
Contributing back to Symfony!

Chapter 1: Organization & Triaging

What could be better than eating ice cream at the beach? Only one thing I can think of: eating

ice cream at the beach... wait for it... while contributing to Symfony!

The Massive Power of Contributors

Seriously, I am super, duper, double-duper, excited about this tutorial! If you're like me, you

probably use Symfony almost every day. And that means, we're taking advantage of countless

hours of volunteer work from thousands of people! Contributing to Symfony is a great way to

give back and become part of that amazing effort.

But, I also have a few other motivations. Like, if you want to truly become an expert on one part

of Symfony, there is no better way than reviewing a pull request or fixing a bug. Seriously.

Or, have you ever been annoyed by part of Symfony and wanted to improve it? How about this:

have you ever been confused, finally figured something out, and then realized a small change to

the documentation could have saved you hours of frustration?

These are the things that get me excited to contribute back to Symfony! How cool is it that you

could save other people hundreds of hours by improving the documentation with extra

information that the core team didn't realize was missing? Symfony is truly community-driven.

There's actually no official roadmap: if you want to add something, do it!

The Organization of Symfony

Excited? There's just one small problem: contributing... ain't easy! At least, not at first. Symfony

is a huge and complex project. But, you will not regret learning how to give back. It's fun and will

make you an even better developer.

Let's jump in! The main repository for Symfony lives at https://github.com/symfony/symfony.

This holds almost all of the Symfony libraries. There are a few others that live in other places -

but we'll talk about those later.

https://github.com/symfony/symfony

And, woh! 749 issues and 181 pull requests! That's, ah, a lot! And this leads me to the first,

most important and least celebrated way of contributing: triaging! Here's the truth: there are too

many issues and too many pull requests for the Symfony core team to be able to reply & review

everything.

The first way to contribute is to "triage": find an issue and help push it forward. If it's a feature

idea, you can give your feedback or offer alternate solutions. If it's a bug, see if you can

replicate that bug. We're going to do this.

You can also triage pull requests: find one, review its code, give your opinion on whether or not

you think it's a good idea, and even test it in a real project to make sure it works. We'll do that

too!

Oh, and I recommend focusing on newer issues and pull requests, at least at first. If a PR or

issue is old, it's probably pretty complicated.

Your Opinion is Respected

If reviewing code or giving your opinion in a big repository like Symfony sounds scary, don't

worry! Symfony is a friendly place: everyone has the same goal: to help move the project

forward. Sure, it is possible that you'll say something that's not completely correct. I do that all

the time! I think I'm kinda famous for it! It's really no big deal. Honestly, the time that you took to

review that pull request or issue has a high value. And if you say something that isn't totally

right, someone else will nicely correct you, you'll learn something, and the whole project will

move forward. Be nice, don't be afraid to be wrong, and use any feedback as a way to learn

more.

Reviewing a Pull Request

So, let's start contributing! Let's triage a pull request that I found: - it's number 28069. This PR is

from my friend Colin, who's proposing a new MultipleOf validation constraint that checks

whether a submitted value is divisible by another number.

I like this idea, but this PR hasn't gotten any attention yet. This is a perfect opportunity for us to

help push it forward!

https://github.com/symfony/symfony/pull/28069

First, let's review the code. As a new contributor, you might not really know what to look for

when reviewing. No problem: just see if the code makes sense and look for potential bugs or

other issues. You don't have to be perfect: every little bit helps.

To create a validator, you need two classes. The first represents the annotation: MultipleOf .

The second - MultipleOfValidator - is the class that actually does the validation work.

The annotation has an option message:

“The value should be a multiple of {{ compared_value }}”

That's a pretty good message. In the validator, Colin uses `fmod ` to compare the values,

which means the user can compare decimals - like 1 is a multiple of 5. Yea, this all looks pretty

good to me!

The second thing to look for is if the PR has a test: most features need some. And, no surprise,

Colin did a great job here too: he's testing valid and invalid comparisons. This test uses a

special base class to hook this all together.

So... I have no comments to add to this pull request! And even that is valuable! We'll be able to

post that we reviewed the code and it looks good to us. But, there is still one important question:

does this... actually work? It's one thing to look at the code, but it helps so much if someone in

the community says:

“Hey! I actually tried this in a real project and it works great!”

Let's be that wonderful person next!

Chapter 2: Testing the Code from a PR

It looks like Colin did a great job with this new feature. But, we can give a merger much more

confidence by actually testing it in a real project!

Creating a new Test App

In PhpStorm, I've already created an empty contributing directory. And, I already have a

terminal open to this same place. To test the PR, let's literally create a brand-new Symfony app:

composer create-project symfony/skeleton

I'm using symfony/skeleton instead of the larger symfony/website-skeleton to keep

things as small and focused as possible. Grab the dev-master version of the skeleton:

composer create-project symfony/skeleton:dev-master

Why? Colin's PR is against Symfony's master branch. So, to test it, I want to create an app

that's based on that same version of Symfony.

Finally, put this into a new directory called triage_pr_28069 :

composer create-project symfony/skeleton:dev-master triage_pr_28069

When that finishes, move over and... yea! Here's the new app. Check out its composer.json

file:

triage_pr_28069/composer.json

1

 // ... lines 2 - 4

5

 // ... lines 6 - 8

9

 // ... line 10

11

12

13

14

15

16

17

 // ... lines 18 - 60

61

It's using version 4.2 of Symfony, which is the next, unreleased, version of Symfony at this

moment. In other words, this code is from Symfony's master branch. We also have

minimum-stability set to dev :

triage_pr_28069/composer.json

1

 // ... lines 2 - 3

4

 // ... lines 5 - 60

61

Which means that Composer will try to install new, unreleased version of libraries.

Look back at the PR: all of the changes were to the Validator component. Ok, let's get that

installed: find your terminal, move into the directory and run:

composer require validator

This will install the dev-master version of symfony/validator . In other words, it will get

the code from Symfony's master branch. But... hmm... that's not quite what we want: we

somehow need to get the code from Colin's branch. How can we do that? Oh, it's super cool.

Getting the Code from the Pull Request

{

 "require": {

 "symfony/console": "^4.2",

 "symfony/force-lowest": "=4.2",

 "symfony/framework-bundle": "^4.2",

 "symfony/yaml": "^4.2"

 },

 "require-dev": {

 "symfony/dotenv": "^4.2"

 },

}

{

 "minimum-stability": "dev",

}

Go to your terminal and open a new tab. Go back up to the contributing directory. I'm going

to clone the entire Symfony project into a new directory here. To do that, go back to your

browser, move to the repository's homepage, click "Clone or download" and copy the URL.

Move back over, git clone and paste:

git clone git@github.com:symfony/symfony.git

When that finishes, we now have a symfony directory right next to our app. To get Colin's

branch, we have a few options. Move into the new symfony directory:

cd symfony/

And type:

git remote

and

git remote show origin

Let's add a second remote for Colin's fork. Copy the Symfony URL, then run

git remote add and paste. Copy Colin's username - colinodell , move back, call the

new remote colinodell , and change the username part of the URL:

git remote add colinodell git@github.com:colinodell/symfony.git

Nice! Grab his branches with:

git fetch colinodell

Yep! There's the branch: feature/multiple-of-validator - this is the one used for the

PR. To check out to that code, create a new branch:

git checkout -b feature/multiple-of-validator colinodell/feature/multiple-of-va

Sweet! To prove we've got the right code, go back to PhpStorm, press Shift+Shift , and

search for the new file. There it is!

We now have a test app and the new code in our symfony directory. But, they're not

connected yet! Let's do that next.

Chapter 3: Linking Symfony deps to your Local
Copy

Here's the question now: how can we make our test app use the pull request code from the

symfony/ directory? Check out the vendor/symfony directory in the app: it's just a bunch of

sub-directories, each containing code from Symfony's master branch. But, what we really want

is for this validator directory to instead be a symbolic link to the correct path in our

symfony/ directory: src/Symfony/Component/Validator .

We could do this by hand... but! Symfony has a cool script to do this automatically: it's called

link .

Go back to the terminal that holds the app and run:

ls -la vendor/symfony

Yep! Just a bunch of lonely directories. Go back to the other tab and run ./link and point to

our app: ../triage_pr_28069 :

./link ../triage_pr_28069/

Wow! Go back to your app and check the symfony directory again:

ls -la vendor/symfony

Awesome! Every package that comes from the symfony/symfony repository is now a symlink

to our local copy! In other words, our app is now using Colin's code!

Testing the PR Code!

It's time for us to write some code that tests the new validator! In src/ , create a new PHP

class, um, how about: ClassToValidate :

triage_pr_28069/src/ClassToValidate.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 13

14

I'm feeling creative!

Inside add a new public property called $enteredNumber :

triage_pr_28069/src/ClassToValidate.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 12

13

14

I'm trying to keep my code as simple as possible: a public property is a nice shortcut.

Next, add the annotation: @Assert\MultipleOf() of 10. I'm also going to add a second

annotation that will eventually fail - @Assert\Blank() - just to make sure everything is

working ok:

namespace App;

class ClassToValidate

{

}

namespace App;

class ClassToValidate

{

 public $enteredNumber;

}

triage_pr_28069/src/ClassToValidate.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

To try this, in the Controller/ directory, create a new class: TestingController . Fill in

the namespace: App\Controller :

triage_pr_28069/src/Controller/TestingController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

 // ... lines 10 - 17

18

Because we have multiple apps in one PhpStorm project, some of the magic we normally get

isn't working. Inside this, add public function test() . Ok: to test validation we'll need the

validator service and the object to validate. And an argument:

ValidatorInterface $validator :

triage_pr_28069/src/Controller/TestingController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

8

9

10

11

 // ... lines 12 - 16

17

18

namespace App;

use Symfony\Component\Validator\Constraints as Assert;

class ClassToValidate

{

 /**

 * @Assert\MultipleOf(5)

 * @Assert\Blank()

 */

 public $enteredNumber;

}

namespace App\Controller;

class TestingController

{

}

namespace App\Controller;

use Symfony\Component\Validator\Validator\ValidatorInterface;

class TestingController

{

 public function test(ValidatorInterface $validator)

 {

 }

}

Then, $myObject = new ClassToValidate() and set its enteredNumber to 10:

triage_pr_28069/src/Controller/TestingController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 16

17

18

Oh, and change the MultipleOf to be 5:

triage_pr_28069/src/ClassToValidate.php

 // ... lines 1 - 6

7

8

9

10

 // ... line 11

12

13

14

We'll test that 10 is a multiple of 5.

To validate, add $errors = $validator->validate($myObject); . Then, dump that

and die!

namespace App\Controller;

use App\ClassToValidate;

use Symfony\Component\Validator\Validator\ValidatorInterface;

class TestingController

{

 public function test(ValidatorInterface $validator)

 {

 $myObject = new ClassToValidate();

 $myObject->enteredNumber = 10;

 }

}

class ClassToValidate

{

 /**

 * @Assert\MultipleOf(5)

 */

 public $enteredNumber;

}

triage_pr_28069/src/Controller/TestingController.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

Finally, we need a route for this! We don't have annotations installed, so, to keep things simple,

add this in routes.yaml : uncomment the example, and change the controller to

TestingController::test :

triage_pr_28069/config/routes.yaml

1

2

3

Done! Back in the terminal, start the built-in PHP web server in the public/ directory:

php -S localhost:8000 -t public

We're ready! Find your browser, go to http://localhost:8000 and... what?! No validation errors!

That's actually not good - the @Blank constraint should give us one error:

triage_pr_28069/src/ClassToValidate.php

 // ... lines 1 - 6

7

8

9

 // ... line 10

11

12

13

14

class TestingController

{

 public function test(ValidatorInterface $validator)

 {

 $myObject = new ClassToValidate();

 $myObject->enteredNumber = 10;

 $errors = $validator->validate($myObject);

 var_dump($errors);die;

 }

}

index:

 path: /

 controller: App\Controller\TestingController::test

class ClassToValidate

{

 /**

 * @Assert\Blank()

 */

 public $enteredNumber;

}

http://localhost:8000/

The problem is that our setup is not quite complete: to use annotations with the validator, you

need to install the annotations library. Stop the web server and run:

composer require annotations

This installs sensio/framework-extra-bundle ... we only technically need to install

doctrine/annotations . But, that's ok. Restart the built-in web server:

php -S localhost:8000 -t public

Move over and, refresh. It works! We get the one expected error from @Assert\Blank , but we

do not get a second error: 10 is a multiple of 5. To make sure the failure works, change this to 9:

triage_pr_28069/src/Controller/TestingController.php

 // ... lines 1 - 7

8

9

10

11

 // ... line 12

13

 // ... lines 14 - 16

17

18

move over and... yes! There is the second error. That error language looks really nice to me.

Finishing the PR Review

Hey! The code works! This is great news! Let's go back to GitHub and tell the world! I'll

"Approve" this pull request. And, like everything, don't worry: this doesn't mean that the PR is

definitely perfect: just that you think it's ready. The really important part is to add as much

information about why you think it's ready or not ready. In this case, we checked the code and

we actually tested this in a real project.

class TestingController

{

 public function test(ValidatorInterface $validator)

 {

 $myObject->enteredNumber = 9;

 }

}

And... approve! Oh, but I did forget to check one thing: whether or not this new feature has a

documentation pull request or issue. But, of course, it does! Not every pull request needs

documentation - but, if you think it does, and it's missing, gently poke the pull request's author.

Or, even better! Go create the documentation pull request yourself! We'll do that later.

Oh, and fun fact! This feature was merged about 1 week after we did this review. Go open

source! After some good community feedback, it was renamed from MultipleOf to

DivisibleBy . A great change!

Next, let's triage an issue and try to close a bug.

Chapter 4: Triaging a Bug Issue

We just reviewed our first pull request! So let's see what other trouble we can get into! One of

the most important thing you can do is to triage issues.

If an issue is for a feature request, then it's probably a discussion about whether or not it's a

good idea and the best implementation. Helping those discussions is great. But... click on the

"bug" label. These are where you can really help.

Symfony is pretty stable & complex. So, if there is a bug, it's usually pretty complicated or

involves some edge-case situation. These can take a lot of time to understand and replicate.

The core team really needs help from the community to verify the bug, ask for more information

from the user and, ultimately, to create a "reproducer": a tiny app that clearly shows that bug in

action.

Triaging an Issue

Let's triage an issue I found a few days ago: #27901. Ok, the user says that he got an error

when trying to serialize a Doctrine QueryBuilder with the web profiler: something about not

being able to serialize a PDO instance.

The web profiler works by collecting a bunch of information about the request and serializing it

to a cache file. It looks like something failed during that process. This is actually a pretty nice

bug report because he lists the steps to reproduce: install the web profiler and then call

execUpdate on Doctrine's lower-level Connection object, passing it a QueryBuilder. He

even suggests a solution!

Ok, so, how can we help? First: see if we can reproduce & understand the issue. Let's create

another small project for this. Notice that this is an issue that's reported on the stable version of

Symfony: 4.1. So, we should create a new app based on that same version - not dev-master

like before.

Press Ctrl+C to stop the server, move back up to the top contributing directory and run:

https://github.com/symfony/symfony/issues/27901

composer create-project symfony/skeleton triage_issue_27901

Because we're not specifying a version, it will use the current stable version: 4.1.

When this finishes, move into the directory. To replicate this bug, we will at least need to install

the stuff he's using: Doctrine and the web profiler. Back at the terminal, just install Doctrine for

now so we can write some code:

composer require orm

And... done! Close the old directory and open this new one. Then, go straight to create a new

controller class: how about Issue27901Controller . Give it a

public function test() :

triage_issue_27901/src/Controller/Issue27901Controller.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

Ok: check back on the issue. He's using the Doctrine Connection object - a lower-level object I

don't use too often. To see out how to get it, find your terminal and run:

php bin/console debug:autowiring

and scroll up. Yep! It looks like we can type-hint a Connection class to get the service we

need. Do that: Connection $connection :

namespace App\Controller;

class Issue27901Controller

{

 public function test()

 {

 }

}

triage_issue_27901/src/Controller/Issue27901Controller.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 12

13

14

Next, he calls execUpdate() and passes it a QueryBuilder argument. You may already be

familiar with the QueryBuilder from Doctrine. Well, in this case, because we're using the

lower-level Connection class from the Doctrine DBAL library, the QueryBuilder is also a

lower-level class from that library.

These are the types of little details that can make triaging a bug tough! But, it's also part of the

fun: you'll need to really dig into the code to find out what's going on.

Create the QueryBuilder with $connection->createQueryBuilder() :

triage_issue_27901/src/Controller/Issue27901Controller.php

 // ... lines 1 - 6

7

8

9

10

11

 // ... line 12

13

14

I won't even do anything with it yet: we're still investigating. Next, he calls execUpdate() . Oh,

but that doesn't exist! I bet he meant executeUpdate() - pass that $qb :

namespace App\Controller;

use Doctrine\DBAL\Connection;

class Issue27901Controller

{

 public function test(Connection $connection)

 {

 }

}

class Issue27901Controller

{

 public function test(Connection $connection)

 {

 $qb = $connection->createQueryBuilder();

 }

}

triage_issue_27901/src/Controller/Issue27901Controller.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

Great! At this point, I would normally install the web profiler, create some database entities and

use a real query in the controller to see if we can replicate the error. But, before we do that, I

noticed something: the first argument looks like it's supposed to be a string! Hold Command or

Ctrl and click to open the executeUpdate() method.

Yep! The first argument should be a string! But, the user is passing a QueryBuilder object! In

other words, I don't think this is a bug! The only reason the user's query actually works is that, if

you open the QueryBuilder class, it has a __toString() method. Doctrine is probably

accidentally converting this object to a string and using that SQL.

This is why his possible solution is to, inside a related class, convert the sql - which is a

QueryBuilder in his case - into a string. That would fix things, but I don't think this is really a

bug.

But even still, it's awesome that the user opened this issue. In a lot of cases, even if there is no

bug, we can use the mistake to improve things, like with better error messages.

Replying to the Issue

So, let's reply! And give as many specific reasons why we think this might not be a bug: in this

case, that the first argument expects a string.

As extra credit, I'll link to this exact code. Go to the doctrine/dbal repository. Then, press

the letter t to open this search screen. I live by this shortcut. Look for Connection.php and

open it. Search for executeUpdate() and... click to select that line: this updates the URL to

point here.

Then - here's another trick - press the y key. This changes the URL from master to the actual

commit sha. This helps make sure that this link - to line 1068 - will forever point to the line we

class Issue27901Controller

{

 public function test(Connection $connection)

 {

 $qb = $connection->createQueryBuilder();

 $connection->executeUpdate($qb);

 }

}

want - even if someone makes changes on the master branch and moves this line.

I'll paste the link and add a few more details. I really try to be as friendly as possible: this is our

chance to help make Symfony a warm & welcoming community. Even if this is not a valid issue,

it's great the user took their time to help report it.

And... boom! You probably won't have the power to close the issue, but this should make it easy

for someone else to do that. Achievement unlocked!

This bug turned out to not be a bug. So, let's hunt for a bug that really is a bug. And learn how to

create and share a "reproducer" project... which is seriously almost as valuable as actually

fixing the bug.

Chapter 5: Bug Reproducer

Triaging issues and pull requests is seriously, the best. But, occasionally, you might be the

person who finds the bug! That happened to me just today, and I want to report it!

To make the best possible bug report, we should create a "reproducer": a Symfony project that

shows the bug with as little code as possible. I don't have the error I saw in front of me now, but

it was pretty simple: I created a form class, tried to use it in my controller, then boom! I got a

very strange container cache error.

Creating the Reproducer Project

The bug happened when I was playing with the master branch of Symfony. So, let's create our

new reproducer project based on that:

composer create-project symfony/skeleton:dev-master container_bug_reproducer

When that finishes, move into the new directory:

cd container_bug_reproducer/

The one package I know I need is form . Get it installed:

composer require form

While we're waiting for this to finish, go back to PhpStorm, close a few files, and go into the new

directory. To reproduce my error, I know I need a new form class. Right inside src/ , create a

new PHP class: SomeFormType . My creativity today is off the charts. Make this extend the

usual AbstractType :

container_bug_reproducer/src/SomeFormType.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

Normally, we would also add the buildForm() method. But... I'm not even sure that's needed

to trigger the bug. So, in the spirit of making our reproducer as small and focused as possible,

let's skip it, until we know it's needed.

In the Controller/ directory, create another new PHP class: ContainerTestController

in the App\Controller namespace. Give it the usual public function test() :

container_bug_reproducer/src/Controller/ContainerTestController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

10

11

 // ... lines 12 - 13

14

15

Because we need to create a form, extend AbstractController from FrameworkBundle

so we have that shortcut:

container_bug_reproducer/src/Controller/ContainerTestController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

8

9

 // ... lines 10 - 14

15

Then, $form = $this->createForm() and pass SomeFormType::class :

namespace App;

use Symfony\Component\Form\AbstractType;

class SomeFormType extends AbstractType

{

}

namespace App\Controller;

class ContainerTestController extends AbstractController

{

 public function test()

 {

 }

}

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class ContainerTestController extends AbstractController

{

}

container_bug_reproducer/src/Controller/ContainerTestController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

If I'm right, the error will happen right here. To test this, find routes.yaml , uncomment the

route and point the controller to our code:

container_bug_reproducer/config/routes.yaml

1

2

3

We're ready! Go back to the terminal and start the built-in web server:

php -S localhost:8000 -t public

Move back, find that browser tab and... refresh! Say hello to the super weird error:

“Compile error: failed opening required file”

... in some var/cache/dev directory. This is related to the container, and it's very low-level

code. It's possible I'm doing something wrong, but this really looks like a bug.

To be sure, let's stop the web server, manually clear the cache directory with:

rm -rf var/cache/*

namespace App\Controller;

use App\SomeFormType;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class ContainerTestController extends AbstractController

{

 public function test()

 {

 $form = $this->createForm(SomeFormType::class);

 // error will happen on previous line

 }

}

index:

 path: /

 controller: App\Controller\ContainerTestController::test

restart the server and try it again. Same error. Let's take a screenshot: it's so useful to be able

to see the full stacktrace of an error.

Opening the Bug Issue

Go back to the Symfony repository and click to open a new issue. Yep, this is a "Bug Report".

And, this is cool! We have a nice outline of all the info needed. Affected versions: master . This

could be a bug on a stable version, and that is something we could check. But, since it would be

such a critical and obvious bug, it's probably just on master .

For description, let's describe what we're trying to do. I'll also upload my error screenshot. Oh,

and I forgot a title: I'll reference part of the error message for this.

Pushing the Reproducer to GitHub

Under "How to Reproduce", ah, this is where our issue will shine! Let's push our test project up

to GitHub so we can share it.

Move back to the terminal, stop the web server, then initialize a new Git repository with:

git init git add . git commit

and a message. Next, go to GitHub, click "New", type a name and click "Create Repository".

Copy the two lines near the bottom for an existing repository. Then, find your terminal and...

paste!

That's it! Refresh the page on GitHub: here is our simple reproducer app. Copy its URL. Then,

head back to the issue. Let's mention our reproducer app first and how to trigger the error on it.

Then, to make life even easier, summarize what we did to get the error. As extra credit, I'll even

link right to the line that triggers it.

And... that's it! I don't have any possible solution: this error is way above my pay grade. And,

that's ok. Finish the message and... submit!

We're done! This is a bug report worth being proud of.

And, to prove it! I have an update! This issue was fixed less than 3 hours after we posted this.

That's amazing.

Next, let's jump into how we can contribute code to Symfony via a pull request.

Chapter 6: Symfony's Branching Strategy & Pull
Requests

We've already helped push forward a pull request, solved an issue and even reported a bug.

Hello! We deserve cake!

And we deserve to move up one more level of difficulty: it's time to contribute new code with a

pull request. Let's look at an issue I found: #27835.

Understanding the Issue

This comes from the Security component. Let me give you some background: if you try to

access a protected page as an anonymous user - like /admin - Symfony stores that URL to a

special key in the session. Then, after you login, Symfony reads this key and redirects the user

back to that URL.

Occasionally, it's useful to manually set that session key to control where the user goes after

logging in. To help with that, Symfony has TargetPathTrait . The problem is that, to use its

saveTargetPath() method, you need something called the "provider key"... which is actually

just the "name" of your firewall. You could hardcode it, but, that really shouldn't be necessary.

In a recent version of Symfony, a feature was added so that you can read the firewall name by

getting a FirewallMap object, calling getFirewallConfig() and then calling

getName() . Phew!

But, here's the problem: that FirewallMap service is not an autowireable service. That makes

it inconvenient to use. And, one of the core contributors gives a reason behind why that service

is not autowireable.

You can work around this. But, I had an idea: I'm not even sure if it's a good idea, but let's try it.

What if we created a new TargetPathHelper class that allowed you to set this "target path",

without needing the provider key. Internally, it would use the FirewallMap to figure it out

automatically.

https://github.com/symfony/symfony/issues/27835

The end user could use this new class without needing to worry about the firewall name at all.

If you don't completely understand, that's ok. The important thing is the process we're going to

use to bring this new idea to life!

Symfony's Branching Strategy

Go back to PhpStorm: let's change our project to look only at the symfony/ directory. Then,

find the terminal that's in this directory. We're still on the feature branch from colinodell .

Start by making sure your copy of Symfony is up to date by running:

git fetch origin

And then create a new branch for our feature:

git checkout -b target-path-helper origin/master

This is important: we just created a new branch based off of Symfony's master branch. Why?

Why not base the branch off of Symfony's 4.1 branch - that's the currently-released version?

Let's talk about Symfony's branching system. It's... kinda simple. If you're adding a feature, it

should always be made to the master branch. Then, it will be included in the next Symfony

minor release: in this case Symfony 4.2. But if you're fixing a bug, you should fix that in the

oldest, supported branch where the bug exists. For example,: if you found a bug that was

introduced in Symfony 3.4, create your branch based off of origin/3.4 .

But, if a bug was first found in version 3.2, you actually would not base your branch off of

Symfony's 3.2 branch. Why? Because Symfony 3.2 is no longer supported. To help understand

this, go to https://symfony.com/roadmap. At this moment, only three versions of Symfony are

supported: 2.8, 3.4 and 4.1.

So, if you found a bug in Symfony 3.2, you would fix it in 3.4, because that's the oldest,

supported version of Symfony that contains the bug. If you found a bug in Symfony 2.7, you

would fix it on the 2.8 branch.

https://symfony.com/roadmap

But... if I fix a bug in 2.8... won't that bug still exist in 3.4 and 4.1? Ah, a very good question.

But... no! The core team routinely merges all old branches - like 2.8 - up into the newer

branches, like 3.4 and 4.1. If you fix a bug in 2.8, it will also be merged & included in all newer

versions. Booya!

Anyways, because this will be a new feature, our branch is based off of origin/master . And

now, we're ready to code. Let's do that next!

Chapter 7: Coding a new Feature

We've just created a new branch based off of Symfony's master branch. And now, we're ready

to create the amazing new TargetPathHelper class. But... where should it live? It's related

to Security... which means it could live in the Security component or SecurityBundle.

Components Versus Bundles

As a general rule, most code should live in a component so that it's reusable even outside of the

framework. But, sometimes, you'll write code that's really integrated with the framework. That

code will live in the bundle. My best advice... don't over-think it: it usually becomes pretty

obvious if you put something in the wrong spot.

Press Shift+Shift and search for a file that's closely related to our new feature:

TargetPathTrait . Ok, this lives in the Security component. I'll double click on the directory

to move there. At first, it seems like TargetPathHelper should live right here. And that's

where I would put it at first. I say "at first" because, if you started coding, you'd notice a problem.

What problem? This new class will ultimately use the FirewallMap class internally to do its

work. There are two FirwallMap classes: one lives in the Security component, and the other

lives in SecurityBundle. After digging a little bit, you'd find out that we will need to use the one

from SecurityBundle.

And here's why that's important: a class in a component can depend on classes from other

components. But, it can never depend on a class from a bundle. Because our new

TargetPathHelper needs a class from SecurityBundle, it can't live in the component: it must

live in the bundle.

If you get this wrong, no big deal: someone will help you out on your pull request.

Go find SecurityBundle and look inside Security . Hey! Here are the FirewallMap and

FirewallConfig classes we'll be using! That's a good sign! Create the new PHP class:

TargetPathHelper . Add our first public function, how about just savePath() with a string

$uri argument:

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

Symfony 4.0 and above requires PHP 7.1, so you should use scalar type-hints and return types.

But, Symfony does not use the void return type.

All About PHPDoc

Because this is a public function, we should add some PHPDoc to describe it. Add a clear, but

short description above this:

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 13

14

15

16

17

18

19

20

21

22

23

24

25

Actually, Symfony does not have a lot of PHPDoc... which might seem weird at first. The reason

is that we don't want to maintain too much documentation inside the code - we use a separate

repository for documentation.

Oh, and, thanks to the string type-hint, the @param documentation is totally redundant and

should be removed... unless there's some valuable extra info that you want to say about it. I'll

keep it and add some extra notes... even though it doesn't add a lot of extra context:

namespace Symfony\Bundle\SecurityBundle\Security;

class TargetPathHelper

{

 public function savePath(string $uri)

 {

 }

}

class TargetPathHelper

{

 /**

 * Sets the target path the user should be redirected to after

authentication.

 *

 * @param string $uri The URI to set as the target path

 */

 public function savePath(string $uri)

 {

 }

}

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 13

14

15

16

 // ... lines 17 - 18

19

20

21

22

23

24

25

Also every PHP file in Symfony should have a copyright header on top. Grab that from another

file and paste it here:

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 24

25

Don't worry too much about these details: it's easy to add them later if you forget.

Injecting the Services we Need

To make life nicer, use TargetPathTrait on top of the class:

class TargetPathHelper

{

 /**

 * @param string $uri The URI to set as the target path

 */

 public function savePath(string $uri)

 {

 }

}

/*

 * This file is part of the Symfony package.

 *

 * (c) Fabien Potencier <fabien@symfony.com>

 *

 * For the full copyright and license information, please view the LICENSE

 * file that was distributed with this source code.

 */

namespace Symfony\Bundle\SecurityBundle\Security;

class TargetPathHelper

{

}

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 13

14

15

16

17

18

 // ... lines 19 - 28

29

Then all we need to do is say $this->saveTargetPath() :

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 15

16

17

18

 // ... lines 19 - 24

25

26

27

28

29

But... hmm... this needs 3 arguments: the session, provider key - which is the firewall name -

and the URI. We know that we can get the firewall name by using the FirewallMap service.

Let's add some constructor arguments: SessionInterface $session and FirewallMap -

the one from SecurityBundle - $firewallMap :

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 13

14

 // ... lines 15 - 16

17

18

 // ... lines 19 - 24

25

26

 // ... lines 27 - 28

29

 // ... lines 30 - 44

45

I'll press Alt+Enter and select initialize fields to create those properties and set them:

use Symfony\Component\Security\Http\Util\TargetPathTrait;

class TargetPathHelper

{

 use TargetPathTrait;

}

class TargetPathHelper

{

 use TargetPathTrait;

 public function savePath(string $uri)

 {

 $this->saveTargetPath();

 }

}

use Symfony\Component\HttpFoundation\Session\SessionInterface;

class TargetPathHelper

{

 public function __construct(SessionInterface $session, FirewallMap

$firewallMap)

 {

 }

}

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 44

45

Make sure to remove the PHPDoc above each property: this is redundant thanks to the

constructor type-hints.

To calculate the provider key, create a new private function: getProviderKey() that will

return a string. For now, just put a TODO:

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 40

41

42

43

44

45

Back up in setTargetPath() , pass $this->session , $this->getProviderKey() and

the $uri :

class TargetPathHelper

{

 private $session;

 private $firewallMap;

 public function __construct(SessionInterface $session, FirewallMap

$firewallMap)

 {

 $this->session = $session;

 $this->firewallMap = $firewallMap;

 }

}

class TargetPathHelper

{

 private function getProviderKey(): string

 {

 // TODO

 }

}

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 35

36

37

38

39

 // ... lines 40 - 44

45

Awesome! Look back at getProviderKey() :

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 40

41

42

43

44

45

I didn't add any PHPDoc to this function, but that's not because I'm lazy. Or... not entirely

because I'm lazy. Really, it's for two reasons. First, this is a private function, and those are

typically not documented inside Symfony. And second, we already have the return type - no

reason to duplicate it!

Lets finish this function. To get the firewall name, we need to use the FirewallMap, call

getFirewallConfig() and pass it the request. Ok:

$firewallConfig = $this->firewallMap->getFirewallConfig() . But, hmm... we

don't have the Request object! No problem: add a third constructor arg:

RequestStack $requestStack . I'll hit Alt+Enter again to create that property and set it.

Clean off the PHPDoc, then head back down:

class TargetPathHelper

{

 public function savePath(string $uri)

 {

 $this->saveTargetPath($this->session, $this->getProviderKey(),

$uri);

 }

}

class TargetPathHelper

{

 private function getProviderKey(): string

 {

 // TODO

 }

}

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 13

14

 // ... lines 15 - 17

18

19

 // ... lines 20 - 25

26

27

28

29

 // ... lines 30 - 31

32

33

 // ... lines 34 - 54

55

Normally, when you use RequestStack, you call its getCurrentRequest() method to get the

request. But, in this case, I'm going to use another method:

$this->requestStack->getMasterRequest() :

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 44

45

46

47

 // ... lines 48 - 53

54

55

I'm not 100% sure that this is correct. The whole topic of requests and sub-requests is pretty

complex. But, basically, Symfony's security firewall only operates on the outer, "master" request.

So, to find the active firewall, that's what we should use. If I'm wrong, hopefully someone will tell

me on the pull request.

Next, if you look at the getFirewallConfig() method, it's possible that this will return

null . Code for that: if null === $firewallConfig :

use Symfony\Component\HttpFoundation\RequestStack;

class TargetPathHelper

{

 private $requestStack;

 public function __construct(SessionInterface $session, FirewallMap

$firewallMap, RequestStack $requestStack)

 {

 $this->requestStack = $requestStack;

 }

}

class TargetPathHelper

{

 private function getProviderKey(): string

 {

 $firewallConfig = $this->firewallMap->getFirewallConfig($this-

>requestStack->getMasterRequest());

 }

}

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 44

45

46

47

48

49

 // ... line 50

51

 // ... lines 52 - 53

54

55

This is another Symfony coding convention: we use Yoda conditionals!

“Mysterious, Symfony's coding conventions are. Herh herh herh.”

But hey! If the force isn't strong with you today, don't worry: Symfony has a magic way of fixing

coding convention problems that I'll show you later.

If there is no firewall config for some reason, throw a new LogicException with as clear a

message as possible:

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 44

45

46

47

48

49

50

51

 // ... lines 52 - 53

54

55

class TargetPathHelper

{

 private function getProviderKey(): string

 {

 $firewallConfig = $this->firewallMap->getFirewallConfig($this-

>requestStack->getMasterRequest());

 if (null === $firewallConfig) {

 }

 }

}

class TargetPathHelper

{

 private function getProviderKey(): string

 {

 $firewallConfig = $this->firewallMap->getFirewallConfig($this-

>requestStack->getMasterRequest());

 if (null === $firewallConfig) {

 throw new \LogicException('Could not find firewall config for

the current request');

 }

 }

}

Why a LogicException? Well, it seems to make sense - something went wrong... logically. And

usually, the exact exception class won't matter. If it does matter, someone will tell you when

reviewing your PR.

Finally, at the bottom, return $firewallConfig->getName() :

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 44

45

46

47

48

49

50

51

52

53

54

55

That should be it!

While we're here, let's add one more function: getPath() that will return a string. Inside,

return $this->getTargetPath() with $this->session and

$this->getProviderKey() :

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 47

48

49

50

51

 // ... lines 52 - 62

63

class TargetPathHelper

{

 private function getProviderKey(): string

 {

 $firewallConfig = $this->firewallMap->getFirewallConfig($this-

>requestStack->getMasterRequest());

 if (null === $firewallConfig) {

 throw new \LogicException('Could not find firewall config for

the current request');

 }

 return $firewallConfig->getName();

 }

}

class TargetPathHelper

{

 public function getPath(): string

 {

 return $this->getTargetPath($this->session, $this-

>getProviderKey());

 }

}

This time, I will add some PHPDoc. I don't need @return - that's redundant - but I will add a

description about what this method does:

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 44

45

46

47

48

49

50

51

 // ... lines 52 - 62

63

Making the Class final

And... we're done! Yea, we still need to write a test & add some config to register this as a

service: we'll do that next. But, this class should work!

However... I am going to make one, ahem, final change: add final :

symfony/src/Symfony/Bundle/SecurityBundle/Security/TargetPathHelper.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 62

63

Making this class final means that nobody is allowed to subclass it. Why are we doing this?

Because, in the future, if the class is final , it will be easier to make changes to it without

breaking backwards compatibility. Basically, if you allow a class to be sub-classed, you have to

be a bit more careful when making certain changes. Making classes final is a good "default"

for new Symfony classes.

Of course, if there is a legitimate use-case for some to sub-class this, then you don't need to

make it final. But, while we can easily remove final later, we can't add final in the future, at

class TargetPathHelper

{

 /**

 * Returns the URL (if any) the user visited that forced them to

login.

 */

 public function getPath(): string

 {

 return $this->getTargetPath($this->session, $this-

>getProviderKey());

 }

}

final class TargetPathHelper

{

}

least not without jumping through a few extra hoops to avoid breaking backwards compatibility.

Ok, let's add some service config & a test!

Chapter 8: Writing & Running Symfony's Tests

When you make a pull request to Symfony, you almost always need at least one test. And...

yea... we definitely need a test for our new TargetPathHelper .

But, before we start writing it... shouldn't we first figure out how to run Symfony's tests? Great

idea! And I'm happy to report that it's quite easy.

Getting Symfony's Dependencies

Look in the symfony/ directory. It has a composer.json file that describes all of the libraries

that Symfony itself needs in order to work and in order to run its tests.

Move over to your terminal and run:

composer update

There's one important difference between a reusable library like Symfony and a normal

application: Symfony does not have a composer.lock file! We commit the composer.json

file to Symfony, but we do not commit composer.lock . Why not? Well, there's just no point.

Individual apps that require Symfony will lock Symfony at some version in their app. But, when

we're working on Symfony itself, we usually want the latest version of all of its dependencies.

So before you run your tests, make sure to run composer update . Running

composer install isn't good enough, because there could already be a composer.lock

file from an earlier time you ran composer install . Running update makes sure you have

the latest stuff for whatever branch of Symfony you're currently on.

Perfect! Now we do have a composer.lock file.

Running Symfony's Test Suite

Ok, we're ready to run the tests! Do it with:

./phpunit

Um... that's it! This is a wrapper around PHPUnit: it downloads some dependencies to a

different directory, then... starts running the tests! And... yea... there are a lot of tests. I'm going

to stop these by pressing Ctrl+C .

Running only Some Tests

To be honest, I never run the full test suite locally. You just don't need to! As you'll see in a few

minutes, Symfony has a robust continuous integration setup: when you make a pull request,

Symfony's test suite is run automatically.

Thanks to that, locally, I usually just run the tests I'm working on. Let's test everything in

SecurityBundle:

./phpunit src/Symfony/Bundle/SecurityBundle

This time... if you didn't fast forward like me... you'd see that these tests only take a minute or

two. There are a few "skipped" tests: that's probably not something you need to worry about.

Some tests require a special PHP extension or some other service that your local computer

might not have. So, those tests are skipped. No big deal.

Adding our Test

Now that the tests are running, it's time to add our own! I'll double-click to get back into

SecurityBundle. Because we want to test TargetPathHelper , the test should live in

Tests/Security . Create a new PHP class called TargetPathHelperTest . Make this

extend the normal TestCase from PHPUnit:

symfony/src/Symfony/Bundle/SecurityBundle/Tests/Security/TargetPathHelperTest.

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 12

13

Then add public function testSavePath() :

symfony/src/Symfony/Bundle/SecurityBundle/Tests/Security/TargetPathHelperTest.

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

For the body of the test... yea... I'm going to cheat. This isn't a testing tutorial, so I'll paste in

some code I already prepared:

namespace Symfony\Bundle\SecurityBundle\Tests\Security;

use PHPUnit\Framework\TestCase;

class TargetPathHelperTest extends TestCase

{

}

namespace Symfony\Bundle\SecurityBundle\Tests\Security;

use PHPUnit\Framework\TestCase;

class TargetPathHelperTest extends TestCase

{

 public function testSavePath()

 {

 }

}

symfony/src/Symfony/Bundle/SecurityBundle/Tests/Security/TargetPathHelperTest.

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Oh, and I need to auto-complete a few things to get the missing use statements, like

FirewallMap from SecurityBundle, and a few other ones:

use PHPUnit\Framework\TestCase;

use Symfony\Bundle\SecurityBundle\Security\FirewallConfig;

use Symfony\Bundle\SecurityBundle\Security\FirewallMap;

use Symfony\Bundle\SecurityBundle\Security\TargetPathHelper;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\RequestStack;

use Symfony\Component\HttpFoundation\Session\SessionInterface;

class TargetPathHelperTest extends TestCase

{

 public function testSavePath()

 {

 $session = $this->createMock(SessionInterface::class);

 $firewallMap = $this->createMock(FirewallMap::class);

 $requestStack = $this->createMock(RequestStack::class);

 $request = new Request();

 $requestStack->expects($this->once())

 ->method('getMasterRequest')

 ->willReturn($request);

 $firewallConfig = new FirewallConfig('firewall_name', '');

 $firewallMap->expects($this->once())

 ->method('getFirewallConfig')

 ->with($request)

 ->willReturn($firewallConfig);

 $session->expects($this->once())

 ->method('set')

 ->with('_security.firewall_name.target_path', '/foo');

 $targetPathHelper = new TargetPathHelper($session, $firewallMap,

$requestStack);

 $targetPathHelper->savePath('/foo');

 }

}

symfony/src/Symfony/Bundle/SecurityBundle/Tests/Security/TargetPathHelperTest.

 // ... lines 1 - 4

5

6

7

8

9

10

11

 // ... lines 12 - 39

Our TargetPathHelper class doesn't really do much: it pushes most of the work back to the

methods from the trait. So, this test basically creates a bunch of mocks, creates a

FirewallConfig that returns a firewall name of, um, firewall_name , and then we

ultimately make sure that this special key is set on the session to the URL we passed to

savePath() .

If you're interested in understanding this test better, you can totally look into it more. But, the

beautiful part is that creating a unit test for Symfony is no different than creating a unit test for

an application: there's no framework code here.

Let's go run this one test directly:

./phpunit src/Symfony/Bundle/SecurityBundle/Tests/Security/TargetPathHelperTest

The last step is to register our new class as a service and enable it to be autowired. Let's get to

it!

use PHPUnit\Framework\TestCase;

use Symfony\Bundle\SecurityBundle\Security\FirewallConfig;

use Symfony\Bundle\SecurityBundle\Security\FirewallMap;

use Symfony\Bundle\SecurityBundle\Security\TargetPathHelper;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\RequestStack;

use Symfony\Component\HttpFoundation\Session\SessionInterface;

Chapter 9: Services, Autowiring & Pushing To
GitHub

We now have a fully-functional new class with a test! But, we have not registered this class as a

service yet. Which means... the user would still need to do that manually. That's a bummer!

Adding the Service Config

Inside SecurityBundle, look at DependencyInjection and open

SecurityExtension.php . This class loads several XML files that provide all of the services

for this bundle. Inside the Resources/config/ directory, open security.xml . Around line

136... yep! You'll see the services that our new service depends on - like FirewallMap and

FirewallConfig :

symfony/src/Symfony/Bundle/SecurityBundle/Resources/config/security.xml

1

2

3

4

5

 // ... lines 6 - 12

13

 // ... lines 14 - 135

136

137

138

139

 // ... lines 140 - 147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

 // ... lines 162 - 223

224

225

To register our new TargetPathHelper as a service, we could include some XML config in

any of these XML files: it doesn't technically matter. But, which file makes the most sense? Well,

1 minute ago, I wasn't sure. But now that I see all of these related services, I think we've already

found the right place. If we're wrong, someone will tell us when we create the PR.

Add a new service tag. For the id, how about, security.target_path_helper . I'm trying to

follow the existing naming conventions in this file.

<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://symfony.com/schema/dic/services

http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>

 <service id="security.firewall.map"

class="Symfony\Bundle\SecurityBundle\Security\FirewallMap">

 <argument /> <!-- Firewall context locator -->

 <argument /> <!-- Request matchers -->

 </service>

 <service id="security.firewall.config"

class="Symfony\Bundle\SecurityBundle\Security\FirewallConfig"

abstract="true">

 <argument /> <!-- name -->

 <argument /> <!-- user_checker -->

 <argument /> <!-- request_matcher -->

 <argument /> <!-- security enabled -->

 <argument /> <!-- stateless -->

 <argument /> <!-- provider -->

 <argument /> <!-- context -->

 <argument /> <!-- entry_point -->

 <argument /> <!-- access_denied_handler -->

 <argument /> <!-- access_denied_url -->

 <argument type="collection" /> <!-- listeners -->

 <argument /> <!-- switch_user -->

 </service>

 </services>

</container>

For the class, it's Symfony , well, let's cheat: copy the namespace from the class above, paste,

then TargetPathHelper :

symfony/src/Symfony/Bundle/SecurityBundle/Resources/config/security.xml

1

2

3

4

5

 // ... lines 6 - 12

13

 // ... lines 14 - 162

163

 // ... lines 164 - 166

167

 // ... lines 168 - 223

224

225

Inside, our service will need 3 arguments: the session, firewall map & request stack.

Add <argument type="service" id="session" /> . Next,

<argument type="service" id="" The id for the firewall map is up here:

security.firewall.map . Finally,

<argument type="service" id="request_stack" /> :

<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://symfony.com/schema/dic/services

http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>

 <service id="security.target_path_helper"

class="Symfony\Bundle\SecurityBundle\Security\TargetPathHelper">

 </service>

 </services>

</container>

symfony/src/Symfony/Bundle/SecurityBundle/Resources/config/security.xml

1

2

3

4

5

 // ... lines 6 - 12

13

 // ... lines 14 - 162

163

164

165

166

167

 // ... lines 168 - 223

224

225

Done! Our new class is now registered as a service!

But... there's still one small thing missing with this service. To allow TargetPathHelper to be

autowired, like FirewallMap in the issue example, we need to create an alias from that class

to the service id - just like in the comment below.

Enabling Autowiring

To do this, add <service id="" /> , go copy the class name, and paste it here. Then,

alias="" , copy the service id this time, and paste again:

<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://symfony.com/schema/dic/services

http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>

 <service id="security.target_path_helper"

class="Symfony\Bundle\SecurityBundle\Security\TargetPathHelper">

 <argument type="service" id="session" />

 <argument type="service" id="security.firewall.map" />

 <argument type="service" id="request_stack" />

 </service>

 </services>

</container>

symfony/src/Symfony/Bundle/SecurityBundle/Resources/config/security.xml

1

2

3

4

5

 // ... lines 6 - 12

13

 // ... lines 14 - 167

168

 // ... lines 169 - 223

224

225

That's it! The TargetPathHelper will now be an autowireable service.

And... we're done! The last thing I'd recommend is to create a real project and test your new

feature manually. Sure, our class has a test... but there is not a test for our service config: if we

have a typo on the class name, we wouldn't know!

However, because we already went through the process earlier when testing Colin's PR, I'll skip

it. But, saying you tested your code in a real app can definitely help push your PR forward.

Hey! We're done with all the hard work! Let's push our code to GitHub!

Pushing your Fork

Head over to the terminal that's in the symfony/ directory and run:

git status

No surprises! Add everything and then commit with a nice message that briefly describes what

we're doing:

<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://symfony.com/schema/dic/services

http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>

 <service

id="Symfony\Bundle\SecurityBundle\Security\TargetPathHelper"

alias="security.target_path_helper" />

 </services>

</container>

git add .

git commit -m "Adding a new TargetPathHelper class and service"

Cool!

git remote

Right now, we have two remotes: colinodell & origin , which is the main

symfony/symfony . But, of course, we don't have access to push directly to origin .

Actually, that's great - that sounds like way too much responsibility to me.

Instead of pushing directly to Symfony, we need to fork the repository. Click "Fork" and either

create a new fork, or, if you already have a fork like me, click into it. Here we are:

weaverryan/symfony .

Next, click "Clone or download", copy the URL, then move back over to the terminal to add this

as a new remote: git remote add weaverryan and then paste:

git remote add weaverryan git@github.com:weaverryan/symfony.git

Awesome! Now we can push. The branch we created is called target-path-helper . So:

git push weaverryan target-path-helper

Back to GitHub! If you're lucky, you'll see a little yellow banner about your new branch. This

banner doesn't always show up, so if it doesn't, you can refresh, find the

target-path-helper branch and click "New pull request".

Next, let's fill this in & learn about Symfony's continuous integration system and the famous...

fabbot!

Chapter 10: PR Details & Continuous Integration

The first thing to notice is the base branch. This is super important. Because we created our

branch off of master, this base branch must be master. If we created the branch off of 3.4, then,

of course, this should be 3.4.

One easy way to be sure you have things setup correctly is to check that you only see the

commits down here that you expect. If you mess up the base branch, you'll probably see a

bunch of extra commits and changes.

Making Changes to your PR

The pull request description comes with a nice template to get us started. For the branch,

because this is a new feature, we do want the master branch. This is not a bug fix and this is a

new feature.

Oh, and if this is a new feature, apparently, we should update the CHANGELOG. I totally forgot

about that!

Go back to your editor. Then, inside whatever bundle or component you're working on - so

SecurityBundle for us - find the CHANGELOG.md file. If our new feature is accepted, it will be in

the next minor version, which is 4.2 right now. You can already see a few new features listed

there. Progress!

Let's add our new feature: describe what we introduced & why it's useful.

To add this, we could just make a second commit. And that would be totally fine. In fact, if you're

making significant changes to the pull request, making new commits is a good idea: it will help

people see how your pull request evolves over time.

But, in this case, because the changes are so simple, run:

git add -u

to add everything. Then:

git commit --amend

That will add these changes to my previous commit to keep things clean. Push with:

git push weaverryan target-path-helper --force

The Pull Request Description

Perfect! Head back to the pull request. We did not introduce any backwards compatibility

breaks, we didn't deprecate any features and yes, the tests should pass. A lot of these are just

reminders to think about things. After we submit the PR, we'll see for sure if the tests pass. For

fixed tickets, there isn't always a fixed ticket, but there is in this case: #27835 .

Oh, and whenever you add a new feature, you need to create a documentation pull request. I'll

put TODO for now. But we are going to do this soon.

Finally, at the bottom, it's our job to put a short README so that other people can understand

how our feature works. Showing some code examples is best - but because the code behind

this is pretty simple, what I really want to do is describe why this is needed.

And... we're ready! Create that pull request! Boom! Great work people! Will this pull request be

accepted? Who knows? But, we did good work, wrote tests and clearly stated why we created

this feature. We rock!

Making fabbot Happy

Until... yep! We immediately see failures at the bottom! Two things happen when you create a

pull request. First, Symfony's continuous integration system starts running the tests: Travis CI

runs tests on Linux & AppVeyor runs them on Windows. Click the details for Travis - it's pretty

awesome.

It executes the tests on multiple versions of PHP and uses different flags to use both the newest

version of Symfony's dependencies and the oldest allowed versions. We'll let this keep doing its

thing.

The second thing that happens after creating a pull request is that you are visited by the

famous... fabbot! Fabbot automatically checks your pull request for coding standards violations.

Apparently we have two problems! But, here's the best part: copy that curl statement, find your

terminal, and paste! Run:

git diff

Cool! This automatically fixed the two whitespace issues that violated Symfony's coding

standards. This is why I don't worry too much about coding standards until now: fabbot will help

us.

And because these changes aren't important, just like before, let's amend our commit:

git add -u git commit --amend

Push that with:

git push weaverryan target-path-helper --force

Ok, go back to the pull request. Refresh and... yea! Fabbot is happy!

Caring for your PR After Submitting

So... what now? First, wait to see if the tests pass. If they don't, yea, you'll need to see if our

changes caused some unexpected bug. And second, wait for community feedback! Sometimes,

feedback can be direct and to the point. We're developers, so we like to look at all the smallest

technical details. Don't take this personally: feedback is meant to be constructive - we're all on

the same side. And, yea, you'll almost definitely need to make at least some changes. Heck, I

rarely make a pull request that doesn't need significant changes after some feedback. It's

awesome! Usually, someone thinks of a way better implementation. When that happens, you

know the drill: make the changes, commit, push, and check fabbot and the tests again.

Oh, and don't worry too much about doing the git commit --amend thing or rebasing. It's

totally ok to have multiple commits. And also, when someone merges your pull request, they

use a tool that makes it really easy to squash all of your commits down into 1 commit, if they

want to. That's not something you need to worry about.

Next: we haven't created our documentation pull request yet. Time to do that!

Chapter 11: Uh oh: Documentation Bug!

The last TODO for our PR is to create a documentation PR. And, honestly, in my opinion,

making changes to the documentation is probably the easiest and most effective way to

contribute to Symfony! There are tons of great ways to help the docs, even if you're not

documenting a new feature.

For example, imagine you're reading the docs - like the forms page. Then, you find something

that's inaccurate or confusing. Well, just go back to the top, click "Edit this page", and you'll be

inside an editor on GitHub where you can make improvements and create a pull request.

I've worked on the documentation for years. And the best way to improve it is to get feedback

from real people who are trying to use it. Taking a few minutes to reword a paragraph could

save someone else hours. That's pretty cool.

Cloning the Docs

Go back to the homepage of the docs. Copy the clone URL: let's clone this down onto our

machine. At your terminal, move back into the main contributing directory and run git clone

and paste.

git clone git@github.com:symfony/symfony-docs.git

I'll also go to PhpStorm and move us back into this main contributing/ directory so we can

see all of the test projects, symfony itself and the new symfony-docs/ folder.

Hunting down a Bug

Ok: we want to document our new TargetPathHelper . Great! Except... where should these

new docs live? This can be a real challenge: the docs are huge! If you're not sure, don't worry:

just choose some place that makes sense to you. If there's a better place, someone will tell you

when reviewing your PR and you can move it!

Head back to your terminal and move into symfony-docs . Because this feature builds off of

TargetPathTrait , let's see where that's documented:

git grep TargetPathTrait

Ok: apparently that's covered in some form_login.rst file. Go find that in PhpStorm:

security/form_login.rst . Look all the way down at the bottom. Yep, here is where it talks

about TargetPathTrait :

symfony-docs/security/form_login.rst

 // ... lines 1 - 396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

We'll add a few more details below this about our new class.

But wait! When I first opened this document, I noticed something interesting on top. It describes

how this "target path" feature works in general. Then, there's a note below: sometimes

Redirecting to the Last Accessed Page with ``TargetPathTrait``

--

The last request URI is stored in a session variable named

``_security.<your providerKey>.target_path`` (e.g.

``_security.main.target_path``

if the name of your firewall is ``main``). Most of the times you don't

have to

deal with this low level session variable. However, if you ever need to

get or

remove this variable, it's better to use the

:class:`Symfony\\Component\\Security\\Http\\Util\\TargetPathTrait`

utility::

 // ...

 use Symfony\Component\Security\Http\Util\TargetPathTrait;

 $targetPath = $this->getTargetPath($request->getSession(),

$providerKey);

 // equivalent to:

 // $targetPath = $request->getSession()-

>get('_security.'.$providerKey.'.target_path');

redirecting to the originally requested page can cause problems, like if a background AJAX

request appears to be the last visited page, causing the user to be redirected there:

symfony-docs/security/form_login.rst

 // ... lines 1 - 26

27

28

29

30

31

32

 // ... lines 33 - 414

That makes sense... except, it's not true! Nope, this note is out of date: Symfony no longer has

this problem. I think I just found a documentation bug!

Let's make sure: go to github.com/symfony/symfony. Then press "t" to open the "file search"

and look for a class called ExceptionListener from the Security/ component. This is the

class that's responsible for setting the targetPathTrait . It happens all the way down at the

bottom in setTargetPath() . If you go to a page like /admin as an anonymous user, right

before you're redirected to the login page, this setTargetPath() method is called.

And, cool! This uses the method from TargetPathTrait , just like we did. But, check it out, it

checks to see if the request is an AJAX request - that's the isXmlHttpRequest() part. If it is

an AJAX request, it does not set the URL into the session. Yea! The documentation is wrong!

Finding the Correct Bug Branch

The question now is: how old is this bug? How long ago was this changed in Symfony and what

versions of the docs do we need to update? Head back to the Symfony Roadmap. The three

maintained branches are 2.8, 3.4 and 4.1. Remember: when fixing a bug, you should fix it in the

oldest maintained branch where the bug exists. The same is true for the docs.

To figure out when the fix was made to Symfony, let's git blame this file. Scroll back down to

the bottom. Hmm, so this line was last modified two years ago. And if you look at that commit,

its changes do not include the AJAX part of this line. Yep, the change we're looking for is more

than two years old. And this commit was first included in Symfony 2.7!

.. note::

 Sometimes, redirecting to the originally requested page can cause

problems,

 like if a background Ajax request "appears" to be the last visited

URL,

 causing the user to be redirected there. For information on

controlling this

 behavior, see :doc:`/security`.

https://github.com/symfony/symfony
https://symfony.com/roadmap

In other words, the AJAX fix has existed since Symfony 2.7 or earlier. But, because Symfony 2.7

is no longer maintained, we'll fix this on the 2.8 branch of the docs. Then, after our pull request

is merged, our changes will be merged up into all of the newer branches by the docs team.

Fixing a Docs Bug

Awesome! Find your terminal and create the new branch:

git checkout -b remove-outdated-note origin/2.8

Move back to the file. Yep, that bad note did exist even back then. And, woh! It links to a whole

other document that describes how to work around this problem. We can delete all of this!

Remove the note first. Then delete that other file:

git rm security/target_path.rst

And... we're ready!

git status git add -u git commit

Describe why we're deleting all this stuff.

Creating the Pull Request

Ok, the code is ready! Head back to GitHub and fork the repository if you haven't already. Then,

copy your git URL and add your remote: git remote add weaverryan and paste. Now,

push!

git push weaverryan remove-outdated-note

Move back and... if you're lucky, you'll see a yellow bar. We are lucky this time! Click "Compare

and pull request".

Oh, but hmm: why are there two extra commits by other people? Ah, because we need to

change our base branch to 2.8.

Much better. In the description, we want to make this as easy as possible to merge. So, let's

describe why we're removing this and that we checked the code to be sure.

Ok... submit! The docs also have a continuous integration system. I want to talk about that next,

write our new documentation and learn a bit about the docs format.

Chapter 12: All about the Docs: CI & Format

After waiting about a minute, oh! You'll notice that the continuous integration for our

documentation pull request failed? What does that even mean? Are there tests for the docs?

Let's learn a few important things about the docs. First, you probably noticed that all the files

use a .rst extension. That's called Restructured text. It's a lot like markdown... on steroids. It

has, for example, a special syntax for linking from one page to another - that's this :doc: stuff:

symfony-docs/security/form_login.rst

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

 // ... lines 12 - 414

Behind the scenes, a build process turns all of this into HTML. But, if we have a link to a

document that doesn't exist, that build will fail!

Click "Details" to open Travis CI. The continuous integration system does exactly that: it runs

the build to make sure all the basic stuff is okay: syntax, links and a few other things.

And... yep! We have an error: apparently security.rst line 1269 contains a reference to a

non-existent document security/target_path . That's the page we removed! Instead of

printing a broken link, we know we need to remove it!

Move back over, find the security.rst file and scroll down to line 1269. Ah. This toctree

thing is another feature of RST - it helps build the table of contents. Remove the

security/target_path line.

To make sure there aren't any other references, find your terminal and search:

git grep security/target_path

Using a :doc:`form login </security/form_login_setup>` for authentication

is a

:doc:`form login configuration reference

</reference/configuration/security>` to

Only one other spot - redirection_map . That's an internal tool to help us manage old URLs:

not something we need to worry about. Let's commit:

git add -u git commit --amend

I'm using amend because this isn't an important change worth making a second commit. Push

with:

git push weaverryan remove-outdated-note --force

Hopefully the build will work this time.

Branching for the new Feature

Ok: back to our original task: we need to write documentation for our new feature. That means

we need to create a documentation PR against the master branch. Go back to to the terminal

and create a new branch:

git checkout -b target-path-helper origin/master

Writing in RST

Awesome! Move back and open the form_login.rst file again. Scroll all the way down to

the bottom.

If you're not comfortable writing documentation or if you're a non-native English speaker, you

might think that writing docs isn't for you. That's totally not true! The really important thing about

writing docs is creating good code examples. Pay less attention to writing words and more

attention to writing code that shows how your feature is used. When you submit your PR, the

docs team can help reword & improve the little details. The hard work is writing the code.

I'll start with a quick sentence, then right into the code block:

symfony-docs/security/form_login.rst

 // ... lines 1 - 392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

 // ... lines 409 - 426

I'll paste in an example I already created:

The last request URI is stored in a session variable named

``_security.<your providerKey>.target_path`` (e.g.

``_security.main.target_path``

if the name of your firewall is ``main``). Most of the times you don't

have to

deal with this low level session variable. However, if you ever need to

get or

remove this variable, it's better to use the

:class:`Symfony\\Component\\Security\\Http\\Util\\TargetPathTrait`

utility::

 // ...

 use Symfony\Component\Security\Http\Util\TargetPathTrait;

 $targetPath = $this->getTargetPath($request->getSession(),

$providerKey);

 // equivalent to:

 // $targetPath = $request->getSession()-

>get('_security.'.$providerKey.'.target_path');

You can also use the ``TargetPathHelper`` service in the same way::

symfony-docs/security/form_login.rst

 // ... lines 1 - 407

408

409

410

 // ... line 411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

And, yeah, this green background is super annoying: I don't normally use PhpStorm for

documentation. Anyways, a few important things about the format. First, any technical term -

like a class name - should be surrounded by two ticks. Second, when you want to add a PHP

code block, finish the previous sentence with two colons and indent the code. And third, when

you're inside the code, put as much context as possible. For example, I've added a note to say

that this code is from a controller:

symfony-docs/security/form_login.rst

 // ... lines 1 - 407

408

409

410

 // ... lines 411 - 426

You should also be sure to include any use statements needed for the new code. Well, we

don't include use statements for everything. For example, I didn't include the use statement

for the Request because people probably know what that is and it's not directly relevant to

what we're doing. But, I did add the use statement for the class we're talking about:

TargetPathHelper :

You can also use the ``TargetPathHelper`` service in the same way::

 // ... for example: from inside a controller

 // ...

 public function register(Request $request, TargetPathHelper

$targetPathHelper)

 {

 // the user clicked to register: save the previous URL

 if ($request->isMethod('GET') && !$targetPathHelper->getPath()) {

 // redirect to the Referer, or the homepage if none

 $target = $request->headers->get('Referer', $this-

>generateUrl('homepage');

 $targetPathHelper->savePath($target);

 }

 // later, after a successful registration POST submit

 return $this->redirect($targetPathHelper->getPath());

 }

You can also use the ``TargetPathHelper`` service in the same way::

 // ... for example: from inside a controller

symfony-docs/security/form_login.rst

 // ... lines 1 - 407

408

409

410

411

412

 // ... lines 413 - 426

Finally, we recommend avoiding big paragraphs of explanatory text. That's why we just included

once sentence then code. If you want to explain a bit more, try adding comments into the code

instead. We've found that people tend to read the code, but skip the paragraphs completely.

Use that to your advantage!

And... that's it! Sure, there are a lot of other little format details. But, the docs have plenty of

examples of how to do just about anything.

Oh, but because this is a new feature, I'll add one more thing. Right above the new text, add a

special versionadded:: 4.2 tag:

symfony-docs/security/form_login.rst

 // ... lines 1 - 407

408

 // ... lines 409 - 410

411

 // ... lines 412 - 429

If our feature is merged, it will be included in Symfony 4.2 - the next Symfony version. This will

add a new note highlighting this fact:

symfony-docs/security/form_login.rst

 // ... lines 1 - 407

408

409

410

 // ... lines 411 - 429

This syntax is also special to RST. You can make tips and notes the same way.

Ok - let's move over, add this file, and commit:

You can also use the ``TargetPathHelper`` service in the same way::

 // ... for example: from inside a controller

 use Symfony\Bundle\SecurityBundle\Security\TargetPathHelper;

 // ...

.. versionadded:: 4.2

You can also use the ``TargetPathHelper`` service in the same way::

.. versionadded:: 4.2

 The ``TargetPathHelper`` class was introduced in Symfony 4.2.

git add -u

git commit -m "Documenting the new TargetPathHelper"

And... push:

git push weaverryan target-path-helper

Move back over to GitHub. Hey! The tests passed on our other pull request! Sweet! And, just

like always, if you don't see the yellow bar here, go back to your fork, select the new branch and

hit "New pull request".

This time, our pull request should be against the master branch. I'll prefix the title with [WCM] -

that means "Waiting for Code Merge" - a little flag to help us know this is for a still-unmerged

new feature.

For the body, saying see symfony/symfony#28181 should be enough. Create that pull

request!

Hey! You're now a docs expert! So, I hope to see a bunch of docs PR's from you. Do it!

Chapter 13: Recipes & Other Repositories

We've seen a bunch of ways to contribute: triaging issues & pull requests, creating pull requests

and contributing to the documentation.

But there's so much more! The Symfony ecosystem is a lot bigger than just these two

repositories. For example, go to github.com/symfony. Woh! There are 118 repositories under

Symfony! Click on, for example, dom-crawler .

This repository is what's called a "subtree split". Cool name, right? The DomCrawler component

actually lives and is managed inside of the main symfony/symfony repository that we've

been working in. I'll show you: open that repository and navigate to src/Symfony ,

DomCrawler .

This is the DomCrawler component. An automated process splits this directory into its own

repository so that people can use it independently. If you want to contribute to DomCrawler,

you'll do it in symfony/symfony . The sub-tree split is read-only.

How can you know if a repository is a sub-tree split? You'll notice that the "Issues" tab has been

disabled.

Other Repositories

Many of those 118 repositories under Symfony are subtree splits. And so, you contribute to

them in the main repo. But a lot of them are normal repositories that you can contribute to

directly. For example, recipes.

This is one of the coolest ways that you can help Symfony. If you install a bundle or library and it

doesn't have a good recipe, or doesn't have a recipe at all, you should totally add or improve it!

You can create a recipe here, or on the less-stringent recipes-contrib .

We're going to improve a recipe in a minute. But, first, I want to point out a few other

repositories. Search for "flex". This is the Composer plugin that powers the recipe system.

Search for "maker". MakerBundle is all about code generation. Try "encore": this is a library

https://github.com/symfony
https://github.com/symfony/recipes

written in Node that helps make Webpack easy. And, one more: panther a new library that

allows you to functionally test your pages, including the JavaScript on those pages.

And there are a lot more - like MonologBundle . The point is: each of these needs help triaging

issues and reviewing pull requests. And actually, because these independent libraries get less

traffic, you can make an even bigger difference in a short amount of time.

Improving a Recipe

Let's make one small contribution to the recipes. Go back to the main recipes repository. One of

the recipes is for the twig/extensions library: a standalone PHP library. When you install

that package, its recipe gives you a new config/packages/twig_extension.yaml file.

These are the four classes provided by that library. After installing the library, you just need to

uncomment the ones that you want.

Let's make this even more obvious by adding a comment above to describe that.

To do that, go back to main recipes page and copy the clone URL. Hopefully, this process is

starting to feel boring... and repetitive. At your terminal, move back into the contributing/

directory and clone that:

git clone git@github.com:symfony/recipes.git

Then, move inside. To create a pull request, we will eventually need our own fork. I already

have a fork, so I'll skip straight to copying my URL, going back to the terminal, and adding that

remote: git remote add weaverryan and paste.

git remote add weaverryan git@github.com:weaverryan/recipes.git

Back in the editor, I'll close a few files. Then open

twig/extensions/1.0/config/packages/twig_extensions.yaml :

recipes/twig/extensions/1.0/config/packages/twig_extensions.yaml

1

2

3

4

5

6

7

8

9

10

Add the comment:

“Uncomment any lines below to activate that Twig extension”

recipes/twig/extensions/1.0/config/packages/twig_extensions.yaml

1

 // ... lines 2 - 6

7

8

9

10

11

Brilliant! Let's commit this! The recipes repository is a bit unique: it only has a master branch.

So, we'll create our new branch from it:

git checkout -b adding-twig-extensions-note

Then, add, commit

git add -u

git commit -m "Adding a small note about what to do in the twig_extensions.yaml

and...

services:

 _defaults:

 public: false

 autowire: true

 autoconfigure: true

 #Twig\Extensions\ArrayExtension: ~

 #Twig\Extensions\DateExtension: ~

 #Twig\Extensions\IntlExtension: ~

 #Twig\Extensions\TextExtension: ~

services:

 # Uncomment any lines below to activate that Twig extension

 #Twig\Extensions\ArrayExtension: ~

 #Twig\Extensions\DateExtension: ~

 #Twig\Extensions\IntlExtension: ~

 #Twig\Extensions\TextExtension: ~

git push weaverryan adding-twig-extensions-note

Awesome! Go back to GitHub! Sweet! Here's the yellow bar: click "Compare & pull request".

Add a small note about why we think this is a good idea. And, make sure we don't have any

other "surprise" changes. Looks good. Hit "Create pull request".

Testing a Recipe

This was a pretty simple change. But, when your changes are bigger, you'll probably want to be

able to test your recipe before it's merged: to see how it works in the real world!

And... we can do that! Almost immediately after posting the PR, you'll hopefully see a message:

"Pull request passes validation". This means that our changes passed a few rules that are

described in this repository's README.

Another spot says "View deployment". Open that in a new tab. This is really cool. The Flex

server just "deployed" our recipe. And we can temporarily change our Flex "endpoints" to use

our new recipe... even though it's not merged yet!

Copy the export line, find a terminal and paste:

export SYMFONY_ENDPOINT=https://symfony.sh/r/github.com/symfony/recipes/449

We just set an environment variable on this terminal tab only. To test the recipe, let's just move

into one of our projects, like triage_issue_27901 .

Then run:

composer require twig/extensions

When we run that, it gives us a warning that we're not using the normal Symfony endpoint...

which is perfect. And... it looks like it worked!

Go check it out: open config/packages/twig_extensions.yaml . We got it! No surprise

for this small tweak. But for bigger changes, this is so useful.

When you're done playing with things, be sure to unset that variable so that you once again use

the real Symfony endpoint:

unset SYMFONY_ENDPOINT

See you on GitHub!

Ok people, that's it! Oh, there is so much good stuff to work on in the Symfony world. And we

need the help! There's complex stuff, like working on the main symfony/symfony repository.

But there are also many, many other ways to contribute, like improving the documentation,

working on recipes or just finding that third party library or bundle you love and helping to

improve it or its docs. You are the person that can make a difference by adding that feature or

fixing that bug.

And if you have more questions on contributing, ask them down in the comments! We would

love to help answer them

Ok people, seeya on GitHub!

With <3 from SymfonyCasts

