new profile. This is really nothing new... and | Jove that!

Except... for this metrics thing. Where did that string come from? And what else can we do

here? Let's dive into metrics next.

Chapter 23: All about Metrics

Where did this metrics string come from - this metrics.http.requests.count?

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 class MainControllerTest extends WebTestCase

10 {

T // ... lines 11 - 12

13 public function testGetGitHubOrganization()
14 {

$ // ... lines 15 - 16

17 $blackfireConfig = (new Configuration())
18 ->assert('metrics.http.requests.count == 1');
$ // ... lines 19 - 26

27 }

28 }

There are two things | want to say about this. First, Blackfire stores tons of raw data about your
profile in little "categories" called metrics. More on that soon. And second, inside the assert()
call, you're using a special "expression" language that's similar to JavaScript. It's technically
Symfony's ExpressionLanguage if you want to read more. Behind-the-scenes, metrics is
probably some object... and we're referencing an http property, then a requests... property

then a count property & then we're comparing that to 1.

What Metrics are Available

Ok, cool. So... how the heck did | know to use this exact string to get the HTTP call count? This

goes back to the Blackfire timeline. On the profile, click the timeline link.

When we talked about the timeline earlier, we talked about how, on the left side, there are these
"timeline" metrics. At that point, these were just a nice way to add color to different sections of

the timeline.

But now we understand that there is a /ot more power behind this info: this shows us all the

pieces of data we can use in our tests... and in other places that we'll talk about soon.

For example, there's a metric called symfony.events.count which equals seven. You could
use that in a metric if, for some reason, you wanted to assert that a certain number of events
were dispatched. If | needed to do an assertion about the number of HTTP requests, | would
probably search the metrics for http. Apparently there are two... and if you looked closer, you'd
find that http.requests is perfect. Most of these metrics have data about multiple dimensions:
we can say http.requests.count to get the actual number or http.requests.memory to get

how much memory they used.

In the test system, we start with metrics. then use anything we find here.

Fixing_the Performance Bug

We now have a performance bug in our application that we've proven with a test. And at this
point, the actual way we fix that bug is not as important: all we care about is that we can change

some code and get this test to pass.

The logic for the API calls lives in src/GitHub/GitHubApiHelper.php: it has two public

function and each makes one API request:

src/GitHub/GitHubApiHelper.php

$ // ... lines 1 - 6

7 class GitHubApiHelper

8 {

$ // ... lines 9 - 15

16 public function getOrganizationInfo(string $organization): GitHubOrganization

17 {

18 $response = $this->httpClient->request('GET',
"https://api.github.com/orgs/'.$organization);

T /7 ... lines 19 - 25

26 }

T // ... lines 27 - 30

31 public function getOrganizationRepositories(string $organization): array

32 {

33 $response = $this->httpClient->request('GET',

sprintf('https://api.github.com/orgs/%s/repos', $organization));
$ // ... lines 34 - 46
47 }
48 }

How can we make this page only make 7 HTTP request? Well, if you looked closely.. Ah! Too

close! Ahh. You'd find that you can get all the information you need by only making this second

HTTP request. The details aren't important - so let's just jump in.

Add a new property called $githubOrganizations set to an empty array:

src/GitHub/GitHubApiHelper.php

$ // ... lines 1 - 6

7 class GitHubApiHelper

8 {

T /7 ... lines 9 - 10

11 private $githubOrganizations = [];
$ // ... lines 12 - 66

67 }

As we loop over the repositories for a specific organization, we will store that organization's info.

Add a new variable called $publicRepoCount set to O:

src/GitHub/GitHubApiHelper.php

T // ... lines 1 - 6

7 class GitHubApiHelper

8 |

T // ... lines 9 - 10

11 private $githubOrganizations = [];
$ // ... lines 12 - 37

38 public function getOrganizationRepositories(string $organization): array
39 {

T // ... lines 40 - 44
45 $publicRepoCount = 0;
46 foreach ($data as $repoData) {
$ // ... lines 47 - 55

56 }

$ // ... lines 57 - 65

66 }

67 }

the number of public repositories an organization has is one of the pieces of data we need.

Then, inside the foreach: if $repoData['private'] === false - that's one of the keys on

$repoData - say ++$publicRepoCount:

src/GitHub/GitHubApiHelper.php

0

7
8
0

11
0

38

39
0

45

46
0

53

54

55

56
0

66

67

// ... lines 1 - 6

class GitHubApiHelper

{

// ... lines 9 - 10
private $githubOrganizations = [];

// ... lines 12 - 37
public function getOrganizationRepositories(string $organization): array
{

// ... lines 46 - 44

$publicRepoCount = 0;
foreach ($data as $repoData) {

// ... lines 47 - 52
if ($repoData['private'] === false) {
++$publicRepoCount;
}
}
// ... lines 57 - 65
}
}

So, as we're looping over the repositories, we're counting how many are public.

Finally, at the bottom, if not isset($this->githubOrganizations[$organization]), then

$this->githubOrganizations[$organization] = new GitHubOrganization():

src/GitHub/GitHubApiHelper.php

0

7
8
0

11
0

38

39
0

45

46
0

53

54

55

56

57

58

59
0

62

63
0

66

67

// ... lines 1 - 6

class GitHubApiHelper

{

// ... lines 9 - 10
private $githubOrganizations = [];

// ... lines 12 - 37
public function getOrganizationRepositories(string $organization): array
{

// ... lines 46 - 44

$publicRepoCount = 0;
foreach ($data as $repoData) {

// ... lines 47 - 52
if ($repoData['private'] === false) {
++$publicRepoCount;
}
}

if (!isset($this->githubOrganizations[$organization])) {
$this->githubOrganizations[$organization] = new GitHubOrganization(
// ... lines 660 - 61
)
}
// ... Llines 64 - 65

}

This needs two arguments. The first is the organization name. We can probably use the

$organization argument... or you can use $data[@] - to get the first repository - then

['owner']['login']. For the second argument, pass $publicRepoCount:

src/GitHub/GitHubApiHelper.php

T /...

7
8
0

11
0

38

39
0

45

46
0

53

54

55

56

57

58

59

60

61

62

63
0

66

67

lines 1 - 6

class GitHubApiHelper

{

W coc
private $githubOrganizations = [];
/).
public function getOrganizationRepositories(string $organization): array

{

I ETT

7 aEeT

7 aEeT

}

Lines 9 - 10

lines 12 - 37

Lines 40 - 44
$publicRepoCount = 0;
foreach ($data as $repoData) {
Lines 47 - 52
if ($repoData['private'] === false) {
++$publicRepoCount;

if (!isset($this->githubOrganizations[$organization])) {
$this->githubOrganizations[$organization] = new GitHubOrganization(
$data[@]['owner']['login'],
$publicRepoCount
)
}

Llines 64 - 65

Now, each time we call this method, we capture the organization's information and store it on

this property. So if we call this method first and then the other method... we could cheat and

return the GitHubOrganization object that's stored on the property. It's property caching!

Check it out: if isset($this->githubOrganizations[$organization]) then return that

immediately without doing any work:

src/GitHub/GitHubApiHelper.php

T // ... lines 1 - 6

7 class GitHubApiHelper

8 {

T /7 ... lines 9 - 17

18 public function getOrganizationInfo(string $organization): GitHubOrganization
19 {

20 // optimization in case getOrganizationRepositories is called first
21 if (isset($this->githubOrganizations[$organization])) {

22 return $this->githubOrganizations[$organization];

23 }

$ // ... lines 24 - 32

33 }

T // ... lines 34 - 66

67 }

So... are we calling these two methods in the "correct" order to get this to work? Check out the

controller:

src/Controller/MainController.php

$ // ... lines 1 - 16

17 class MainController extends AbstractController

18 {

T // ... lines 19 - 54

55 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)
56 {

$ /7 ... line 57

58 $organization = $apiHelper->getOrganizationInfo($organizationName);
59 $repositories = $apiHelper-

>getOrganizationRepositories($organizationName);

T // ... lines 60 - 64

65 }

$ // ... lines 66 - 120
121 }

Nope! Swap these two lines so the first call will set up the caching for the second:

src/Controller/MainController.php

T // ... lines 1 - 16

17 class MainController extends AbstractController

18 {

$ // ... lines 19 - 54

55 public function gitHubOrganizationInfo(GitHubApiHelper $apiHelper)
56 {

$ /7 ... line 57

58 $repositories = $apiHelper-

>getOrganizationRepositories($organizationName);

59 $organization = $apiHelper->getOrganizationInfo($organizationName);

$ // ... lines 60 - 64

65 }

$ // ... lines 66 - 120
121 }

Phew! Let's see if that helps. It was a complicated fix... but thanks to our test, we will know for

sure if it worked. Go!

php bin/phpunit tests/Controller/MainControlerTest.php

They pass! This proves that we reduced the HTTP calls from two to one.

Typos in Metrics

What | love about the metrics system is that there are many to choose from. What | don't love is
that you need to manually look up everything that's available. Fortunately, if you make a typo -

the error is great. Change count to vount:

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 class MainControllerTest extends WebTestCase

10 {

T // ... lines 11 - 12

13 public function testGetGitHubOrganization()
14 {

$ // ... lines 15 - 16

17 $blackfireConfig = (new Configuration())
18 ->assert('metrics.http.requests.vount == 1');
$ // ... lines 19 - 26

27 }

28 '}

And re-run the test:

php bin/phpunit tests/Controller/MainControlerTest.php

“An error occurred when profiling the test”
And when we follow the profile link... check out that error!
“The following assertions are not valid... Property "vount" does not exist, available ones are:”

... and it lists all the properties. That's super friendly. Fix the typo:

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 class MainControllerTest extends WebTestCase

10 {

T // ... lines 11 - 12

13 public function testGetGitHubOrganization()
14 {

T // ... lines 15 - 16

17 $blackfireConfig = (new Configuration())
18 ->assert('metrics.http.requests.count == 1');
$ // ... lines 19 - 26

27 }

Organizing_Blackfire Assertions into Separate Test Cases

The one downside to adding Blackfire assertions in your tests is that they do slow things down

because instrumentation happens and we need to wait for Blackfire to create the profile.

Because of that, as a best practice, we usually like to isolate our performance tests from our
normal tests. Check it out: copy the test method name, paste it below, and call it
testGetGitHubOrganizationBlackfireHttpRequests():

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 <class MainControllerTest extends WebTestCase

10 {

T // ... lines 11 - 28

29 public function testGetGitHubOrganizationBlackfireHttpRequests()
30 {

T // ... lines 31 - 38

39 }
40 }

And... copy the contents of the original method and paste here. Now... we only need to create

the $client, create $blackfireConfig and, inside assertBlackfire(), just make the

request:

T // ... lines 1 - 8

9 <class MainControllerTest extends WebTestCase

10 {

$ // ... lines 11 - 28

29 public function testGetGitHubOrganizationBlackfireHttpRequests()
30 {

31 $client = static::createClient();

32

33 $blackfireConfig = (new Configuration())

34 ->assert('metrics.http.requests.count == 1');

35

36 $this->assertBlackfire($blackfireConfig, function() use ($client) {
37 $client->request('GET', '/api/github-organization');

38 })s

39 }
40 }

Back in the original method, we can simplify... in fact we can go all the way back to the way it

was before: create the client, make the request, assert something:

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 class MainControllerTest extends WebTestCase

10 {

T // ... lines 11 - 12

13 public function testGetGitHubOrganization()

14 {

15 $client = static::createClient();

16

17 $client->request('GET', '/api/github-organization');
18

19 $this->assertResponselsSuccessful();

20 $data = json_decode($client->getResponse()->getContent(), true);
21 $this->assertArrayHasKey('organization', $data);

22 }

$ // ... lines 23 - 34

35}

Why is this useful? Because now we can skip the Blackfire tests if we're just trying to get

something to work. How? Above the performance test, add @group blackfire:

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 <class MainControllerTest extends WebTestCase
10 {

T // ... lines 11 - 23

24 /**

25 * @group blackfire

T // ... Line 26

27 */

28 public function testGetGitHubOrganizationBlackfireHttpRequests()
29 {

$ // ... lines 30 - 37

38 }

39}

Thanks to that, we can add --exclude-group=blackfire to avoid the Blackfire tests:

php bin/phpunit tests/Controller/MainControlerTest.php --exclude-group=blackfire

Yep! Just one test, two assertions. Another nice detail is to add

@requires extension blackfire:

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 class MainControllerTest extends WebTestCase
10 {

T // ... lines 11 - 23

24 /**

$ // ... line 25

26 * @requires extension blackfire

27 */

28 public function testGetGitHubOrganizationBlackfireHttpRequests()
29 {

$ // ... lines 30 - 37

38 }

39}

Now, if someone is missing the Blackfire extension, instead of the tests exploding, they'll be

marked as skipped.

Don't do Time-Based Assertions

The last thing | want to mention about assertions is this: please, please please avoid time-based
assertions. They're the easiest to create - | know. It's super tempting to want to create an
assertion that the request should take less than 500 milliseconds. If you do this, you will hate

your tests.

Why? Because there's way too much variability in time: the request might run fast enough on
one machine, but not fast enough on another. Or your server might just have a bad day... and

suddenly your tests are failing. Relying on time makes your tests fragile.

Next, we're going to talk more about metrics and assertions. We know that we can add

assertions to profiles that are created inside our tests.

But we an also add global assertions: tests that run any time you create a profile for any page! If
you want to make sure that a specific page - or any page - doesn't make more than, | don't
know, 10 database queries, you can add an "assertion" for that and see a big failure if you break

the rules.

Chapter 24: Assertions / Profile "Tests"

Adding specific assertions inside a test is really cool:

tests/Controller/MainControllerTest.php

$ /... lines 1 - 8

9 class MainControllerTest extends WebTestCase

10 {

T /7 ... lines 11 - 27

28 public function testGetGitHubOrganizationBlackfireHttpRequests()
29 {

$ // ... Llines 30 - 31

32 $blackfireConfig = (new Configuration())

33 ->assert('metrics.http.requests.count == 1');
34

$ // ... lines 35 - 37

38 }

39}

But you can also add assertions globally. What | mean is, whenever you trigger a real Blackfire
profile - like through your browser - you can set up assertions that you want to run against that

profile.

Recommendations Versus Assertions

Actually, we've already seen a system that's similar to this. Click into one of the profiles. Every
profile has a "Recommendations" tab on the left, which tells us changes that we should probably
make. In reality, recommendations are assertions in disguise! For example, the "Symfony debug
mode should be disabled in production” is displayed here because the assertion that

metrics.symfony.kernel.debug.count equals zero, failed. Yep, metrics are everywhere!

| love that Blackfire gives us so many of these recommendations for free. But we can also

define our own. When we do, they'll show up under the assertions tab.

Hello .blackfire.yaml

How do we do that? Just send an email to assertion-requests@blackfire.io, pay $19.95
for shipping and handling, and wait 6-8 weeks for delivery. If you order now, we'll double your

order and include a signed-copy of the blackfire-player source code printed as a book.

Or you can configure global assertions with a special Blackfire config file. At the root of your
project, create a new file called .blackfire.yaml. A few different things will eventually go here

- the first is tests:.

Honestly, the trickiest thing about writing assertions is trying to figure out... a good assertion to
use! Writing time-based assertions is the easiest... but because they're fragile, we want to avoid

those.

Adding_your first "Test"

Let's start with one we've already done. Say:
"HTTP requests should be limited to 1 per page":.Below this, add path set to the

regular expression /. *:

.blackfire.yaml

1 "tests":

2 "HTTP Requests should be limited to 1 per page":
3 path: "/.*"

T // ... lines 4 - 6

This means that this assertion will be executed against any profile for any page. Only want the

assertion to run against a single page or section? Use this option.

Now add assertions: with one item below. Go steal the metrics expression from our test...

and paste it here. Change this to be less than or equal to 1:

.blackfire.yaml

1 "tests":

2 "HTTP Requests should be limited to 1 per page":
3 path: "/.*"

4 assertions:

5 - "metrics.http.requests.count <= 1"

That's it! Let's try it out! Back in your browser... go back to our site, refresh, and create a new

profile. I'll call it: [Recording] Added first assertion.

Click into the call graph. Actually, go back. See this little green check mark? That already tells us
that this profile passed all our "tests". We can see that on the "Assertions" tab:

metrics.http.requests.count was 0, which is less than or equal to 1.

So at this point, these "tests" are basically a nice way to create your own custom
recommendations. These will become more interesting later when we talk about environments
and builds.

Next, let's talk about a tool from the Blackfire ecosystem called the Blackfire player. It's a
command line utility that allows us to write simple files and execute them as functional tests...
completely independent of the Blackfire profiling system. What we learn from it will form the

foundation for the rest of the tutorial.

Chapter 25: Blackfire Player

Pretend for a few minutes that the Blackfire profiler that we've been learning so much abouit...
doesn't exist... at all. Why? Because we're now going to talk about something that has the word

"Blackfire" in it... but has absolutely nothing to do with the Blackfire profiler. At least, not yet.

Hello Blackfire Player

Google for "Blackfire player". The Blackfire Player is an open source library that makes it really
easy to write a few lines of code that will then be executed to crawl/ a site: clicking on links, filling
out forms, and doing things with the result. It's basically a simple language for surfing the web

and a tool that's able to read that language and... actually do it!

To install it, copy the curl command, find your terminal, and paste:

curl -OLsS https://get.blackfire.io/blackfire-player.phar

If you're on Windows, you can just download the blackfire-player.phar file from that URL

and put it into your project.

Now go back and copy the other two commands.

chmod +x blackfire-player.phar

mv blackfire-player.phar /usr/local/bin/blackfire-player

Paste and... that's it! For Windows users, skip this step. Let's see if it works. Run:

blackfire-player

Nice!

@ Tip

For Windows, run php blackfire-player.php from inside your project.

So here's the idea: we create a file that contains one or more scenarios. Inside each scenario,
we write code that says: go visit this URL, expect a 200 status code, then click on this link, and

so on. It can get fancier, but that's the gist of it.

Creating_our First Scenario & .bkf File

Let's create a our first Blackfire player file at the root of the project, though it could live

anywhere. Call it, how about, scenario.bkf. That's pure creativity.

At the top, I'll put a name - though it's not very important - then endpoint set to our server's
URL. So https://localhost:8000:

1 name "Various scenarios for the site"

2
3 # override with --endpoint option
4 endpoint "https://localhost:8000"

You can override this when you execute this file by passing a --endpoint option.

Notice that this kind of looks like YAML, but it's not: there is no : between the key and value.

This is a custom Blackfire player language, which is friendly, but takes some getting used to.

At the bottom, add our first scenario - call it "Basic Visit". Inside, let's do two things: first,

visit url("/").We can also give this page a name - it helps debugging:

1 name "Various scenarios for the site"

override with --endpoint option
endpoint "https://localhost:8000"

scenario
name "Basic Visit"

O 00 N O U1 »h W N

visit url("/")
1o name "Homepage"
T // ... lines 11 - 14

And second... once we're on the homepage, let's "click" this "Log In" link. Do that with

click link() and then use that exact text: Log In. Give this page a name too:

1 name "Various scenarios for the site"

2

3 # override with --endpoint option
4 endpoint "https://localhost:8000"
5

6 scenario

7 name "Basic Visit"

8

9 visit url("/")

10 name "Homepage"

11

12 click link("Log In")

13 name "Login page"

Executing_blackfire-player

That's enough to start. We should be able to use the blackfire-player tool to... actually do
this stuffl. Let's try it:

blackfire-player run scenario.bkf

And... it fails:

“Curl error 60...”

If you Google'd this, you find out that this is an SSL problem - it's caused because or Symfony
dev server uses a, sort of, self-signed certificate that blackfire-player doesn't like. The simplest

solution, which is ok since we're just testing locally - is to pass --ssl-no-verify

blackfire-player run scenario.bkf --ssl-no-verify

And... hey! It worked! Scenarios 1, steps 2. It fruly made a request to the homepage then
clicked on that link! By the way, the requests aren't using a real browser. And so, any JavaScript

code on your page won't run. That might change in the future - but I'm not sure.

Anyways, to see more fun output, use the -v flag:

blackfire-player run scenario.bkf --ssl-no-verify -v

Very cool! Blackfire player is now making two real HTTP requests to our site... but it's not doing
anything with that data. Next, let's add some tests to our scenario - like expecting that the status

code is 200 and checking for elements in the DOM.

Chapter 26: Expectations/Tests with Blackfire
Player

We just used blackfire-player to execute our first "scenario”. It's pretty simple: it goes to the

homepage then clicks the "Log In" link:

1 name "Various scenarios for the site"

2

3 # override with --endpoint option
4 endpoint "https://localhost:8000"
5

6 scenario

7 name "Basic Visit"

8

9 visit url("/")

10 name "Homepage"

11

12 click link("Log In")

13 name "Login page"

It works... but... we're not doing anything after we visit these pages. The true power of
blackfire-player is that you can add tests to your scenario - or even scrape pages and save

that data somewhere.

Adding_an Expectation/Test to a Page

To add a "test" - or "assertion", or "expectation"... | love when things have 5 names... - say
expect followed by - you guessed it! - an expression! status_code() == 200. Copy that and

add it to the login page as well:

T // ... lines 1 - 5

6 scenario

T // ... lines 7 - 8

9 visit url("/")

10 name "Homepage"

11 expect status_code() == 200
12

13 click link("Log In")

14 name "Login page"

15 expect status_code() == 200
$ // ... lines 16 - 17

Ok, try blackfire-player again!

blackfire-player run scenario.bkf --ssl-no-verify -v

Woo! It still passes and now it's starting to be useful!

What's Possible in the expect Expression?

Let's break this down. First, just like we saw with the metrics stuff:

tests/Controller/MainControllerTest.php

T // ... lines 1 - 8

9 class MainControllerTest extends WebTestCase

10 {

T // ... lines 11 - 27

28 public function testGetGitHubOrganizationBlackfireHttpRequests()
29 {

$ // ... lines 30 - 31

32 $blackfireConfig = (new Configuration())

33 ->assert('metrics.http.requests.count == 1');
$ // ... lines 34 - 37

38 }

39 }

This is an expression - it's Symfony's ExpressionLanguage once again - basically JavaScript.

And second... this expression has a ton of built-in functions.

Search the blackfire-player docs for "status_code"... and keep searching until you find a big
function list. Here it is. Yep, we can use current_url(), header() to get a header value and
many others. The css() function is especially useful: it allows us to dig into the HTML on the
page. We'll use that in a minute. The docs also have good examples of how to do more complex
things. But we're not going to become Blackfire player experts right now... | just want you to get

comfortable with writing scenarios.

Asserting HTML Elements with css()

Let's try to write a failing expectation to see what it looks like. Let's see... we could find this table
and assert that it has more than 500 rows... which it definitely does not. Let's find a CSS
selector we can use... hmm. Ok, we could look for a <tbody> with this js-sightings-list

class and then count its <tr> elements.

Back inside the scenario file, add another expect. This time use the css() function and pass it

a CSS selector: tbody.js-sightings-1ist tr:

T // ... lines 1 - 5

6 scenario

T // ... lines 7 - 8

9 visit url("/")

10 name "Homepage"

11 expect status_code() == 200

12 expect css("tbody.js-sightings-1list tr").count() > 500
T // ... lines 13 - 18

Internally, The blackfire-player uses Symfony's Crawler object from the DomCrawler

component, which has a count() method on it. Assert that this is > 500.

Let's see what happens!

blackfire-player run scenario.bkf --ssl-no-verify -v

And... yes! It fails - with a nice error:

“The count() of that CSS element is 25, which is not greater than 500.”

Go back and change this to 10:

scenario.bkf

T // ... lines 1 - 5

6 scenario

T // ... lines 7 - 8

9 visit url("/")

T // ... lines 10 - 11

12 expect css("tbody.js-sightings-1list tr").count() > 10
$ // ... lines 13 - 18

The data is dynamic data... so we don't really know how many rows it will have. But since our
fixtures add more than 10 sightings... and because there will probably be at least 10 sightings if

we ever ran this against production, this is probably a safe value.

Try it now:

blackfire-player run scenario.bkf --ssl-no-verify -v

All better!

Typos in Expressions

Another thing that blackfire-player does well is its errors when |... do something silly. Make

a typo: change count() to ount():

scenario.bkf

T /7 ... lines 1 - 5

6 scenario

T // ... lines 7 - 8

9 visit url("/")

$ // ... lines 10 - 11

12 expect css("tbody.js-sightings-1list tr").ount() > 10
T // ... lines 13 - 18

And rerun the scenario:

blackfire-player run scenario.bkf --ssl-no-verify -v

“Unable to call method ount of object Crawler.”

That's a huge hint to tell you what object you're working with so you can figure out what

methods it does have. Change that back to count():

T // ... lines 1 - 5

6 scenario

$ // ... lines 7 - 8

9 visit url("/")

T // ... lines 10 - 11

12 expect css("tbody.js-sightings-1list tr").count() > 10
T // ... lines 13 - 18

Performance Assertions in the Scenarios?

So... blackfire-player has nothing to do with the Blackfire profiler. It's just a useful tool for
visiting pages, clicking on links and adding expectations. But... if it truly had nothing to do with
the profiler, | probably wouldn't have talked about it. In reality, the concept of "scenarios" is
about to become very important - it's a fundamental part of a topic we'll talk about soon:
Blackfire "builds".

And actually, there is one little integration between blackfire-player and the profiler: you can
add performance assertions to your scenario. To do that, instead of expect, say assert and
then use any performance expression you want: the same strings that you can use inside a test.

For example: metrics.sql.queries.count < 30:

T // ... lines 1 - 5

6 scenario

$ // ... lines 7 - 8

9 visit url("/")

T // ... lines 10 - 13

14 assert metrics.sql.queries.count < 30
$ // ... lines 15 - 20

When we execute this:

blackfire-player run scenario.bkf --ssl-no-verify -v

It does still pass. But if you played with this value - like setitto < 1 and re-ran the scenario:

blackfire-player run scenario.bkf --ssl-no-verify -v

Hmm, it still passes... even though this page is definitely making more than one query. The
reason is that the assert functionality won't work inside a scenario until we introduce Blackfire

"environments" - which we will soon. They are one of my absolute favorite parts of Blackfire.

For now, I'll leave a comment that this won't work until then:

T /7 ... lines 1 - 5

6 scenario

T // ... lines 7 - 8

9 visit url("/")

T // ... lines 10 - 12

13 # won't work until we're using Blackfire environment
14 assert metrics.sql.queries.count < 30

$ // ... lines 15 - 20

Next, let's deploy to production! Because once our site is deployed, we can finally talk about
cool things like "environments" and "builds". You can use anything to deploy, of course, but we

will use SymfonyCloud.

Chapter 27: Deploying to SymfonyCloud

Transition point! Everything we've talked about so far has included profiling our local version of

the site. But things get even cooler when we start to profile our production site. Having real data
often shows performance problems that you just can't anticipate locally. And because of the way
that Blackfire works, we can create profiles on production without slowing down our servers and
affecting real users. Plus, once we're profiling on production, we can unlock even more Blackfire

features.

So... let's get this thing deployed! You can use any hosting system you want, but I'm going to
deploy with SymfonyCloud: it's what we use for SymfonyCasts and it makes deployment dead-

simple for Symfony apps. It also has a free trial if you want to code along with me.

Initializing_your SymfonyCloud Project

Find your terminal and make sure you're on your master branch. That's not required, but will

make life easier. Start by running:

symfony project:init

This will create a few config files that tell SymfonyCloud everything it needs to know to deploy

our site. The most important file is . symfony.cloud.yaml:

.symfony.cloud.yaml

name: app

type: php:7.1

1
2
3
4
5 runtime:
6 extensions:

7 - apcu

8 - mbstring

9 - ctype

10 - iconv

11

12

13 build:

14 flavor: none

15

16 web:

17 locations:

18 "

19 root: "public"

20 expires: 1h

21 passthru: "/index.php"

22

23 disk: 512

24

25 mounts:

26 "/var": { source: local, source_path: var }

27

28 hooks:

29 build: |

30 set -x -e

31

32 curl -s https://get.symfony.com/cloud/configurator | (>&2 bash)
33 (>&2 symfony-build)

34

35 deploy: |

36 set -x -e

37

38 (>&2 symfony-deploy)

Ah, this says we want PHP 7.1. Let's upgrade by changing that to 7.3:

.symfony.cloud.yaml

T // ... lines 1 - 2
3 type: php:7.3
T // ... lines 4 - 39

Back at the terminal, copy the big git command: this will add all the new files to git and commit

them:

git add .symfony.cloud.yaml .symfony/services.yaml .symfony/routes.yaml php.ini

git commit -m "Add SymfonyCloud configuration”

Next, to tell SymfonyCloud that we want a new "server" on their system, run:

symfony project:create

Every "site" in SymfonyCloud is known as a "project" and we only need to run this command
once per app. You can ignore the big yellow warning - that's because | have a few other
SymfonyCloud projects attached on my account. Let's call the project "Sasquatch Sightings" -

that's just a name to help us identify it - and choose the "Development" plan.

The development plan includes a free 7 day trial... which is awesome. You do need to enter your
credit card info - that's a way to prevent spammers from creating free trials - but it won't be
charged unless you run symfony project:billing:accept later to keep this project

permanently.

| already have a credit card on file, so I'll use that one. Once we confirm, this provisions our
project in the background... | assume it's waking up thousands of friendly robots who are

carefully creating our new space in... the "cloud". Hey! There's one now... dancing!

And... done!

Deploying_& Security Checks

Ready for our first deploy? Just type:

symfony app:prepare:deploy --branch=master --confirm --this-is-not-a-real-command

Kidding! Just run:

symfony deploy

And... hello error! This is actually great. Really! The deploy command automatically checks your
composer. lock file to see if you're using any dependencies with known security vulnerabilities.
Some of my Symfony packages do have vulnerabilities... and if this were a real app, | would

upgrade those to fix that problem. But... because this is a tutorial... I'm going to ignore this.

Our First Deploy

Run the command again with a --bypass-checks flag:

symfony deploy --bypass-checks

We still see the big message... but it's deploying! This takes care of many things automatically,
like running composer install and executing database migrations. This first deploy will be
slow - especially to download all the Composer dependencies. I'll fast-forward. It also handles
setting up Webpack Encore... and even creates a shiny new SSL certificate. Those are busy

robots!

And... done! It dumped out a funny-looking URL. Copy that. In a real project, you will attach your

real domain to SymfonyCloud. But this "fake" domain will work beautifully for us.

Spin back over and pop that URL into your browser to see... a beautiful 500 error! Wah, wah.
Actually, we're super close to this all working. Next, let's use a special command to debug this
error, add a database to SymfonyCloud - yep, that's the piece we're missing - and load some

dummy data over a "tunnel". Lots of good, nerdiness!

Chapter 28: Database Tricks on SymfonyCloud

We just deployed to SymfonyCloud!!! Well, | mean, we did... but it doesn't... ya know... work yet.

Because this is the production 500 error, we can't see the real problem.

No worries! Head back to your terminal. The symfony command has an easy way to check the

production logs. It is...

symfony logs
This prints a list of all the logs. The app/ directory is where our application is deployed to - so

the first item is our project's var/log/prod.log file. You can also check out the raw access

log... or everything. Hit O to "tail" the prod.log file. And... there it is:

“An exception has occurred... Connection refused.”

Adding_a Database to SymfonyCloud

| recognize this: it's a database error.... which... hmm... makes sense: we haven't told

SymfonyCloud that we need a database! Let's go do that!

Google for "SymfonyCloud MySQL" to find... oh! A page that talks about exactly that. Ok, we
need to add a little bit of config to 2 files. The firstis .symfony/services.yaml. This is where
you tell SymfonyCloud about all the "services" you need - like a database service,
ElasticSearch, Redis, RabbitMQ, etc.

Copy the config for .symfony/services.yaml... then open that file and paste:

.symfony/services.yaml

1 mydatabase:

2 # mariadb

3 type: mysql:10.2
4 disk: 1024

The database is actually MariaDB, which is why the version here is 10.2: MariaDB version 10.2.

Notice that we've used the key mydatabase. That can be anything you want: we'll reference this

string from the other config file that we need to change: .symfony.cloud.yaml.

Inside that file, we need a relationships key: this is what binds the web container to that
database service. Let's see... we don't have a relationships key yet, so let's add it:
relationships and, below, add our first relationship with a special string: database set to

mydatabase:mysql:

.symfony.cloud.yaml

T // ... lines 1 - 24
25 relationships:

26 database: "mydatabase:mysql"
$ // ... lines 27 - 42

This syntax... is a little funny. The mydatabase part is referring to whatever key we used in

services.yaml - and then we say :mysql... because that service is a mysql type.

The really important thing is that we called this relationship database. Thanks to that
SymfonyCloud will expose an environment variable called DATABASE_URL which contains the

full MySQL connection string: username, host, database name and all:

.env
$ // ... lines 1 - 26

27 DATABASE_URL=mysql://root:@127.0.0.1:3306/blackfire
T // ... lines 28 - 29

It's literally DATABASE_URL and not PIZZA_URL because we called the relationship database

instead of pizza... which would have been less descriptive, but more delicious.

This is important because DATABASE_URL happens to be the environment variable that our app

will use to connect to the database. In other words, our app will instantly have database config.

Back at the terminal, hit Ctrl+C to exit from logging. Let's add the two changes and commit

them:

git add . git commit -m "adding SfCloud database"

Now, deploy!

symfony deploy

Oh, duh - run with the --bypass-checks flag:

symfony deploy --bypass-checks

The deploy will still take some time - it has a lot of work to do - but it'll be faster than before.
When it finishes... it dumps the same URL - that won't change. But to be even /azier than last

time, let's tell the command to open this URL in my browser... for me:

symfony open:remote

Tunneling_to the Database

And... we have a deployed site! Woo! The database is empty... but if this were a real app, it
would start to be populated by real users entering their real Bigfoot sightings... cause Bigfoot

is... totally real.

But... to make this a bit more interesting for us, let's load the fixture data one time on production.

This is a bit tricky because the fixture system - which comes from DoctrineFixturesBundle - is a
Composer "dev" dependency... which means that it's not even installed on production. That's

good for performance. If it were installed, we could run:

symfony ssh

To SSH into our container, and then execute the command to load the fixtures. But... that won't

work.

No problem! We can do something cooler. Exit out of SSH, and run:

symfony tunnel:open

| love this feature. Normally, the remote database isn't accessible by anything other than our
container: you can't connect to it from anywhere else on the Internet. It's totally firewalled. But
suddenly, we can connect to the production database locally on port 30000. We can use that to

run the fixtures command locally - but send the data up to that database. Do it by running:

DATABASE_URL=mysql://root:@127.0.0.1:30000/main php bin/console doctrine:fixtures:load

Ok, let's break this down. First, there is actually a much easier way to do all of this... but I'll save
that for some future SymfonyCloud tutorial. Basically, we're running the
doctrine:fixtures:load command but sending it a different DATABASE_URL : one that points
at our production database. WWhen you open a tunnel, you can access the database with root

user, no password - and the database is called main.

The only problem is that this command... takes forever to run. I'm not sure exactly why - but it is

doing all of this over a network. Go grab some coffee and come back in a few minutes.

When it finishes... yes! Go refresh the page! Ha! We have a production site with at least enough

data to make profiling interesting.

Next, let's do that! Let's configure Blackfire on production! That's easy right? Just repeat the
Blackfire install process on a different server... right? Yep! Wait, no! Yes! Bah! To explain, we

need to talk about a wonderful concept in Blackfire called "environments".

Chapter 29: Blackfire Environments

Now that our site is deployed - woo! - how can we get Blackfire working on it? Well... we already
know the answer. If you find the Blackfire Install page... it makes it easy: | want to install on "a

server"... and let's pretend it uses Ubuntu.

Getting Blackfire installed on your production machine is as easy as running the commands
below to install the Blackfire PHP extension - the Probe, install the Agent and configure the

agent with our server id and token. Easy peasy!

Hello: Environments

But.... some Blackfire account levels - offer a kick-butt feature called environments. If you have
access to Blackfire environments - or if you're able to get a "plan” that offers environments, |

highly recommend them.

@ Tip

Blackfire environments require a Premium plan or higher.

An environment is basically an isolated Blackfire account. When you have an environment, you
send your profiles to that environment. The first advantage is that you can invite multiple people
to an environment, which means that anyone can profile your production site and see other

profiles made by people on your team. It also has other superpowers - ahem, builds - that really

make it shine.

Understanding_Organizations

So let's create an environment! Go back to https://blackfire.io and click on the "Environments"

tab. Actually, click on the "Organizations" tab... that's where this all starts. Blackfire
organizations are a bit like GitHub organizations. With GitHub, you can subscribe to a "plan"
directly on your personal account or you can create an organization, have it subscribe & pay for

a plan, and then invite individual users to the organization. Blackfire organizations work exactly

https://blackfire.io/

like that. And if you want to use environments, you need to create an organization and subscribe

to a Blackfire plan through that organization.

This did confuse me a bit at first. Basically, unless you just want the lowest Blackfire paid plan,
you should probably always create an organization and subscribe to Blackfire through it. It just

has a few more features than subscribing with your personal account.

Creating_an Environment

Anyways, I've already got an organization set up and subscribed to a plan. Once you have an
organization, you can click into it to create a new environment. | already have one for
SymfonyCasts.com production. Click to create a new one. Let's call it: "Sasquatch Sightings

Production".

For the "Environment Endpoint", it wants the URL to the site. Again, if this were a real project, |
would attach a real domain... but copy the weird domain name, and paste. Select your

timezone, sip some coffee, and... "Create environment"!

On the second step, it asks us to provide URLs to test... and it starts with just one: the
homepage. We're going to talk more about this soon, so just leave it. I'll also uncheck the build

notifications - more on those later.

Environment vs Personal Server Credentials

Hit "Save settings" and... we're done! It rewards us with a shiny new "Server Id" and "Server

Token".

This is super important. No matter how you install Blackfire on a server, you eventually need to
configure the "Server id" and "Server Token". This is basically a username & password that tells

Blackfire which account a profile should be sent to.

When you register with Blackfire, it immediately created a "Server |d" and "Server Token"
connected with your personal account. We used that when we installed Blackfire on our local
machine. But now that we have an environment, it has its own Server |d and token. The drop-

down on the Install page is allowing us to choose which credentials we want to see on this

page.

Locally, we should still use our personal credentials: it keeps things cleaner. But on production,
we should use the new environment's Server |d and Token. The install page gives us all the

commands we need using those credentials.

Oh, and by the way: if you have a "free" personal account... but are attached to an organization
with a paid plan, any profiles you create with your personal Server Id and Token will inherit the
features from that organization's plan. That lets us use our personal credentials locally and still
get all the Blackfire features we're paying for. One exception to that rule, unfortunately, is "Add-
Ons".

Configuring_Blackfire on SymfonyCloud

Ok, let's get our production machine set up. I'll select "Symfony Cloud" as my host... which takes

me to a dedicated page on this topic.

Let's see... step one is, instead of installing Blackfire with something like apt-get, we'll add a

line to .symfony.cloud.yaml. | already have an extensions key... so just add blackfire:

.symfony.cloud.yaml

T // ... lines 1 - 4
5 runtime:

6 extensions:

$ // ... lines 7 - 10
11 - blackfire
T // ... lines 12 - 42

Boom! Blackfire is installed. Add this file to Git... and commit it:

git add .

git commit -m "adding blackfire extension"

The other step is to configure Blackfire. Once again, it has a drop-down to select between my
personal credentials and credentials for an enivornment. Select our "Sasquatch production”
environment. Cool! This gives us a command to set two SymfonyCloud variables. Copy that,

move over, and paste:

symfony var:set BLACKFIRE_SERVER_ID=XXXXXX BLACKFIRE_SERVER_TOKEN=XXXXXX

Ok... we're good! To make both changes take effect, deploy!

symfony deploy --bypass-checks

I'll fast-forward. Once this finishes... move over and refresh. Ok... everything still works. Now,
moment of truth: open the Blackfire browser extension and create a new profile. It's working! I'l

call it: [Recording] First profile in production.

Next, let's... look at this profile! It will contain a few new things and some data that is much more

relevant now that we're on production.

Chapter 30: Production Profile: Cache Stats &
More Recommendations

We just profiled our first page on production, which is using the Blackfire Server Id and Token for

the environment we created.

Profiles Belong_to the Environment

Go to https://blackfire.io, click "Environments", open our new environment... and click the

"Profiles" tab. Yep! Whenever anyone creates a profile using this environment's credentials, it
will now show up here: the profile belongs to this environment. We haven't invited any other
users to this environment yet, but if we did, they would immediately be able to access this area

and trigger new profiles with their browser extension.

If you go to back to https://blackfire.io to see your dashboard, the new profile also shows up

here. But that's purely for convenience. The profile fruly belongs to the environment. You can
even see that right here. But Blackfire places all profiles that / create on this page... to make life

nicer.

Click the profile to jump into it. Of course... this looks exactly like any profile we created on our

local machine. But it does have a few differences.

Caching_Information

Hover over the profile name to find... "Cache Information". We talked about this earlier: it shows
stats about various different caches on your server and how much space each has available.

Now that we're profiling on production, this data is super valuable!

For example, if your OPcache filled up, your site would start to slow down considerably... but it
might not be very obvious when that happens. It's not like there are alarms that go off once PHP
runs out of OPcache space. But thanks to this, you can easily see how things really look, right
now, on production. If any of these are full or nearly full, you can read documentation to see

which setting you need to tweak to make that cache bigger.

https://blackfire.io/
https://blackfire.io/

Quality & Security Recommendations

The other thing | want to show you is under "Recommendations” on the left. There are 3 types
of recommendations... and we have one of each: the first is a security recommendation, the
second is a quality recommendation and the third a performance recommendation. Only the
performance recommendations come standard: the other two require an "Add on"... which |

didn't have until | started using my organization's plan.

As always, to get a lof more info about a problem and how to fix it, you can click the question

mark icon.

Converting Recommendations into Assertions

One of my favorite things about recommendations is that you can easily convert any of these
into an assertion. If you click on assertions, you'll remember that we created one "test" that said

that every page should have - at maximum - one HTTP request.

We configured that inside of our .blackfire.yaml file: we added tests, configured this test

to apply to every URL, and leveraged the metrics system to write an expression.

Back on the recommendations, click to see more info on one of these... then scroll down. Every
recommendation contains code that you can copy into your .blackfire.yaml file to convert

that recommendation into a test... or "assertion".

That might not seem important right now... because so far, it looks like doing that would simply
"move" this from a "warning" under "Recommendations" to a "failure" under "Assertions"...

which is cool... but just a visual difference.

But! In a few minutes, we'll discover that these assertions are much more important than they
seem. To see why, we need to talk about the key feature and superpower of environments:
builds.

Chapter 31: Automatic Performance Checks:
Builds

Head back to https://blackfire.io, click "Environments" and click into our "Sasquatch Sightings

Production" environment.

Interesting. By default, it takes us not to the profiles tab... but to a tab called "Builds". And, look
on the right: "Periodic Builds": "Builds are started every 6 hours"... which we could change to a

different interval.

Further below, there are a bunch of "notification channels" where you can tell Blackfire that you

want to be notified - like via Slack - of the results of this "build" thingy.

Hello Builds

Ok, what the heck is a build anyways? To find out, let's trigger one manually, then stand back
and see what happens. Click "Start a Build". The form pre-fills the URL to our site... cool... and

we can apparently give it a title if we want. Let's... just start the build.

This takes us to a new page where.... interesting: it's running an "Untitled Scenario"... then it

looks like it went to the homepage... and created a profile?

Let's... back up: there are a /ot of interesting things going on. And | love interesting things!

First, we've seen this word "scenario" before! Earlier, we used the blackfire-player: a
command-line tool that's made by the Blackfire people... but can be used totally outside of the
profiling tool. We created a scenario.bkf file where we defined a scenario and used the
special blackfire-player language to tell it to go to the homepage, assert a few things, then

click on the "Log In" link and check something else:

https://blackfire.io/

1 name "Various scenarios for the site"

2

3 # override with --endpoint option

4 endpoint "https://localhost:8000"

5

6 scenario

7 name "Basic Visit"

8

9 visit url("/")

10 name "Homepage"
11 expect status_code() == 200
12 expect css("tbody.js-sightings-list tr").count() > 10
13 # won't work until we're using Blackfire environment
14 assert metrics.sql.queries.count < 30
15
16 click link("Log In")
17 name "Login page"
18 expect status_code() == 200

T // ... lines 19 - 20

At that time, this was a nice way to "crawl" a site and test some things on it. The "build" used the

same "scenario" word. That's not an accident. More on that soon.

Build "URLSs to Test"

The second important thing is that this profiled the homepage because, when we created our
environment, we configured one "URL to test": the homepage. That's what the build is doing:

"testing" - meaning profiling - that page.

Let's add a second URL. One other page we've been working on a lot is
/api/github-organization: this JSON endpoint. Copy that URL and add it as a second

"URL to test". Click save... then manually create a second build.

Like before, it creates this "Untitled Scenario" thing. Ah! But this time it profiled both pages! The

build also shows up as green: the build "passed".

This is a critical thing about builds. It's not simply that a build is an automated way to create a
profile for a few pages. That would be pretty worthless. The real value is that you can write

performance tests that cause a build to pass or fail.

Check it out "1 successful constraint" - which is that "HTTP Requests should be limited to 1 per

page". Hey! That's the "test" that we set up inside .blackfire.yaml!

.blackfire.yaml

1 "tests":

2 "HTTP Requests should be limited to 1 per page":
3 path: "/.*"

4 assertions:

5 - "metrics.http.requests.count <= 1"

The real beauty of tests is not that the "Assertions" tab will look red when you're looking inside
a profile. The real beauty is that you can configure performance constraints that should pass
whenever these builds happen. If a build fails - maybe because you introduced some slow code

- you can be notified.

Build Log: blackfire-player

But there's even more cool stuff going on. Near the bottom, click to see the "Player output".
Woh! It shows us how builds work behind-the-scenes: the Blackfire server uses the

blackfire-player!

Look closer: it's running a scenario: visit url(), method 'GET', then visit url() of
/api/github-organization. It's a bit hard to read, but this converted our 2 "URLs to test" into
a scenario - using the same format as the scenario.bkf file - then passed that to
blackfire-player. You can even see it reloading both pages multiple times to get 10

samples. That's one of the options it added in the scenario.

So with just a tiny bit of configuration, Blackfire is now creating a build every 6 hours. Each time,
it profiles these 2 pages and, thanks to our one test, if either page makes more than one HTTP

request, the build will fail. By setting up a notification, we'll know about it.

The fact that the build system uses blackfire-player makes me wonder: instead of
configuring these URLs, could we instead have the build system run our custom scenario file? |
mean, it's a lot more powerful: we can visit pages, but also click links and fill out forms. We can
also add specific assertions to each page... in addition to our one "global" test about HTTP

requests.

The answer to this question is... of course! And it's where the build system really starts to shine.
We'll talk about that next.

History & Graphs from Automated Builds

But before we do, | want you to see what the build page looks like once it's had enough time to
execute a few automated builds. Let's check out the SymfonyCasts environment. Woh! It's
graph time! Because this environment has a history of automated builds, Blackfire creates some
super cool graphs: like our cache hit percentage and our cache levels. You can see that my
OPcache Interned Strings Buffer cache is full. | really need to tweak some config to

increase that.

| can also see how the different URLs are performing over time for wall time, 1/0, CPU, Memory
& network as well as other stuff. We can click to see more details about any build... and even

look at any of its profiles.

Anyways, next: let's make the build system smarter by executing our custom scenario.

Chapter 32: Builds with Custom Scenarios

A few chapters ago, we created this scenario.bkf file:

1 name "Various scenarios for the site"

2

3 # override with --endpoint option

4 endpoint "https://localhost:8000"

5

6 scenario

7 name "Basic Visit"

8

9 visit url("/")

10 name "Homepage"

11 expect status_code() == 200

12 expect css("tbody.js-sightings-1list tr").count() > 10
13 # won't work until we're using Blackfire environment
14 assert metrics.sql.queries.count < 30

15

16 click link("Log In")

17 name "Login page"

18 expect status_code() == 200

$ // ... lines 19 - 20

It's written in a special blackfire-player language where we write one or more "scenarios"
that, sort of, "crawl" a web page, asserting things, clicking on links and even submitting forms.

This a simple scenario: the tool can do a lot more.

On the surface, apart from its name, this has nothing to do with the Blackfire profiler system:
blackfire-player is just a tool that can read these scenarios and do what they say. At your

terminal, run this file:

blackfire-player run scenario.bkf --ssl-no-verify

That last flag avoids an SSL problem with our local web server. When we hit enter... it goes to

the homepage, clicks the "Log In" link and... it passes.

Scenarios in .blackfire.yaml

This is cool... but we can do something way more interesting. Copy the entire scenario from this

file, close it, and open .blackfire.yaml.Add a new key called scenarios settoa |:

.blackfire.yaml
T // ... lines 1 - 6
7 scenarios: |
T // ... lines 8 - 23

That's a YAML way of saying that we will use multiple lines to set this.
Below, indent, then say #!blackfire-player:
.blackfire.yaml

$ // ... lines 1 - 6
7 scenarios: |

8 #!blackfire-player
T /7 ... lines 9 - 23

That tells Blackfire that we're about to use the blackfire-player syntax... which is the only

format supported here... but it's needed anyways. Below, paste the scenario. Make sure it's

indented 4 spaces:

blackfire.yaml

$ // ... lines 1 - 6
7 scenarios: |

8 #!blackfire-player
9
10 scenario
11 name "Basic Visit"
12
13 visit url('/")
14 name "Homepage"
15 expect status_code() == 200
16 expect css("tbody.js-sightings-1list tr").count() > 10
17 # won't work until we're using Blackfire environment
18 assert metrics.sql.queries.count < 30
19
20 click link("Log In")
21 name "Log in page"

22 expect status_code() == 200

The cool thing is that we can still execute the scenario locally: just replace scenario.bkf with
.blackfire.yaml. The player is smart enough to know that it can look under the scenarios

key for our scenarios.

blackfire-player run .blackfire.yaml --ssl-no-verify

But if you run this... error!

“Unable to crawl a non-absolute URI /. Did you forget to set an endpoint?”

Duh! Our scenario.bkf file had an endpoint config:

scenario.bkf

T // ... lines 1 - 2

3 # override with --endpoint option
4 endpoint "https://localhost:8000"
T // ... lines 5 - 20

You can copy this into your .blackfire.yaml file. Or you can define the endpoint by adding

--endpoint=https://localhost:86000:

blackfire-player run .blackfire.yaml --ssl-no-verify --endpoint=https://localhost:8000

Now... it works!

Building_the Custom Scenario

So... why did we move the scenario into this file? To find out, add this change to git... and

commit it.

git add .

git commit -m "moving scenarios into blackfire config file"

Then deploy:

symfony deploy --bypass-checks

Once that finishes... let's go see what changed. First, if we simply went to our site and manually
created a profile - like for the homepage - the new scenarios config would have absolutely no

effect. Scenarios don't do anything to an individual profile. Instead, scenarios affect builds.
Let's start a new one: I'll give this one a title: "With custom scenarios". Go!

Awesome!! Now, instead of that "Untitled Scenario" that tested the two URLs we configured, it's

using our "Basic visit" scenario! It goes to the homepage, then clicks "Log In" to go to that page.

Yep, as soon as we add this scenarios key to .blackfire.yaml, it no longer tests these
URLs. In fact, these are now meaningless. Instead, we're now in the driver's seat: we control the

scenario or scenarios that a build will execute.

Per Page Assertions/Tests

Even better, we have a lot more control now over the assertions - or "tests"... Blackfire uses

both words - that make a build pass or fail.

For example, the "HTTP requests should be limited to one per page" will be run against all
pages in the scenarios - that's 2 pages right now. But the homepage also has its own assert:
that the SQL queries on this page should be less than 30. If you look back at the build... we can

see that assertion! We can even click into the profile, click on "Assertions", and see both there.

So not only do we have a lot of control over which pages we want to test - even including filling
out forms - but we can also do custom assertions on a page-by-page basis in addition to having

global tests. | love that. And now | can remove the comment | put earlier above assert:

.blackfire.yaml

T // ... lines 1 - 6

7 scenarios: |

T // ... lines 8 - 9

10 scenario

T // ... lines 11 - 12

13 visit url('/")

$ // ... lines 14 - 16

17 # won't work until we're using Blackfire environment
T // ... lines 18 - 23

Now that we're running this from inside an environment, this does work.

Next, let's use our power to carefully add more time-based assertions on a page-by-page basis.
We'll also learn how you can add your own metrics in order to, well, write performance

assertions about pretty much anything you can dream up.

Chapter 33: Per-Page Time Metrics & Custom
Metrics

We know that the scenario will be executed against our production server only. If we profiled a
local page, this stuff has no effect. That means that the results of these profiles should have less
variability. Not no variability: if your production server is under heavy traffic, the profiles might be
slower than normal. But, it will have less variability than trying to compare a profile that you
created on your local machine with a profile created on production: those are totally different

machines and setups.

@ Tip

| also recommend adding samples 10 to each scenario. This will then use 10 samples (like

normal Blackfire profiles) and further reduce variability:

visit url("/")
name "Homepage"

samples 10

Cautiously Adding Time-Based Assertions

This means that you can... maybe add some time-based assertions... as long as you're

conservative. For example, on the homepage, let's assert that main.wall _time < 100ms:

.blackfire.yaml

T // ... lines 1 - 6

7 scenarios: |

T // ... lines 8 - 9

10 scenario

$ // ... lines 11 - 12
13 visit url('/")

T // ... lines 14 - 17
18 assert main.wall_time < 100ms

T // ... lines 19 - 23

By the way, most metrics start with metrics. and you can look on the timeline to see what's

available. A few metrics - like wall time and peak memory - start with main. .

Anyways, as you can see inside Blackfire, our homepage on production normally has a wall
time of about 50ms... so 100ms is fairly conservative. But time-based metrics are still fragile.

Doing this will likely result in some random failures from time-to-time.

Let's commit this:

git status
git add .

git commit -m "adding homepage time assertions"

And deploy:

symfony deploy --bypass-checks

Custom Metrics

While that's deploying, | want to show you a super powerful feature that we won't have time to
experiment with: custom metrics. Google for "Blackfire metrics". In addition to the timeline, this

page also lists all of the metrics that are available.

But you can also create your own metrics inside .blackfire.yaml. In addition to tests and
scenarios, we can have a metrics key. For example, this creates a custom metric called
"Markdown to HTML". The real magic is the matching calls config: any time the toHtml
method of this made-up Markdown class is called, its data will be grouped into the

markdown_to_html metric.

That's powerful because you can immediately use that metric in your tests. For example, you
could assert that this metric is called exactly zero times - as a way to make sure that some
caching system is avoiding the need for this to ever happen on production. Or, you could check

the memory usage... or other dimension.

You can use some pretty serious logic to create these metrics: making it match only a specific
caller for a function, OR logic, regex matching and ways to match methods, calls from classes
that implement an interface and many other things. You can even create separate metrics for

the same method based on which arguments are passed to them. They went a little nuts.

Checking the Time-Based Metric

Anyways, let's check on the deploy. Done! Go back - I'll close this tab - and let's create a new

build. Call it "With homepage wall time assert". Start build!

And... it passes! This time we can see an extra constraint on the homepage: wall time needs to
be less than 100ms. If it's greater than 100ms and you have notifications configured, you'll know

immediately.

Next: now that we have this idea of builds being created every 6 hours, we can do some cool
stuff, like comparing a build to the build that happened before it. Heck we can even write
assertions about this! Want a build to fail if a page is 30% slower than the build before it? We

can do that.

Chapter 34: Testing a Build Compared to the Last
Build

A long time ago in this tutorial, we talked about Blackfire's truly awesome "comparison" feature.
If you profile a page, make a change, then profile it again, you can compare those two profiles

to see exactly how that change impacted performance.

When you use the build system, you can do the exact same thing... and you can even write

"tests" that compare a build to the previous build. For example, you could say:

“Yo! If the wall time on the homepage is suddenly 30% slower than the previous build, | want
this build to fail.”

Adding_a Comparison Test with percent|()

How can we do that? It's dead simple. Add a new global metric - how about "Pages are not
suddenly much slower" - and set this to run on every page: path: /.*. For the assertion, we

can use a special function called percent: percent(main.wall_time) < 30%:

.blackfire.yaml

1 "tests":

T 7/ ... lines 2 - 5

6 "Pages are not suddenly *much* slower":

7 path: "/.*"

8 assertions:

9 - "percent(main.wall _time) < 30%"
$ // ... lines 10 - 27

That's it! There's also a function called diff() . If you said
diff(metrics.sql.queries.count) < 2 it means that the difference between the number of

SQL queries on the new profile minus the old profile should be less than 2.

Let's see what this looks like! Find your terminal and commit these changes:

git status
git add .

git commit -m "adding global wall time diff assert"

Now... deploy!

symfony deploy --bypass-checks

Comparison Tests: Not for Manual Builds

But... bad news. If we waited for that to finish deploying... and then triggered a new custom
build... that test would not run. In fact, | want you to see that. Wait for the deploy to finish - okay,

good - then move back over and start a build.

This does what we expect: it executes our scenario and creates 2 profiles. Look at the 3
successful constraints for the homepage: we see the other global test about "HTTP requests

should be limited"... but we don't see the new one. What gives?

So... when you create a build, you can specify a "previous" build that it should be compared to
by using an internal "build id". Our project is too new to see it, but this happens automatically

with "periodic" builds: our comparison assertion will execute on periodic builds.

@ Tip

Triggering builds via a webhook requires an Enterprise plan.

But when we create a manual build... there's no way to specify a "previous" build... which is why
the comparison stuff doesn't work. Fortunately, since | don't want to wait 12 hours to see if this
is working, there is another way to trigger a build: through a webhook. Basically, if you want to
create a build from outside the Blackfire Ul, you can do that by making a request to a specific
URL. And when you do that, you can optionally specify the "previous build" that this new build

should be compared to.

Automatic Build on Deploy

This webhook-triggered-build is especially useful in one specific situation: creating a build each
time you deploy. If you did that correctly, your comparison assertion would compare the latest

deploy to the previous deploy... which is pretty awesome.

Because we're using SymfonyCloud, this is dead-simple to set up.

Find the Blackfire SymfonyCloud documentation and, down here under "Builds", I'll select our
environment. Basically, by running this command, we can tell SymfonyCloud to send a webhook

to create a Blackfire build each time we deploy.

Copy it, move over to your terminal and... paste:

symfony integration:add --type=webhook --url="'https://USER:PASS@blackfire.io/api/v2/bu:

Hit enter to report all events and enter again to report all states. For the environments - this is
asking which SymfonyCloud environments should trigger builds. Answer with just master - I'll

explain why soon.

And... done! Let's redeploy our app. Oh, but before we do, refresh our builds page. Ok, we have

5 builds right now. Now run:

symfony redeploy --bypass-checks

This should be pretty quick. Then... go refresh the page. Yes! A new build - number 6 - triggered

by SymfonyCloud. And it passes. Awesome! Let's redeploy again:

symfony redeploy --bypass-checks

When that finishes... there's build 7! But to see the comparison stuff in action, | need to do a real
deploy so that the next build is tied to a new Git sha. I'll do a meaningless change, commit, then

deploy:

git commit -m "triggering deploy" --allow-empty
symfony deploy --bypass-checks

Seeing_the Compared Builds

Actually, | could have skipped changing any files and committed with --allow-empty to create

an empty commit. When this finishes... no surprise! We have build 8!

On this build, it's super cool: each profile has a "Show Comparison" link to open the
"comparison" view of that profile compared to the same profile on the build from the /ast deploy -

which - if you click "latest successful build" - is build 7.

Back on build 8, click the "Show 4 successful constraints" link. There it is! We can see our
"Pages are not suddenly much slower" assertion! It's comparing the wall time of this profile to

the one from the last build.

Click to open up the profile... and make sure you're on the Assertions tab. I love this: 2 page-
specific assertions from the scenario, and 2 global assertions: one using the percent()

function.

The "Recommendations" also got a bit better: Blackfire automatically has some built-in
recommendations using diff: this recommends that the new profile should have less than 2
additional queries compared to the last build. It looks like it failed... but that's just because the

other part of this recommendation - not making more than 10 total queries - failed.

Next: what about running builds on your staging server so you can catch performance issues
before going to production? Or what about executing Blackfire builds on each pull request? We

can totally do that - with a second environment.

Chapter 35: Staging Servers on SymfonyCloud

For your site, you hopefully have a staging environment - or maybe multiple staging
environments where you can deploy new features and test them. What about those machines?

Should we also run Blackfire builds on them?

Why Profile Staging_Servers?

At first, that might not seem important. After all, if a staging machine is a bit slow, who cares?
But thanks to the assertions we've been writing, if we executed our Blackfire scenarios on a
staging machine, we could identify performance failures before deploying them to production.
And if you have a really cool setup, you can even have build results posted automatically to your

pull request. O000000.

Separating_Staging_from Production on Blackfire

Getting Blackfire set up on a staging server seems simple enough: just repeat the Blackfire

installation process... on a different server! But stop! | don't want you to quite do that.

Why? | want your Blackfire production environment to only contains builds from your actual
production servers. | want this to be a perfect history and representation of production only. If
we suddenly start adding builds from a staging server - which maybe has different hardware
specs... or is running a buggy new feature - some of those builds will fail... and we'll get extra

noise in our notifications.

Instead, | like to create a second Blackfire environment and send profiles to it. If | have multiple

staging servers, | make them all use this same new environment.

SymfonyCloud Environments

But... before we create that second Blackfire environment... | need you to - once again - pretend

like Blackfire doesn't exist at all... for a few minutes.

Because before we talk about how we profile a staging server, we need to create a staging
server and deploy to it. SymfonyCloud has an incredible way to do this. Unfortunately, the
feature in Symfony cloud that does this is called... environments. And it has absolutely nothing

to do with Blackfire environments.

Here's how it works: in addition to your master branch, which is your production server,
SymfonyCloud allows you to deploy different git branches. Each deploy will get its own unique

URL. Each branch deployment is called an "environment". If you run:

symfony envs

Yep! We currently have one environment: master. It's the "current” environment because we're

checked out to the master git branch locally.

Ok, pretend that we're working on a new feature. And so, we want to create a new local branch

for it. Instead of doing that manually, run:

symfony env:create some_feature

This does two things. First, it created a new local branch called some_feature. That's no big
deal: we could have done that by hand. Second, it deploys that branch! It does this by creating a

"clone" of the master environment: - even creating a copy of the production database!

I'll fast-forward through the deploy. When it finishes, it gives us a URL to the deploy. This is a
different URL than on production: it's a totally separate, isolated deployment. Let's open this the

lazy way:

symfony open:remote

Say hello to our staging server for the some_feature branch, which you can see contains a

copy of the production database! How cool is that?

Configuring Blackfire on the Environments

Back on Blackfire, refresh to see the builds for the production environment. When we deployed
to that environment, it did not create a new build. We expected that. When we added the
integration to SymfonyCloud - we told it to trigger a build on this Blackfire environment

whenever we deploy the master branch only. We did that because we don't want these staging

servers to create builds here.

Next, let's create a second environment and configure our staging servers to use it.

Chapter 36: Staging Environment Builds

We now have two versions of our site deployed: our production deploy and a, sort of, "staging"
deploy of a pretend feature we're working on. Blackfire is all set up on the production server, but

not on the staging server. Let's fix that!

Back on the "Install" page, select "SymfonyCloud" as our host to get to its docs. To set up
Blackfire on production, we did 3 things. One, added the extension. Two, ran this var:set
command to configure our Blackfire Server id and token. And three, ran integration:add so

that every deploy to master would trigger a Blackfire build in our environment.

Technically, on the staging server, the Blackfire extension is already enabled and it's set up to
use the Server |d and token from our production Blackfire environment. But, as we talked about

in the last chapter, | don't want to mix my production builds with builds from staging servers.

Creating_a new Blackfire Environment

Instead, go back to our Blackfire organization and create a second environment. Let's call it
"Sasquatch Sightings Non-master". For the endpoint, use the production environment URL. But

don't worry, that URL won't actually be used. You'll see.

Hit "Create environment"... then remove the build notifications and save. View the new
environment - I'll get the credentials in a minute. Now, stop the periodic builds. Why? Well in our
setup, at any point, we may have zero or many different "staging" servers. There's not just one
server to build... so if we did a periodic build... which "staging" server would it use? It just
doesn't make sense in our case. What does make sense is to trigger a new build each time we

deploy to a staging server.

Different Server Id and Token on Staging

Ok, let's think about this: we now have two Blackfire environments. We want the production
server to use the Blackfire server id and token for the production environment... and we want

every other deploy to use the Blackfire id and token from the new "Non-master" environment.

How you do that depends on how you deploy. For us, we can use a SymfonyCloud config trick.

First, list which variables we have set with:

symfony vars

We have the two that were set by the var:set command we ran earlier. Delete both of them:

symfony var:delete BLACKFIRE_SERVER_ID BLACKFIRE_SERVER_TOKEN

We're going to re-add these in a minute... but with some different options. Now, go back to the
installation page... and refresh... so this shows our new environment. For the var:set

command, select the Non-master environment. Copy the command, move over and paste:

symfony var:set BLACKFIRE_SERVER_ID=XXXXXXX BLACKFIRE_SERVER_TOKEN=XXXXXX

If we stopped now, it would mean that every server would send its profiles to the new Non-
Master environment... which is not exactly what we want. But here's the trick: on the "Install"
page, change to the "Production" Blackfire environment, and copy its command. We're going to

override these variables, but just on the SymfonyCloud master environment.

Paste the command, then add --env=master --env-level so that the variables are used as
"overrides" for only that environment. Finish with --inheritable=false so that when we
create new SymfonyCloud environments, they don't inherit these variables from master: we

want them to use the original values:

symfony var:set BLACKFIRE_SERVER_ID=XXXXXXX BLACKFIRE_SERVER_TOKEN=XXXXXX \

--env=master --env-level --inheritable=false

This is a long way of saying that the master environment on SymfonyCloud will now use the
server id and token for the "Sasquatch Sightings Production" Blackfire environment. And every

other deploy will use the credentials for the "Non-Master" environment. To be sure, run:

symfony vars --env=master

Yep! 6900 is the server id for Production. Now try:

symfony vars --env=some_feature

Perfect: that uses the other Server id and token. We're good!

Staging: Builds on Deploy

The /ast thing | want to do is run this integration:add command again. We ran this earlier to
tell SymfonyCloud that it should notify our "Production” Blackfire environment whenever we

deploy to master. Now copy the "Non-Master" environment command... and run it:

symfony integration:add --type=webhook --url='https://USER:PASS@blackfire.io/api/v2/bu:

Say yes to all events, all states and all environments. Actually, what we really want to say is:
create a build on the "Non-Master" environment every time any branch except for master is

deployed... but | don't think that's possible.

Phew! Let's redeploy both SymfonyCloud environments to see all of this in action:

symfony redeploy --bypass-checks

Because we're currently checked out to the some_feature branch, this deploys that branch.

When it finishes, run the same command but with --env=master to redeploy production:

symfony redeploy --bypass-checks --env=master

We also could have switched to that branch - git checkout master - and then ran

symfony redeploy. That's the more traditional way.

Done! Let's go see what that did! First check out the Blackfire production environment. Yes! The
redeploy to master created one new build. Perfect. Now check out the Non-master
environment. Oh, this has two new builds: one for the some_feature deploy and another for
the master deploy. We don't really want or care about that second one... but it's fine. What we
do care about is that now, every time we deploy to a non-production server, we get a new build

here.

If you use GitHub or Gitlab, you can take this one step further by doing 2 things. First,
SymfonyCloud has a feature where it can automatically deploy the code you have on a pull
request. And because that would trigger a new build, second, you can configure Blackfire to
notify GitHub or Gitlab of your build results so that they show up on the pull request itself. Pretty

awesome.

| love our setup. But there's one more environment feature that we haven't checked out yet: the

ability to set variables that you use in your scenarios. Let's check that out next.

Chapter 37: Blackfire Environment Variables

Often, your production server will have different - hopefully bigger - hardware than your staging
server... which means that your staging builds may run slower than production. That's going to
be a problem if you have time based metrics: the wall time of a build may be less than 100ms

on production... but more than that on staging:

.blackfire.yaml

$ // ... lines 1 - 10

11 scenarios: |

T // ... lines 12 - 13

14 scenario

$ // ... lines 15 - 16

17 visit url('/")

T // ... lines 18 - 21

22 assert main.wall_time < 100ms
$ // ... lines 23 - 27

That means the staging builds will always fail. Bummer!

Hello Build Variables

No worries. To help, each environment can define variables. Check it out: inside the metric
expression, I'll add a set of parentheses around the 100ms and then say times and call a var()
function. I'll invent a new variable: speed_coefficient and give it a default value - via the 2nd

argument - of 1:

.blackfire.yaml

$ // ... lines 1 - 10

11 scenarios: |

T // ... lines 12 - 13

14 scenario

$ // ... lines 15 - 16

17 visit url('/")

T // ... lines 18 - 21

22 assert main.wall_time < (10@ms * var('speed_coefficient', 1))

$ // ... lines 23 - 27

Now, when this assertion is executed, it will assert that the wall time is less than 100ms times
whatever this speed_coefficient variable is. What js speed_coefficient? It's totally
something | just made up and it is not set anywhere. Where do we set it? Inside our Blackfire

environment!

Copy the variable name and go into the Non-Master environment. On the right, near the bottom,
click the pencil icon to edit our variables. Add the variable set to... how about 2: that will allow

the staging server to be twice as slow.

Do we also need to set this inside the "Production" environment? Nope: I'll just let it use the

default value of 1.

Let's try it! Spin back over to your terminal, add the change... and commit:

git add .

git commit -m "adding speed_coeffient variable for wall time assert”

As a reminder, we're on the some_feature branch. So when we run:

symfony deploy --bypass-checks

We're deploying to that environment.

Seeing_the Variable in Action

When that finishes... move back over to the Blackfire environment, refresh and... hello new
build! Look inside. There are two cool things. First, under the homepage, you can see the
speed_coefficient in action - the little "2" tells us the value it's using. So, in reality, it's

asserting that 50.8ms is less than 200 milliseconds.

Feature Branch Comparisons

The other thing | want you to notice is that, if you go back to the builds page, we have now built

the some_feature branch twice. When you click on the second, newer build, it has the

comparison stuff! It allows us to compare this build to the previous commit on the same branch.
This allows you to see - commit-by-commit - when a feature started having performance

problems.

And... that's it for the Blackfire tutorial! | hope you loved this nerdy trip into the depths of
performance as much as | did. Blackfire can give you a /ot of info immediately... or you can

really dive in and make it sing. Personally, | love having the builds and this performance history

for SymfonyCasts.com. Oh, and a special thanks to Jérébme Vieilledent - | almost definitely just

slaughtered his name - for his endless patience answering my hundreds of Blackfire questions.

And as always, if you have any questions... or we didn't explain something you wanted to know
about... or you want a cake recipe... we're here for you in the comments. If you have any serious

performance wins, we would /ove to hear about them.

Alright friends - | wish you a speedy day! Seeya next time!

https://github.com/lolautruche

With <3 from SymfonyCasts

