
Mailer and Webhook with

Mailtrap

Chapter 1: Installing the Mailer

Hey friends! Welcome to "Symfony Mailer with Mailtrap"! I'm Kevin, and I'll be your postmaster

for this course, which is all about sending beautiful emails with Symfony's Mailer component,

including adding HTML, CSS - and configuring for production. On that note, there are many

services you can use on production to actually send your emails. This course will focus on one

called Mailtrap: (1) because it's great and (2) because it offers a fantastic way to preview your

emails. But don't worry, the concepts we'll cover are universal and can be applied to any email

service. And bonus! We'll also cover how to track email events like bounces, opens, and link

clicks by leveraging some relatively new Symfony components: Webhook and RemoteEvent.

Transactional vs Bulk Emails

Before we start spamming, ahem, delivering important info via email, we need to clarify

something: Symfony Mailer is for what's called transactional emails only. These are user-

specific emails that occur when something specific happens in your app. Things like: a welcome

email after a user signs up, an order confirmation email when they place an order, or even

emails like a "your post was upvoted" are all examples of transactional emails. Symfony Mailer

is not for bulk or marketing emails. Because of this, we don't need to worry about any kind of

unsubscribe functionality. There are specific services for sending bulk emails or newsletters,

Mailtrap can even do this via their site.

Our Project

As always, to deliver the most bang for your screencast buck, you should totally code along with

me! Download the course code on this page. When you unzip the file, you'll find a start/

directory with the code we'll start with. Follow the README.md file to get the app running. I've

already done this and ran symfony serve -d to start the web server.

Welcome to "Universal Travel": a travel agency where users can book trips to different galactic

locations. Here are the currently available trips. Users can already book these, but there are no

confirmation emails sent when they do. We're going to fix that! If I'm spending thousands of

credits on a trip to Naboo, I want to know that my reservation was successful!

Installing the Mailer Component

Step 1: let's install the Symfony Mailer! Open your terminal and run:

composer require mailer

The Symfony Flex recipe for mailer is asking us to install some Docker configuration. This is for

a local SMTP server to help with previewing emails. We're going to use Mailtrap for this so say

"no". Installed! Run:

git status

to see what we got. Looks like the recipe added some environment variables in .env and

added the mailer configuration in config/packages/mailer.yaml .

MAILER_DSN

In your IDE, open .env . The Mailer recipe added this MAILER_DSN environment variable. This

is a special URL-looking string that configures your mailer transport: how your emails are

actually sent, like via SMTP, Mailtrap, etc. The recipe defaults to null://null and is perfect for

local development and testing. This transport does nothing when an email is sent! It pretends to

deliver the email, but really sends it out an airlock. We'll preview our emails in a different way.

Ok! We're ready to send our first email! Let's do that next!

Chapter 2: Sending our First Email

Let's take a trip! "Visit Krypton", Hopefully it hasn't been destroyed yet! Without bothering to

check, let's book it! I'll use name: "Kevin", email: "kevin@example.com" and just any date in the

future. Hit "Book Trip".

This is the "booking details" page. Note the URL: it has a unique token specific to this booking.

If a user needs to come back here later, currently, they need to bookmark this page or Slack

themselves the URL if they're like me. Lame! Let's send them a confirmation email that includes

a link to this page.

I want this to happen after the booking is first saved. Open TripController and find the

show() method. This makes the booking: if the form is valid, create or fetch a customer and

create a booking for this customer and trip. Then we redirect to the booking details page.

Delightfully boring so far, just how I like my code, and weekends.

Inject MailerInterface

I want to send an email after the booking is created. Give yourself some room by moving each

method argument to its own line. Then, add MailerInterface $mailer to get the main

service for sending emails:

src/Controller/TripController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 27

28

29

 // ... lines 30 - 33

34

35

 // ... lines 36 - 54

55

56

final class TripController extends AbstractController

{

 #[Route('/trip/{slug:trip}', name: 'trip_show')]

 public function show(

 MailerInterface $mailer,

): Response {

 }

}

Create the Email

After flush() , which inserts the booking into the database, create a new email object:

$email = new Email() (the one from Symfony\Component\Mime). Wrap it in parentheses so

we can chain methods. So what does every email need? A from email address: ->from() how

about info@univeral-travel.com . A to email address: ->to($customer->getEmail()) .

Now, the subject : ->subject('Booking Confirmation') . And finally, the email needs a

body: ->text('Your booking has been confirmed') - good enough for now:

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 35

36

 // ... lines 37 - 38

39

 // ... lines 40 - 48

49

50

51

52

53

54

 // ... lines 55 - 56

57

 // ... lines 58 - 62

63

64

Send the Email

Finish with $mailer->send($email) :

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->from('info@universal-travel.com')

 ->to($customer->getEmail())

 ->subject('Booking Confirmation')

 ->text('Your booking has been confirmed!')

 ;

 }

 }

}

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 35

36

 // ... lines 37 - 38

39

 // ... lines 40 - 55

56

 // ... lines 57 - 58

59

 // ... lines 60 - 64

65

66

Let's test this out!

Back in our app, go back to the homepage and choose a trip. For the name, use "Steve", email,

"steve@minecraft.com", any date in the future, and book the trip.

Ok... this page looks exactly the same as before. Was an email sent? Nothing in the web debug

toolbar seems to indicate this...

The email was actually sent on the previous request - the form submit. That controller then

redirected us to this page. But the web debug toolbar gives us a shortcut to access the profiler

for the previous request: hover over 200 and click the profiler link to get there.

Email in the Profiler

Check out the sidebar - we have a new "Emails" tab! And it shows 1 email was sent. We did it!

Click it, and here's our email! The from, to, subject, and body are all what we expect.

Remember, we're using the null mailer transport, so this email wasn't actually sent, but it's

super cool we can still preview it in the profiler!

Though ... I think we both know this email... is... pretty crappy. It doesn't give any of the useful

info! No URL to the booking details page, no destination, no date, no nothing! It's so useless, I'm

glad the null transport is just throwing it out the space window.

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $mailer->send($email);

 }

 }

}

Let's fix that next!

Chapter 3: Better Email

I think you, me, anyone that's ever received an email, can agree that our first email stinks. It

doesn't provide any value. Let's improve it!

Address Object

First, we can add a name to the email. This will show up in most email clients instead of just the

email address: it just looks smoother. Wrap the from with new Address() , the one from

Symfony\Component\Mime . The first argument is the email, and the second is the name - how

about Universal Travel :

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

51

 // ... lines 52 - 54

55

 // ... lines 56 - 59

60

 // ... lines 61 - 65

66

67

We can also wrap the to with new Address() . and pass $customer->getName() for the

name:

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->from(new Address('info@universal-travel.com', 'Universal

Travel'))

 ;

 }

 }

}

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... line 51

52

 // ... lines 53 - 54

55

 // ... lines 56 - 59

60

 // ... lines 61 - 65

66

67

For the subject , add the trip name: 'Booking Confirmation for ' . $trip->getName() :

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 52

53

 // ... line 54

55

 // ... lines 56 - 59

60

 // ... lines 61 - 65

66

67

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->to(new Address($customer->getEmail()))

 ;

 }

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->subject('Booking Confirmation for '.$trip->getName())

 ;

 }

 }

}

For the text body. We could inline all the text right here. That would get ugly, so let's use Twig!

We need a template. In templates/ , add a new email/ directory and inside, create a new file:

booking_confirmation.txt.twig . Twig can be used for any text format, not just html . A

good practice is to include the format - .html or .txt - in the filename. But Twig doesn't care

about the that - it's just to satisfy our human brains. We'll return to this file in a second.

Twig Email Template

Back in TripController::show() , instead of new Email() , use new TemplatedEmail()

(the one from Symfony\Bridge\Twig):

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 64

65

 // ... lines 66 - 70

71

72

Replace ->text() with ->textTemplate('email/booking_confirmation.txt.twig') :

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 }

 }

}

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 53

54

 // ... lines 55 - 59

60

 // ... lines 61 - 64

65

 // ... lines 66 - 70

71

72

To pass variables to the template, use ->context() with

'customer' => $customer, 'trip' => $trip, 'booking' => $booking :

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->textTemplate('email/booking_confirmation.txt.twig')

 ;

 }

 }

}

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 54

55

56

57

58

59

60

 // ... lines 61 - 64

65

 // ... lines 66 - 70

71

72

Note that we aren't technically rendering the Twig template here: Mailer will do that for us before

it sends the email.

This is normal, boring Twig code. Let's render the user's first name using a cheap trick, the trip

name, the departure date, and a link to manage the booking. We need to use absolute URLs in

emails - like https://univeral-travel.com/booking - so we'll leverage the url() Twig function

instead of path() : {{ url('booking_show', {'uid': booking.uid}) }} . End politely

with, Regards, the Universal Travel team :

templates/email/booking_confirmation.txt.twig

1

2

3

4

5

6

7

8

9

10

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->context([

 'customer' => $customer,

 'trip' => $trip,

 'booking' => $booking,

])

 ;

 }

 }

}

Hey {{ customer.name|split(' ')|first }},

Get ready for your trip to {{ trip.name }}!

Departure: {{ booking.date|date('Y-m-d') }}

Manage your booking: {{ url('booking_show', {uid: booking.uid}) }}

Regards,

The Universal Travel Team

https://univeral-travel.com/booking

Email body done! Test it out. Back in your browser, choose a trip, name: Steve , email:

steve@minecraft.com , any date in the future, and book the trip. Open the profiler for the last

request and click the Emails tab to see the email.

Much better! Notice the From and To addresses now have names. And our text content is

definitely more valuable! Copy the booking URL and paste it into your browser to make sure it

goes to the right place. Looks like it, nice!

Next, we'll use Mailtrap's testing tool for a more robust email preview.

https://mailtrap.io/

Chapter 4: Previewing Emails with Mailtrap (Email

Testing)

Previewing emails in the profiler is okay for basic emails, but soon we'll add HTML styles and

images of space cats. To properly see how our emails look, we need a more robust tool. We're

going to use Mailtrap's email testing tool. This gives us a real SMTP server that we can connect

to, but instead of delivering emails to real inboxes, they go into a fake inbox that we can check

out! It's like we send an email for real, then hack that person's account to see it... but without the

hassle or all that illegal stuff!

Fake Inbox

Go to https://mailtrap.io and sign up for a free account. Their free tier plan has some limits but is

perfect for getting started. Once you're in, you'll be on their app homepage. What we're

interested in right now is email testing, so click that. You should see something like this. If you

don't have an inbox yet, add one here.

Open that shiny new inbox. Next, we need to configure our app to send emails via the Mailtrap

SMTP server. This is easy! Down here, under "Code Examples", click "PHP" then "Symfony".

Copy the MAILER_DSN .

MAILER_DSN for Fake Inbox

Because this is a sensitive value, and may vary between developers, don't add it to .env as

that's commited to git. Instead, create a new .env.local file at the root of your project. Paste

the MAILER_DSN here to override the value in .env .

We are set up for Mailtrap testing! That was easy! Test'r out!

Back in the app, book a new trip: Name: Steve , Email: steve@minecraft.com , any date in the

future, and... book! This request takes a bit longer because it's connecting to the external

Mailtrap SMTP server.

https://mailtrap.io/
https://mailtrap.io/

Email in Mailtrap

Back in Mailtrap, bam! The email's already in our inbox! Click to check it out. Here's a "Text"

preview and a "Raw" view. There's also a "Spam Analysis" - cool! "Tech Info" shows all the

nerdy "email headers" in an easy-to-read format.

These "HTML" tabs are greyed out because we don't have an HTML version of our email... yet...

Let's change that next!

Chapter 5: HTML-powered Emails

Emails should always have a plain-text version, but they can also have an HTML version. And

that's where the fun is! Time to make this email more presentable by adding HTML!

HTML Email Template

In templates/email/ , copy booking_confirmation.txt.twig and name it

booking_confirmation.html.twig . The HTML version acts a bit like a full HTML page. Wrap

everything in an <html> tag, add an empty <head> and wrap the content in a <body> . I'll also

wrap these lines in <p> tags to get some spacing... and a
 tag after "Regards," to add a

line break.

This URL can now live in a proper <a> tag. Give yourself some room and cut "Manage your

booking". Add an <a> tag with the URL as the href attribute and paste the text inside.

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<html>

<head></head>

<body>

<p>Hey {{ customer.name|split(' ')|first }},</p>

<p>Get ready for your trip to {{ trip.name }}!</p>

<p>Departure: {{ booking.date|date('Y-m-d') }}</p>

<p>

 Manage your booking

</p>

<p>

 Regards,

 The Universal Travel Team

</p>

</body>

</html>

Finally, we need to tell Mailer to use this HTML template. In TripController::show() , above

->textTemplate() , add ->htmlTemplate() with

email/booking_confirmation.html.twig :

src/Controller/TripController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 30

31

 // ... lines 32 - 36

37

 // ... lines 38 - 49

50

 // ... lines 51 - 53

54

55

 // ... lines 56 - 60

61

 // ... lines 62 - 65

66

 // ... lines 67 - 71

72

73

Test it out by booking a trip: Steve , steve@minecraft.com , any date in the future, book... then

check Mailtrap. The email looks the same, but now we have an HTML tab!

Oh and the "HTML Check" is really neat. It gives you a gauge of what percentage of email

clients support the HTML in this email. If you didn't know, email clients are a pain in the butt: it's

like the 90s all over again with different browsers. This tool helps with that.

Back in the HTML tab, click the link to make sure it works. It does!

So our email now has both a text and HTML version but... it's kind of a drag to maintain both.

Who uses a text-only email client anyway? Probably nobody or a very low percentage of your

users.

Automatically Generating Text Version

Let's try something: in TripController::show() , remove the ->textTemplate() line. Our

email now only has an HTML version.

final class TripController extends AbstractController

{

 public function show(

): Response {

 $email = (new TemplatedEmail())

 ->htmlTemplate('email/booking_confirmation.html.twig')

 ->textTemplate('email/booking_confirmation.txt.twig')

 ;

 }

 }

}

Book another trip and check the email in Mailtrap. We still have a text version? It looks almost

like our text template but with some extra spacing. If you send an email with just an HTML

version, Symfony Mailer automatically creates a text version but strips the tags. This is a nice

fallback, but it's not perfect. See what's missing? The link! That's... kind of critical... The link is

gone because it was in the href attribute of the anchor tag. We lost it when the tags were

stripped.

So, do we need to always manually maintain a text version? Not necessarily. Here's a little trick.

HTML to Markdown

Over in your terminal, run:

composer require league/html-to-markdown

This is a package that converts HTML to markdown. Wait, what? Don't we usually convert

markdown to HTML? Yes, but for HTML emails, this is perfect! And guess what? There's nothing

else we need to do! Symfony Mailer automatically uses this package instead of just stripping

tags if available!

Book yet another trip and check the email in Mailtrap. The HTML looks the same, but check the

text version. Our anchor tag has been converted to a markdown link! It's still not perfect, but at

least it's there! If you need full control, you'll need that separate text template, but, I think this is

good enough. Back in your IDE, delete booking_confirmation.txt.twig .

Next, we'll spice up this HTML with CSS!

Chapter 6: CSS in Email

CSS in email requires... some special care. But, pffff, we're Symfony developers! Let's

recklessly go forward and see what happens!

Add a CSS Class

In email/booking_confirmation.html.twig , add a <style> tag in the <head> and add a

.text-red class that sets the color to red :

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

 // ... lines 9 - 26

27

Now, add this class to the first <p> tag:

templates/email/booking_confirmation.html.twig

 // ... lines 1 - 8

9

10

 // ... lines 11 - 25

26

 // ... lines 27 - 28

In our app, book another trip for our good friend Steve. He's really racking up the parsecs! Do

you think he'd be interested in the platinum Universal Travel credit card?

In Mailtrap, check the email. Ok, this text is red like we expect... so what's the problem? Check

the HTML Source for a hint. Hover over the first error:

<html>

<head>

 <style>

 .text-red {

 color: red;

 }

 </style>

</head>

</html>

<body>

<p class="text-red">Hey {{ customer.name|split(' ')|first }},</p>

</body>

“The style tag is not supported in all email clients.”

The more important problem is the class attribute: it's also not supported in all email clients.

We can travel to space but can't use CSS classes in emails? Yup! It's a strange world.

Inline CSS

The solution? Pretend like it's 1999 and inline all the styles. That's right, for every tag that has a

class , we need to find all the styles applied from the class and add them as a style attribute.

Manually, this would suuuuck... Luckily, Symfony Mailer has you covered!

inline_css Twig Filter

At the top of this file, add a Twig apply tag with the inline_css filter. If you're unfamiliar, the

apply tag allows you to apply any Twig filter to a block of content. At the end of the file, write

endapply :

templates/email/booking_confirmation.html.twig

1

2

 // ... lines 3 - 27

28

29

Book another trip for Steve. Oops, an error! The inline_css filter is part of a package we don't

have installed but the error message gives us the composer require command to install it!

Copy that, jump over to your terminal and paste:

composer require twig/cssinliner-extra

Back in the app, rebook Steve's trip and check the email in Mailtrap.

The HTML looks the same but check the HTML Source. This style attribute was automatically

added to the <p> tag! That's amazing and way better than doing it manually.

{% apply inline_css %}

<html>

</html>

{% endapply %}

If your app sends multiple emails, you'll want them to have a consistent style from a real CSS

file, instead of defining everything in a <style> tag in each template. Unfortunately, it's not as

simple as linking to a CSS file in the <head> . That's something else that email clients don't like.

No problem!

External CSS File

Create a new email.css file in assets/styles/ . Copy the CSS from the email template and

paste it here:

assets/styles/email.css

1

2

3

Back in the template, celebrate by removing the <style> tag.

So how can we get our email to use the external CSS file? With trickery of course!

Twig "styles" Namespace

Open config/packages/twig.yaml and create a paths key. Inside, add

%kernel.project_dir%/assets/styles: styles :

config/packages/twig.yaml

1

 // ... line 2

3

4

 // ... lines 5 - 9

I know, this looks weird, but it creates a custom Twig namespace. Thanks to this we can now

render templates inside this directory with the @styles/ prefix. But wait a minute! email.css

file isn't a twig template that we want to render! That's ok, we just need to access it, not parse it

as Twig.

inline_css() with source()

.text-red {

 color: red;

}

twig:

 paths:

 '%kernel.project_dir%/assets/styles': styles

Back in booking_confirmation.html.twig , for inline_css 's argument, use

source('@styles/email.css') :

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

The source() function grabs the raw content of a file.

Jump to our app, book another trip and check the email in Mailtrap. Looks the same! The text

here is red. If we check the HTML Source, the classes are no longer in the <head> but the

styles are still inlined: they're being loaded from our external style sheet, it's brilliant!

Up next, let's improve the HTML and CSS to make this email worthy of Steve's inbox and the

expensive trip he just booked.

{% apply inline_css(source('@styles/email.css')) %}

Chapter 7: Real Email Styling with Inky &

Foundation CSS

To get this email looking really sharp, we need to improve the HTML and CSS.

Let's start with CSS. With standard website CSS, you've likely used a CSS framework like

Tailwind (which our app uses), Bootstrap, or Foundation. Does something like this exist for

emails? Yes! And it's even more important to use one for emails because there are so many

email clients that render differently.

Foundation CSS for Emails

For emails, we recommend using Foundation as it has a specific framework for emails. Google

"Foundation CSS" and you should find this page.

Download the starter kit for the "CSS Version". This zip file includes a

foundation-emails.css file that's the actual "framework".

I already included this in the tutorials/ directory. Copy it to assets/styles/ .

In our booking_confirmation.html.twig , the inline_css filter can take multiple

arguments. Make the first argument source('@styles/foundation-emails.css') and use

email.css for the second argument:

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

This will contain custom styles and overrides.

I'll open email.css and paste in some custom CSS for our email:

{% apply inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

assets/styles/email.css

1

2

3

4

5

6

7

8

9

10

11

Tables!

Now we need to improve our HTML. But weird news! Most of the things we use for styling

websites don't work in emails. For example, we can't use Flexbox or Grid. Instead, we need to

use tables for layout. Tables! Tables, inside tables, inside tables. Gross!

Inky Templating Language

Luckily, there's a templating language we can use to make this easier. Search for "inky

templating language" to find this page. Inky is developed by this Zurb Foundation. Zurb, Inky,

Foundation... these names fit in perfectly with our space theme! And they all work together!

You can get an idea of how it works on the overview. This is the HTML needed for a simple

email. It's table-hell! Click the "Switch to Inky" tab. Wow! This is much cleaner! We write in a

more readable format and Inky converts it to the table-hell needed for emails.

There are even "inky components": buttons, callouts, grids, etc.

In your terminal, install an Inky Twig filter that will convert our Inky markup to HTML.

composer require twig/inky-extra

inky_to_html Twig Filter

.trip-name {

 font-size: 32px;

}

.accent-title {

 color: #666666;

}

.trip-image {

 border-radius: 12px;

}

In booking_confirmation.html.twig , add the inky_to_html filter to apply , piping

inline_css after:

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

First, we apply the Inky filter, then inline the CSS.

I'll copy in some inky markup for our email.

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

We have a <container> , with <rows> and <columns> . This will be a single column email, but

you can have as many columns as you need. This <spacer> adds vertical space for breathing

room.

Let's see this email in action! Book a new trip for Steve, oops, must be a date in the future, and

book!

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

 <container>

 <row>

 <columns>

 <spacer size="40"></spacer>

 <p class="accent-title">Get Ready for your trip to</p>

 <h1 class="trip-name">{{ trip.name }}</h1>

 </columns>

 </row>

 <row>

 <columns>

 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d')

}}</p>

 </columns>

 </row>

 <row>

 <columns>

 <button class="expanded rounded center" href="{{

url('booking_show', {uid: booking.uid}) }}">

 Manage Booking

 </button>

 <button class="expanded rounded center secondary" href="{{

url('bookings', {uid: customer.uid}) }}">

 My Account

 </button>

 </columns>

 </row>

 <row>

 <columns>

 <p>We can't wait to see you there,</p>

 <p>Your friends at Universal Travel</p>

 </columns>

 </row>

 </container>

{% endapply %}

Check Mailtrap and find the email. Wow! This looks much better! We can use this little widget

Mailtrap provides to see how it'll look on mobile and tablets.

Looking at the "HTML Check", seems like we have some issues, but, I think as long we're using

Foundation and Inky as intended, we should be good.

Check the buttons. "Manage Booking", yep, that works. "My Account", yep, that works too. That

was a lot of quick success thanks to Foundation and Inky!

Next, let's improve our email further by embedding the trip image and making the lawyers happy

by adding a "terms of service" PDF attachment.

Chapter 8: Attachments and Images

Can we add an attachment to our email? Of course! Doing this manually is a complex and

delicate process. Luckily, the Symfony Mailer makes it a cinch.

In the tutorial/ directory, you'll see a terms-of-service.pdf file. Move this into assets/ ,

though it could live anywhere.

In TripController::show() , we need to get the path to this file. Add a new

string $termsPath argument and with the #[Autowire] attribute and

%kernel.project_dir%/assets/terms-of-service.pdf' :

src/Controller/TripController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 31

32

 // ... lines 33 - 38

39

40

41

 // ... lines 42 - 75

76

77

Cool, right?

Attachments

Down where we create the email, write ->attach and see what your IDE suggests. There are

two methods: attach() and attachFromPath() . attach() is for adding the raw content of a

file (as a string or stream). Since our attachment is a real file on our filesystem, use

attachFromPath() and pass $termsPath then a friendly name like Terms of Service.pdf :

final class TripController extends AbstractController

{

 public function show(

 #[Autowire('%kernel.project_dir%/assets/terms-of-service.pdf')]

 string $termsPath,

): Response {

 }

}

src/Controller/TripController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 31

32

 // ... lines 33 - 40

41

 // ... lines 42 - 53

54

 // ... lines 55 - 57

58

 // ... lines 59 - 64

65

 // ... lines 66 - 69

70

 // ... lines 71 - 75

76

77

This will be the name of the file when it's downloaded. If the second argument isn't passed, it

defaults to the file's name.

Attachment done. That was easy!

Embedding Images

Next, let's add the trip image to the booking confirmation email. But we don't want it as an

attachment. We want it embedded in the HTML. There are two ways to do this: First, the

standard web way: use an tag with an absolute URL to the image hosted on your site.

But, we're going to be clever and embed the image directly into the email. This is like an

attachment, but isn't available for download Instead, you reference it in the HTML of your email.

First, like we did with our external CSS files, we need to make our images available in Twig.

public/imgs/ contains our trip images and they're all named as <trip-slug.png> .

In config/packages/twig.yaml , add another paths entry:

%kernel.project_dir%/public/imgs: images :

final class TripController extends AbstractController

{

 public function show(

): Response {

 $email = (new TemplatedEmail())

 ->attachFromPath($termsPath, 'Terms of Service.pdf')

 ;

 }

 }

}

config/packages/twig.yaml

1

 // ... line 2

3

 // ... line 4

5

 // ... lines 6 - 10

Now we can access this directory in Twig with @images/ . Close this file.

The email Variable

When you use Twig to render your emails, of course you have access to the variables passed to

->context() but there's also a secret variable available called email . This is an instance of

WrappedTemplatedEmail and it gives you access to email-related things like the subject,

return path, from, to, etc. The thing we're interested in is this image() method. This is what

handles embedding images!

Let's use it!

In booking_confirmation.html.twig , below this <h1> , add an tag with some

classes: trip-image from our custom CSS file and float-center from Foundation.

For the src , write {{ email.image() }} , this is the method on that

WrappedTemplatedEmail object. Inside, write '@images/%s.png'|format(trip.slug) . Add

an alt="{{ trip.name }}" and close the tag:

twig:

 paths:

 '%kernel.project_dir%/public/imgs': images

templates/email/booking_confirmation.html.twig

1

2

3

4

 // ... lines 5 - 6

7

8

9

10

11

12

13

 // ... lines 14 - 34

35

36

Image embedded! Let's check it!

Back in the app, book a trip... and check Mailtrap. Here's our email and... here's our image! We

rock! It fits perfectly and even has some nice rounded corners.

Up here, in the top right, we see "Attachment (1)" - just like we expect. Click this and choose

"Terms of Service.pdf" to download it. Open it up and... there's our PDF! Our space lawyers

actually made this document fun - and it only cost us 500 credits/hour! Investor credits well

spent!

Next, we're going to remove the need to manually set a from to each email by using events to

add it globally.

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

 <container>

 <row>

 <columns>

 <h1 class="trip-name">{{ trip.name }}</h1>

 <img

 class="trip-image float-center"

 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

 alt="{{ trip.name }}">

 </columns>

 </row>

 </container>

{% endapply %}

Chapter 9: Global From (and Fun) with Email

Events

I bet that most, if not every email your app sends will be from the same email address,

something clever like hal9000@universal-travel.com or the tried-and-true but sleepier

info@universal-travel.com .

Because every email will have the same from address, there's no point to set it in every email.

Instead, let's set it globally. Oddly, there isn't any tiny config option for this. But that's great for

us: it gives us a chance to learn about events! Very powerful, very nerdy.

The MessageEvent

Before an email is sent, Mailer dispatches a MessageEvent .

To listen to this, find your terminal and run:

symfony console make:listener

Call it GlobalFromEmailListener . The gives us a list of events we can listen to. We want the

first one: MessageEvent . Start typing Symfony and it's autocompleted for us. Hit enter.

Listener created!

To be extra cool, let's set our global from address as a parameter. In config/services.yaml ,

under parameters , add a new one: global_from_email .

Special Email Address String

This will be a string, but check this out: set it to Universal Travel , then in angle brackets,

put the email: <info@universal-travel.com> :

config/services.yaml

 // ... lines 1 - 5

6

7

 // ... lines 8 - 26

When Symfony Mailer sees a string that looks like this as an email address, it'll create the

proper Address object with both a name and email set. Sweet!

MessageEvent Listener

Open the new class src/EventListener/GlobalFromEmailListener.php . Add a constructor

with a private string $fromEmail argument and an #[Autowire] attribute with our

parameter name: %global_from_email% :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 21

22

Down here, the #[AsEventListener] attribute is what marks this method as an event listener.

We can actually remove this event argument - it'll be inferred from the method argument's

type-hint: MessageEvent :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 17

18

19

20

 // ... lines 21 - 31

32

33

parameters:

 global_from_email: 'Universal Travel <info@universal-travel.com>'

final class GlobalFromEmailListener

{

 public function __construct(

 #[Autowire('%global_from_email%')]

 private string $fromEmail,

) {

 }

}

final class GlobalFromEmailListener

{

 #[AsEventListener]

 public function onMessageEvent(MessageEvent $event): void

 {

 }

}

Inside, first grab the message from the event: $message = $event->getMessage() :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

 // ... lines 22 - 31

32

33

Jump into the getMessage() method to see what it returns. RawMessage ... jump into this and

look at what classes extend it. TemplatedEmail ! Perfect!

Back in our listener, write if (!$message instanceof TemplatedEmail) , and inside,

return; :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 22

23

24

25

 // ... lines 26 - 31

32

33

This will likely never be the case, but it's good practice to double-check. Plus, it helps our IDE

know that $message is a TemplatedEmail now.

It's possible that an email might still set its own from address. In this case, we don't want to

override it. So, add a guard clause: if ($message->getFrom()) , return; :

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 $message = $event->getMessage();

 }

}

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 if (!$message instanceof TemplatedEmail) {

 return;

 }

 }

}

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 26

27

28

29

 // ... lines 30 - 31

32

33

Now, we can set the global from : $message->from($this->fromEmail) :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 30

31

32

33

Perfect!

Back in TripController::show() , remove the ->from() for the email.

Time to test this! In our app, book a trip and check Mailtrap for the email. Drumroll... the from is

set correctly! Our listener works! I never doubted us.

Reply-To

One more detail to make this completely airtight (like most of our ships).

Imagine a contact form where the user fills their name, email, and a message. This fires off an

email with these details to your support team. In their email clients, it'd be nice if, when they hit

reply, it goes to the email from the form - not your "global from".

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 if ($message->getFrom()) {

 return;

 }

 }

}

final class GlobalFromEmailListener

{

 public function onMessageEvent(MessageEvent $event): void

 {

 $message->from($this->fromEmail);

 }

}

You might think that you should set the from address to the user's email. But that won't work,

as we're not authorized to send emails on behalf of that user. More on email security soon.

Fortunately, there's a special email header called Reply-To for just this scenario. When

building your email, set it with ->replyTo() and pass the user's email address.

Strap in because the booster tanks are full and ready for launch! Time to send real emails in

production! That's next.

Chapter 10: Production Sending with Mailtrap

Alrighty, it's finally time send real emails in production!

Mailer Transports

Mailer comes with various ways to send emails, called "transports". This smtp one is what we're

using for our Mailtrap testing. We could set up our own SMTP server to send emails... but...

that's complex, and you need to do a lot of things to make sure your emails don't get marked as

spam. Boo.

3rd-Party Transports

I highly, highly recommend using a 3rd-party email service. These handle all these complexities

for you and Mailer provides bridges to many of these to make setup a breeze.

Mailtrap Bridge

We're using Mailtrap for testing but Mailtrap also has production sending capabilities!

Fantabulous! It even has an official bridge!

At your terminal, install it with:

composer require symfony/mailtrap-mailer

After this is installed, check your IDE. In .env , the recipe added some MAILER_DSN stubs. We

can get the real DSN values from Mailtrap, but first, we need to do some setup.

Sending Domain

Over in Mailtrap, we need to set up a "sending domain". This configures a domain you own to

allow Mailtrap to properly send emails on its behalf.

Our lawyers are still negotiating the purchase of universal-travel.com , so for now, I'm using

a personal domain I own: zenstruck.com . Add your domain here.

Once added, you'll be on this "Domain Verification" page. This is super important but Mailtrap

makes it easy. Just follow the instructions until you get this green checkmark. Basically, you'll

need to add a bunch of specific DNS records to your domain. DKIM, which verifies emails sent

from your domain, and SPF, which authorizes Mailtrap to send emails on your domain's behalf

are the most important. Mailtrap provides great documentation on these if you want to dig

deeper on how exactly these work. But basically, we're telling the world that Mailtrap is allowed

to send emails on our behalf.

Production MAILER_DSN

Once you have the green checkmark, click "Integrations" then "Integrate" under the "Transaction

Stream" section.

We can now decide between using SMTP or API. I'll use the API, but either works. And hey! This

looks familiar: like with Mailtrap testing, choose PHP, then Symfony. This is the MAILER_DSN we

need! Copy it and jump over to your editor.

This is a sensitive environment variable, so add it to .env.local to avoid committing it to git.

Comment out the Mailtrap testing DSN and paste below. I'll remove this comment because we

like to keep life tidy.

Almost ready! Remember, we can only send emails in production from the domain we

configured. In my case, zenstruck.com . Open config/services.yaml and update the

global_from_email to your domain.

Let's see if this works! In your app, book a trip. This time use a real email address. I'll set the

name to Kevin and I'll use my personal email: kevin@symfonycasts.com . As much as I love

you and space travel, put your own email here to avoid spamming me. Choose a date and book!

We're on the booking confirmation page, that's a good sign! Now, check your personal email. I'll

go to mine and wait... refresh... here it is! If I click it, this is exactly what we expect! The image,

attachment, everything is here!

Next, let's see how we can track sent emails with Mailtrap plus add tags and metadata to

improve that tracking!

Chapter 11: Email Tracking with Tags and

Metadata

We're now sending emails for realsies. Let's just double-check our links are working... All good!

Mailtrap Email Logs

Mailtrap can do more than just deliver & debug emails: we can also track emails and email

events. Jump over to Mailtrap and click "Email API/SMTP". This dashboard shows us an

overview of each email we've sent. Click "Email Logs" to see the full list. Here's our email! Click

it to see the details.

Hey! This look familiar... it's similar to the Mailtrap testing interface. We can see general details,

a spam analysis and more. But this is really cool: click "Event History". This shows all the events

that happened during the flow of this email. We can see when it was sent, delivered, even

opened by the recipient! Each event has extra details, like the IP address that opened the email.

Super useful for diagnosing email issues. Mailtrap also has a link tracking feature that, if

enabled, would show which links were clicked in the email.

Back on the "Email Info" tab, scroll down a bit. Notice that the "Category" is "missing". This isn't

actually a problem, but a "category" is a string that helps organize the different emails your app

sends. This makes searching easier and can give us interesting stats like "how many user

signup emails did we send last month?".

Email Tag (Mailtrap Category)

Symfony Mailer calls this a "tag" that you can add to emails. The Mailtrap bridge takes this tag

and converts it to their "category". Let's add one!

In TripController::show() , after the email creation, write:

$email->getHeaders()->add(new TagHeader()); - use booking as the name:

src/Controller/TripController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 32

33

 // ... lines 34 - 41

42

 // ... lines 43 - 44

45

 // ... lines 46 - 66

67

 // ... lines 68 - 71

72

 // ... lines 73 - 77

78

79

Email Metadata (Mailtrap Custom Variables)

Mailer also has a special metadata header that you can add to emails. This is a free-form key-

value store for adding additional data. The Mailtrap bridge converts these to what they call

"custom variables".

Let's add a couple:

src/Controller/TripController.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 33

34

 // ... lines 35 - 42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 68

69

 // ... lines 70 - 74

75

 // ... lines 76 - 80

81

82

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email->getHeaders()->add(new TagHeader('booking'));

 }

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking-

>getUid()));

 }

 }

}

And:

src/Controller/TripController.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 33

34

 // ... lines 35 - 42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 69

70

 // ... lines 71 - 74

75

 // ... lines 76 - 80

81

82

Attached to every booking email is now a customer and booking reference. Awesome!

To see how these'll look in Mailtrap, jump over to our app and book a trip (remember, we're still

using production sending so use your personal email). Check our inbox... here it is. Back in

Mailtrap, go back to the email logs... and refresh... there it is! Click it. Now, on this "Email Info"

tab, we see our "booking" category! Down a bit further, here's our metadata or "custom

variables".

Filtering by Category

To filter on the "category", go to the email logs. In this search box, choose "Categories". This

filter lists all the categories we've used. Select "booking" and "Search". This is already more

organized than the Jeffries tubes down in engineering!

So that's production email sending with Mailtrap! To make things easier for the next chapters,

let's switch back to using Mailtrap testing. In .env.local , uncomment the Mailtrap testing

MAILER_DSN and comment out the production sending MAILER_DSN .

Next, let's use Symfony Messenger to send our emails asynchronously. Ooo!

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email->getHeaders()->add(new MetadataHeader('customer_uid',

$customer->getUid()));

 }

 }

}

Chapter 12: Async & Retryable Sending with

Messenger

When we send this email, it's sent right away - synchronously. This means that our the user

sees a delay while we connect to the mailer transport to send the email. And if there's a network

issue where the email fails, the user will see a 500 error: not exactly inspiring confidence in a

company that's going to strap you to a rocket.

Instead, let's send our emails asynchronously. This means that, during the request, the email

will be sent to a queue to be processed later. Symfony Messenger is perfect for this! And we get

the following benefits: faster responses for the user, automatic retries if the email fails, and the

ability to flag emails for manual review if they fail too many times.

Installing Messenger & Doctrine Transport

Let's install messenger! At your terminal, run:

composer require messenger

Like Mailer, Messenger has the concept of a transport: this is where the messages are sent to

be queued. We'll use the Doctrine transport as it's easiest to set up.

composer require symfony/doctrine-messenger

Back in our IDE, the recipe added this MESSENGER_TRANSPORT_DSN to our .env and it

defaulted to Doctrine - perfect! This transport adds a table to our database so technically we

should create a migration for this. But... we're going to cheat a bit and have it automatically

create the table if it doesn't exist. To allow this, set auto_setup to 1 :

.env

 // ... lines 1 - 40

41

 // ... lines 42 - 44

45

46

Configuring Messenger Transports

The recipe also created this config/packages/messenger.yaml file. Uncomment the

failure_transport line:

config/packages/messenger.yaml

1

2

 // ... line 3

4

 // ... lines 5 - 24

This enables the manual failure review system I mentioned earlier. Then, uncomment the async

line under transports :

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

 // ... line 7

8

 // ... lines 9 - 24

This enables the transport configured with MESSENGER_TRANSPORT_DSN and names it async .

It's not obvious here, but failed messages are retried 3 times, with an increasing delay between

each attempt. If a message still fails after 3 attempts, it's sent to the failure_transport ,

called failed , so uncomment this transport too:

###> symfony/messenger ###

MESSENGER_TRANSPORT_DSN=doctrine://default?auto_setup=1

###< symfony/messenger ###

framework:

 messenger:

 failure_transport: failed

framework:

 messenger:

 transports:

 async: '%env(MESSENGER_TRANSPORT_DSN)%'

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 24

Configuring Messenger Routing

The routing section is where we tell Symfony which messages should be sent to which

transport. Mailer uses a specific message class for sending emails. So send

Symfony\Component\Mailer\Messenger\SendEmailMessage to the async transport:

config/packages/messenger.yaml

1

2

 // ... lines 3 - 11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 24

That's it! Symfony Messenger and Mailer dock together beautifully so there's nothing we need to

change in our code.

Let's test this! Back in our app... book a trip. We're back to using Mailtrap's testing transport so

we can use any email. Now watch how much faster this processes.

Boom!

Status: Queued

Open the profiler for the last request and check out the "Emails" section. This looks normal, but

notice the Status is "Queued". It was sent to our messenger transport, not our mailer transport.

We have this new "Messages" section. Here, we can see the SendEmailMessage that contains

our TemplatedEmail object.

Jump over to Mailtrap and refresh... nothing yet. Of course! We need to process our queue.

framework:

 messenger:

 transports:

 failed: 'doctrine://default?queue_name=failed'

framework:

 messenger:

 routing:

 'Symfony\Component\Mailer\Messenger\SendEmailMessage': async

Processing the Queue

Spin back to your terminal and run:

symfony console messenger:consume async -vv

This processes our async transport (the -vv just adds more output so we can see what's

happening). Righteous! The message was received and handled successfully. Meaning: this

should have actually sent the email.

Go check Mailtrap... it's already here! Looks correct... but... click one of our links.

What the heck? Check out the URL: that's the wrong domain! Boo. Let's find out which part of

our email rocket ship has caused this and fix it next!

Chapter 13: Generating URLs in the CLI

Environment

When we switched to asynchronous email sending, we broke our email links! It's using

localhost as our domain, weird and wrong.

Back in our app, we can get a hint as to what's going on by looking at the profiler for the request

that sent the email. Remember, our email is now marked as "queued". Go to the "Messages" tab

and find the message: SendEmailMessage . Inside is the TemplatedEmail object. Open this

up. Interesting! htmlTemplate is our Twig template but html is null ! Shouldn't that be set to

the rendered HTML from that template? This little detail is important: the email template is not

rendered when our controller sends the message to the queue. Nope! the template isn't

rendered until later, when we run messenger:consume .

Link Generation in the CLI

Why does this matter? Well messenger:consume is a CLI command, and when generating

absolute URLs in the CLI, Symfony doesn't know what the domain should be (or if it should be

http or https). So why does it when in a controller? In a controller, Symfony uses the current

request to figure this out. In a CLI command, there is no request so it gives up and uses

http://localhost .

Configure the Default URL

Let's just tell it what the domain should be.

Back in our IDE, open up config/packages/routing.yaml . Under framework , routing ,

these comments explain this exact issue. Uncomment default_uri and set it to

https://universal-travel.com - our lawyers are close to a deal!

config/packages/routing.yaml

1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 19

In development though, we need to use our local dev server's URL. For me, this is

127.0.0.1:8000 but this might be different for other team members. I know that Bob uses

bob.is.awesome:8000 and he kinda is.

Development Environment Default URL

To make this configurable, there's a trick: the Symfony CLI server sets a special environment

variable with the domain called SYMFONY_PROJECT_DEFAULT_ROUTE_URL .

Back in our routing config, add a new section: when@dev: , framework: , router: ,

default_uri: and set it to %env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL)% :

config/packages/routing.yaml

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

13

 // ... lines 14 - 19

This environment variable will only be available if the Symfony CLI server is running and you're

running commands via symfony console (not bin/console). To avoid an error if the variable

is missing, set a default. Still under when@dev , add parameters: with

env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL): set to http://localhost .

config/packages/routing.yaml

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 19

This is Symfony's standard way to set a default value for an environment variable.

framework:

 router:

 default_uri: https://universal-travel.com

when@dev:

 framework:

 router:

 default_uri: '%env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL)%'

when@dev:

 parameters:

 env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL): 'http://localhost'

Restart messenger:consume

Testing time! But first, jump back to your terminal. Because we made some changes to our

config, we need to restart the messenger:consume command to, sort of, reload our app:

symfony console messenger:consume async -vv

Cool! The command is running again and using our sweet new Symfony config. Head back to

our app... and book a trip! Quickly go back to the terminal... and we can see the message was

processed.

Pop over to Mailtrap and... here it is! Moment of truth: click a link... Sweet, it's working again!

Bob will be so happy!

Running messenger:consume in the Background

If you're like me, you probably find having to keep this messenger:consume command running

in a terminal during development a drag. Plus, having to restart it every time you make a code

or config change is annoying. I'm annoyed! Time to add the fun back to our functions with

another Symfony CLI trick!

In your IDE, open this .symfony.local.yaml file. This is the Symfony CLI server config for our

app. See this workers key? It lets us define processes to run in the background when we start

the server. We already have the tailwind command set.

Add another worker. Call it messenger - though that could be anything - and set cmd to

['symfony', 'console', 'messenger:consume', 'async'] :

.symfony.local.yaml

1

 // ... lines 2 - 5

6

7

 // ... lines 8 - 9

This solves the issue of needing to keep this running in a separate terminal window. But what

about restarting the command when we make changes? No problemo! Add a watch key and

workers:

 messenger:

 cmd: ['symfony', 'console', 'messenger:consume', 'async']

set it to config , src , templates and vendor :

.symfony.local.yaml

1

 // ... lines 2 - 5

6

 // ... line 7

8

If any files in these directories change, the worker will restart itself. Smart!

Back in your terminal, restart the server with symfony server:stop and symfony serve -d

messenger:consume should be running in the background! To prove it, run:

symfony server:status

3 workers running! The actual PHP webserver, the existing tailwind:build worker, and our

new messenger:consume . So cool!

Next, let's explore how to make assertions about emails in our functional tests!

workers:

 messenger:

 watch: ['config', 'src', 'templates', 'vendor']

Chapter 14: Emails Assertions in Functional Tests

Okay, testing time! If you've explored the codebase a bit, you may have noticed that someone (it

could've been anyone... but probably a Canadian) snuck some tests into our

tests/Functional/ directory. Do these pass? Idk! Let's find out!

Jump over to your terminal and run:

bin/phpunit

Uh-oh, 1 failure. Uh-oh, because, truth time, I'm the friendly Canadian that added these and I

know they were passing at the beginning of the course! The failure is in BookingTest ,

specifically, testCreateBooking :

“Expected redirect status code but got 500”

on line 38 of BookingTest . That's where we send the email... so if we're looking for someone

to blame, I feel like we should start with the Canadian, ahem, me and my wild email-sending

ways.

Foundry and Browser

Open BookingTest.php . If you've written functional tests with Symfony before, this may look a

tad different because I'm using some rocking helper libraries. zenstruck/foundry gives us this

ResetDatabase trait which wipes the database before each test. It also gives us this

Factories trait which lets us create database fixtures in our tests. And HasBrowser is from

another package - zenstruck/browser - and is essentially a user-friendly wrapper around

Symfony's test client.

testCreateBooking is the actual test. First, we create a Trip in the database with these

known values. Next, some pre-assertions to ensure there are no bookings or customers in the

database. Now, we use ->browser() to navigate to a trip page, fill in the booking form, and

submit. We then assert that we're redirected to a specific booking URL and check that the page

contains some expected HTML. Finally, we use Foundry to make some assertions about the

data in our database.

->throwExceptions()

Line 38 caused the failure... we're getting a 500 response code when redirecting to this booking

page. 500 status codes in tests can be frustrating because it can be hard to track down the

actual exception. Luckily, Browser allows us to throw the actual exception. At the beginning of

this chain, add ->throwExceptions() :

tests/Functional/BookingTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

 // ... lines 22 - 30

31

32

 // ... lines 33 - 42

43

 // ... lines 44 - 52

53

54

Back in the terminal, run the tests again:

bin/phpunit

Now we see an exception: Unable to find template "@images/mars.png". If you recall, this looks

like how we're embedding the trip images into our email. It's failing because mars.png doesn't

exist in public/imgs . For simplicity, let's adjust our test to use an existing image. For our

fixture here, change mars to iss , and down below, for ->visit() : /trip/iss :

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->browser()

 ->throwExceptions()

 ;

 }

}

tests/Functional/BookingTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... line 23

24

 // ... line 25

26

 // ... lines 27 - 30

31

 // ... line 32

33

 // ... lines 34 - 42

43

 // ... lines 44 - 52

53

54

Run the tests again!

bin/phpunit

Passing!

It looks like our email is being sent... but let's confirm! At the end of this test, I want to make

some email assertions. Symfony does allow this out of the box, but I like to use a library that

puts the fun back in email functional testing.

zenstruck/mailer-test

At your terminal, run:

composer require --dev zenstruck/mailer-test

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $trip = TripFactory::createOne([

 'slug' => 'iss',

]);

 $this->browser()

 ->visit('/trip/iss')

 ;

 }

}

Installed and configured... back in our test, enable it by adding the InteractsWithMailer trait:

tests/Functional/BookingTest.php

 // ... lines 1 - 13

14

15

16

 // ... lines 17 - 54

55

Start simple, at the end of the test, write $this->mailer()->assertSentEmailCount(1); :

tests/Functional/BookingTest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 20

21

22

 // ... lines 23 - 54

55

56

57

58

59

Test-specific Environment Variables

Quick note: .env.local - where we put our real Mailtrap credentials - is not read or used in the

test environment: our tests only load .env and this .env.test file. And in .env ,

MAILER_DSN is set to null://null . That's great! We want our tests to be fast, and not actually

sending emails.

Re-run them!

bin/phpunit

assertEmailSentTo()

class BookingTest extends KernelTestCase

{

 use ResetDatabase, Factories, HasBrowser, InteractsWithMailer;

}

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertSentEmailCount(1)

 ;

 }

}

Passing - 1 email is being sent! Go back and add another assertion: ->assertEmailSentTo() .

What email address are we expecting? The one we filled in the form:

bruce@wayne-enterprises.com . Copy and paste that. The second argument is the subject:

Booking Confirmation for Visit Mars :

tests/Functional/BookingTest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 20

21

22

 // ... lines 23 - 54

55

 // ... line 56

57

58

59

60

Run the tests!

bin/phpunit

Still passing! And notice we have 20 assertions now instead of 19.

TestEmail

But we can go further! Instead of a string for the subject in this assertion, use a closure with

TestEmail $email as the argument:

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', 'Booking

Confirmation for Visit Mars')

 ;

 }

}

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

 // ... lines 59 - 64

65

66

67

68

Inside, we can now make loads more assertions on this email. Since we aren't checking the

subject above anymore, add this one first:

$email->assertSubject('Booking Confirmation for Visit Mars') :

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

60

 // ... lines 61 - 63

64

65

66

67

68

And we can chain more assertions!

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail

$email) {

 })

 ;

 }

}

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail

$email) {

 $email

 ->assertSubject('Booking Confirmation for Visit Mars')

 ;

 })

 ;

 }

}

Write ->assert to see what our editor suggests. Look at them all... Note the

assertTextContains and assertHtmlContains . You can assert on each of these separately,

but, because it's a best practice for both to contain the important details, use

assertContains() to check both at once. Check for Visit Mars :

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... line 60

61

 // ... lines 62 - 63

64

65

66

67

68

Links are important to check, so make sure the booking URL is there:

->assertContains('/booking/'. . Now, BookingFactory::first()->getUid() :

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail

$email) {

 $email

 ->assertContains('Visit Mars')

 ;

 })

 ;

 }

}

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... lines 60 - 61

62

 // ... line 63

64

65

66

67

68

this fetches the first Booking entity in the database (which we know from above there is only

the one), and gets its uid .

Heck! We can even check the attachment: ->assertHasFile('Terms of Service.pdf') :

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail

$email) {

 $email

 ->assertContains('/booking/'.BookingFactory::first()-

>getUid())

 ;

 })

 ;

 }

}

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... lines 60 - 62

63

64

65

66

67

68

You can check the content-type and file contents via extra arguments, but I'm fine just checking

that the attachment exists for now.

Go tests go!

bin/phpunit

Awesome, 25 assertions now!

->dd()

One last thing: if you're ever having trouble figuring out why one of these email assertions isn't

passing, chain a ->dd() :

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail

$email) {

 $email

 ->assertHasFile('Terms of Service.pdf')

 ;

 })

 ;

 }

}

tests/Functional/BookingTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 55

56

 // ... line 57

58

59

 // ... lines 60 - 63

64

65

66

67

68

69

and run your tests. When it hits that dd() , it dumps the email to help you debug. Don't forget to

remove it when you're done!

Next, I want to add a second email to our app. To avoid duplication and keep things consistent,

we'll create a Twig email layout that both share.

class BookingTest extends KernelTestCase

{

 public function testCreateBooking(): void

 {

 $this->mailer()

 ->assertEmailSentTo('bruce@wayne-enterprises.com', function(TestEmail

$email) {

 $email

 ->dd()

 ;

 })

 ;

 }

}

Chapter 15: Email Twig Layout

New feature time! I want to send a reminder email to customers 1 week before their booked trip.

T minus 1 week to lift off people!

Symfony CLI Worker Issue

First though, we have a little problem with our Symfony CLI worker. Open

.symfony.local.yaml . Our messenger worker is watching the vendor directory for changes.

At least on some systems, there's just too many files in here to monitor and some weird things

happen. No big deal: remove vendor/ :

.symfony.local.yaml

1

 // ... lines 2 - 5

6

 // ... line 7

8

And since we changed the config, jump to your terminal and restart the webserver:

symfony server:stop

And:

symfony serve -d

Email Layout

Our new booking reminder email will have a template very similar to the booking confirmation

one. To reduce duplication, and keep our snazzy emails consistent, in templates/email/ ,

workers:

 messenger:

 watch: ['config', 'src', 'templates']

create a new layout.html.twig template that all our emails will extend.

Copy the contents of booking_confirmation.html.twig and paste here. Now, remove the

booking-confirmation-specific content and create an empty content block. I think it's fine to

keep our signature here.

templates/email/layout.html.twig

1

2

3

4

5

6

7

8

9

10

11

In booking_confirmation.html.twig , up top here, extend this new layout and add the

content block. Down below, copy the email-specific content and paste it inside that block.

Remove everything else.

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

 <container>

 {% block content %}{% endblock %}

 <row>

 <columns>

 <p>We can't wait to see you there,</p>

 <p>Your friends at Universal Travel</p>

 </columns>

 </row>

 </container>

{% endapply %}

templates/email/booking_confirmation.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Let's make sure the booking confirmation email still works - and we have tests for that! Back in

the terminal, run them with:

bin/phpunit

Green! That's a good sign. Let's be doubly sure by checking it in Mailtrap. In the app, book a

trip... and check Mailtrap. I still looks fantastic!

{% extends 'email/layout.html.twig' %}

{% block content %}

 <row>

 <columns>

 <spacer size="40"></spacer>

 <p class="accent-title">Get Ready for your trip to</p>

 <h1 class="trip-name">{{ trip.name }}</h1>

 <img

 class="trip-image float-center"

 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

 alt="{{ trip.name }}">

 </columns>

 </row>

 <row>

 <columns>

 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}

</p>

 </columns>

 </row>

 <row>

 <columns>

 <button class="expanded rounded center" href="{{ url('booking_show',

{uid: booking.uid}) }}">

 Manage Booking

 </button>

 <button class="expanded rounded center secondary" href="{{

url('bookings', {uid: customer.uid}) }}">

 My Account

 </button>

 </columns>

 </row>

{% endblock %}

Time to bang out the reminder email!

Booking Reminder Flag

After an email reminder is sent, we need to mark the booking so that we don't annoy the

customer with multiple reminders. Let's add a new flag for this to the Booking entity.

In your terminal, run:

symfony make:entity Booking

Oops!

symfony console make:entity Booking

Add a new field called reminderSentAt , type datetime_immutable , nullable? Yes. This is a

common pattern I use for these type of flag fields instead of a simple boolean . null means

false and a date means true . It works the same, but gives us a bit more info.

Hit enter to exit the command.

In the Booking entity... here's our new property, and down here, the getter and setter.

Finding Bookings to Remind

Next, we need a way to find all bookings that need a reminder sent. Perfect job for

BookingRepository ! Add a new method called findBookingsToRemind() , return type:

array . Add a docblock to show it returns an array of Booking objects:

src/Repository/BookingRepository.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 51

52

53

54

55

56

 // ... lines 57 - 65

66

67

Inside, return $this->createQueryBuilder() , alias b . Chain

->andWhere('b.reminderSentAt IS NULL') , ->andWhere('b.date <= :future') ,

->andWhere('b.date > :now') filling in the placeholders with

->setParameter('future', new \DateTimeImmutable('+7 days')) and

->setParameter('now', new \DateTimeImmutable('now')) . Finish with

->getQuery()->getResult() :

src/Repository/BookingRepository.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 54

55

56

57

58

59

60

61

62

63

64

65

66

67

Pending Reminder Booking Fixture

In AppFixtures , down here, we create some fake bookings. Add one that will for sure trigger a

reminder email to be sent: BookingFactory::createOne() , inside,

class BookingRepository extends ServiceEntityRepository

{

 /**

 * @return Booking[]

 */

 public function findBookingsToRemind(): array

 {

 }

}

class BookingRepository extends ServiceEntityRepository

{

 public function findBookingsToRemind(): array

 {

 return $this->createQueryBuilder('b')

 ->andWhere('b.reminderSentAt IS NULL')

 ->andWhere('b.date <= :future')

 ->andWhere('b.date > :now')

 ->setParameter('future', new \DateTimeImmutable('+7 days'))

 ->setParameter('now', new \DateTimeImmutable('now'))

 ->getQuery()

 ->getResult()

 ;

 }

}

'trip' => $arrakis, 'customer' => $clark and, this is the important part,

'date' => new \DateTimeImmutable('+6 days') :

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 87

88

89

90

91

92

93

94

Clearly between now and 7 days from now.

"Migration"

We made changes to the structure of our database. Normally, we should be creating a

migration... but, we aren't using migrations. So, we'll just force update the schema. In your

terminal, run:

symfony console doctrine:schema:update --force

Then, reload the fixtures:

symfony console doctrine:fixture:load

That all worked, great!

Next, we'll create a new reminder email and a CLI command to send them!

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager): void

 {

 BookingFactory::createOne([

 'trip' => $arrakis,

 'customer' => $clark,

 'date' => new \DateTimeImmutable('+6 days'),

]);

 }

}

Chapter 16: Email from CLI Command

We've done the prep work for our reminder email feature. Now, let's actually create and send

the emails!

Reminder Email Template

In templates/email , the new email template will be super similar to

booking_confirmation.html.twig . Copy that file and name it

booking_reminder.html.twig . Inside, I don't want to spend too much time on this, so just

change the accent title to say "Coming soon!":

templates/email/booking_reminder.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Ship it! Accidental space pun!

Send Reminder Command

The logic to send the emails needs to be something we can schedule to run every hour or every

day. Perfect job for a CLI command! At your terminal, run:

symfony make:command

{% extends 'email/layout.html.twig' %}

{% block content %}

 <row>

 <columns>

 <spacer size="40"></spacer>

 <p class="accent-title">Coming soon!</p>

 <h1 class="trip-name">{{ trip.name }}</h1>

 <img

 class="trip-image float-center"

 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"

 alt="{{ trip.name }}">

 </columns>

 </row>

 <row>

 <columns>

 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}

</p>

 </columns>

 </row>

 <row>

 <columns>

 <button class="expanded rounded center" href="{{ url('booking_show',

{uid: booking.uid}) }}">

 Manage Booking

 </button>

 <button class="expanded rounded center secondary" href="{{

url('bookings', {uid: customer.uid}) }}">

 My Account

 </button>

 </columns>

 </row>

{% endblock %}

Bah!

symfony console make:command

Call it: app:send-booking-reminders .

Go check it out! src/Command/SendBookingRemindersCommand.php . Change the description

to "Send booking reminder emails":

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 17

18

 // ... line 19

20

21

22

 // ... lines 23 - 70

In the constructor, autowire & set properties for BookingRepository ,

EntityManagerInterface and MailerInterface :

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 68

69

This command doesn't need any arguments or options, so remove the configure() method

entirely.

Clear out the guts of execute() . Start by adding a nice:

$io->title('Sending booking reminders') . Then, grab the bookings that need reminders

sent, with $bookings = $this->bookingRepo->findBookingsToRemind() .

#[AsCommand(

 description: 'Send booking reminder emails',

)]

class SendBookingRemindersCommand extends Command

class SendBookingRemindersCommand extends Command

{

 public function __construct(

 private BookingRepository $bookingRepo,

 private EntityManagerInterface $em,

 private MailerInterface $mailer,

) {

 parent::__construct();

 }

}

Easy Progress Bar

To be the absolute best, let's show a progress bar as we loop over the bookings. The $io

object has a trick for this. Write

foreach ($io->progressIterate($bookings) as $booking) . This handles all the boring

progress bar logic for us! Inside, we need to create a new email. In TripController , copy that

email - including these headers, and paste it here.

But we need to adjust this a bit: remove the attachment. And for the subject: replace

"Confirmation" with "Reminder". Above, add some variables for convenience:

$customer = $booking->getCustomer() and $trip = $booking->getTrip() . Down here,

keep the same metadata, but change the tag to booking_reminder . This will help us better

distinguish these emails in Mailtrap.

Oh, and of course, change the template to booking_reminder.html.twig .

Still in the loop, send the email with $this->mailer->send($email) and mark the booking as

having the reminder sent with

$booking->setReminderSentAt(new \DateTimeImmutable('now')) .

Perfect! Outside the loop, call $this->em->flush() to save the changes to the database.

Finally, celebrate with

$io->success(sprintf('Sent %d booking reminders', count($bookings))) .

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

class SendBookingRemindersCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface $output):

int

 {

 $io = new SymfonyStyle($input, $output);

 $io->title('Sending booking reminders');

 $bookings = $this->bookingRepo->findBookingsToRemind();

 foreach ($io->progressIterate($bookings) as $booking) {

 $trip = $booking->getTrip();

 $customer = $booking->getCustomer();

 $email = (new TemplatedEmail())

 ->to(new Address($customer->getEmail()))

 ->subject('Booking Reminder for '.$trip->getName())

 ->htmlTemplate('email/booking_reminder.html.twig')

 ->context([

 'customer' => $customer,

 'trip' => $trip,

 'booking' => $booking,

])

 ;

 $email->getHeaders()->add(new TagHeader('booking_reminder'));

 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking-

>getUid()));

 $email->getHeaders()->add(new MetadataHeader('customer_uid',

$customer->getUid()));

 $this->mailer->send($email);

 $booking->setReminderSentAt(new \DateTimeImmutable('now'));

 }

 $this->em->flush();

 $io->success(sprintf('Sent %d booking reminders', count($bookings)));

 return Command::SUCCESS;

 }

}

Testing time! Pop over to your terminal. To be sure we have a booking that needs a reminder

sent, reload the fixtures with:

symfony console doctrine:fixture:load

Now, run our new command!

symfony console app:send-booking-reminders

Nice, 1 reminder sent! And the output will impress our colleagues! Before we check Mailtrap, run

the command again:

symfony console app:send-booking-reminders

"Sent 0 booking reminders". Perfect! Our logic to mark bookings as having reminders sent

works!

Now check Mailtrap... here it is! As expected, it looks super similar to our confirmation email but,

it says "Coming soon!" here: it's using the new template.

X-Tag and X-Metadata

When using "Mailtrap Testing", Mailer tags and metadata are not converted to Mailtrap

categories and custom variables like they are when sent in production. But you can still make

sure they're being sent! Click this "Tech Info" tab and scroll down a bit. When Mailer doesn't

know how to convert tags and metadata, it adds them as these generic custom headers: X-Tag

and X-Metadata .

Sure enough, X-Tag is booking_reminder . Awesome, that's what we expect too!

Ok, new feature? Check! Test for the new feature? That's next!

Chapter 17: Test for CLI Command

The captain is tired of people running after the rocket because they show up late! That's why we

created a command to send reminder emails! Problem solved! Now let's write a test to ensure it

keeps working. "New feature, new test", that's my motto!

Jump over to your terminal and run:

symfony console make:test

Type? KernelTestCase . Name? SendBookingRemindersCommandTest .

SendBookingRemindersCommandTest

In our IDE, the new class was added to tests/ . Open it up and move the class to a new

namespace: App\Tests\Functional\Command , to keep things organized.

Perfect. First, clear out the guts and add some behavior traits:

use ResetDatabase, Factories, InteractsWithMailer :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 9

10

11

12

 // ... lines 13 - 22

23

Stub out two tests: public function testNoRemindersSent() with

$this->markTestIncomplete() and public function testRemindersSent() . Also mark it

incomplete:

class SendBookingRemindersCommandTest extends KernelTestCase

{

 use ResetDatabase, Factories, InteractsWithMailer;

}

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 13

14

15

16

17

18

19

20

21

22

23

Back in the terminal run the tests with:

bin/phpunit

Testing TODO List

Check it out, our original two tests are passing, the two dots, and these I's are the new

incomplete tests. I love this pattern: write test stubs for a new feature, then make a game of

removing the incompletes one-by-one until they're all gone. Then, the feature is done!

Symfony has some out-of-the-box tooling for testing commands, but I like to use a package that

wraps these up into a nicer experience. Install it with:

zenstruck/console-test

composer require --dev zenstruck/console-test

To enable this package's helpers, add a new behavior trait to our test: InteractsWithConsole :

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testNoRemindersSent()

 {

 $this->markTestIncomplete();

 }

 public function testRemindersSent()

 {

 $this->markTestIncomplete();

 }

}

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 26

27

We're ready to knock down those I's!

testNoRemindersSent()

The first test is easy: we want to ensure that, when there's no bookings to remind, the command

doesn't send any emails. Write $this->executeConsoleCommand() and just the command

name: app:send-booking-reminders . Ensure the command ran successfully with

->assertSuccessful() and ->assertOutputContains('Sent 0 booking reminders') :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 26

27

testRemindersSent()

Arrange

On to the next test! This one is more involved: we need to create a booking that is eligible for a

reminder. Create the booking fixture with $booking = BookingFactory::createOne() . Pass

an array with 'trip' => TripFactory::new() , and inside that, another array with

'name' => 'Visit Mars' , 'slug' => 'iss' (to avoid the image issue). The booking also

class SendBookingRemindersCommandTest extends KernelTestCase

{

 use ResetDatabase, Factories, InteractsWithMailer, InteractsWithConsole;

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testNoRemindersSent()

 {

 $this->executeConsoleCommand('app:send-booking-reminders')

 ->assertSuccessful()

 ->assertOutputContains('Sent 0 booking reminders')

 ;

 }

}

needs a customer: 'customer' => CustomerFactory::new() . All we care about is the

customer's email: 'email' => 'steve@minecraft.com' . Finally, the booking date:

'date' => new \DateTimeImmutable('+4 days') :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 56

57

58

Phew! We have a booking in the database that needs a reminder sent. This test's setup, or

arrange step, is done.

Pre-Assertion

Add a pre-assertion to ensure this booking hasn't had a reminder sent:

$this->assertNull($booking->getReminderSentAt()) :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 37

38

 // ... lines 39 - 56

57

58

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $booking = BookingFactory::createOne([

 'trip' => TripFactory::new([

 'name' => 'Visit Mars',

 'slug' => 'iss',

]),

 'customer' => CustomerFactory::new(['email' =>

'steve@minecraft.com']),

 'date' => new \DateTimeImmutable('+4 days'),

]);

 }

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->assertNull($booking->getReminderSentAt());

 }

}

Act

Now for the act step: $this->executeConsoleCommand('app:send-booking-reminders')

->assertSuccessful()->assertOutputContains('Sent 1 booking reminders') :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 39

40

41

42

43

 // ... lines 44 - 56

57

58

Assert

Onto the assert phase to ensure the email was sent. In BookingTest , copy the email assertion

and paste it here. Make a few adjustments: the email is steve@minecraft.com , subject is

Booking Reminder for Visit Mars and this email doesn't have an attachment, so remove

that assertion entirely:

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->executeConsoleCommand('app:send-booking-reminders')

 ->assertSuccessful()

 ->assertOutputContains('Sent 1 booking reminders')

 ;

 }

}

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 56

57

58

Finally, write an assertion that the command updated the booking in the database.

$this->assertNotNull($booking->getReminderSentAt()) :

tests/Functional/Command/SendBookingRemindersCommandTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 55

56

57

58

Moment of truth! Run the tests:

bin/phpunit

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->mailer()

 ->assertSentEmailCount(1)

 ->assertEmailSentTo('steve@minecraft.com', function(TestEmail $email)

{

 $email

 ->assertSubject('Booking Reminder for Visit Mars')

 ->assertContains('Visit Mars')

 ->assertContains('/booking/'.BookingFactory::first()-

>getUid())

 ;

 })

 ;

 }

}

class SendBookingRemindersCommandTest extends KernelTestCase

{

 public function testRemindersSent()

 {

 $this->assertNotNull($booking->getReminderSentAt());

 }

}

All green!

Outside-In Testing

I find these type of outside-in tests really fun and easy to write because you don't have to worry

too much about testing the inner logic and they mimic how a user interacts with your app. It's no

accident that the assertions are focused on what the user should see and some high level post-

interaction checks, like checking something in the database.

Now that we have tests for both of our email sending paths, let's take a victory lap & refactor

with confidence to remove duplication.

Chapter 18: Email Factory Service

Our app sends two emails: in SendBookingRemindersCommand , and

TripController::show() . There is... a lot of duplication here. It hurts my eyes! But no

worries! We can reorganize this into an email factory service. And because we have tests

covering both emails, we can refactor and be confident that we haven't broken anything. I can't

say it enough: I love tests!

BookingEmailFactory

Start by creating a new class: BookingEmailFactory in the App\Email namespace. Add a

constructor, copy the $termsPath argument from TripController::show() , paste it here,

and make it a private property:

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

 // ... lines 19 - 54

55

Now, stub out two factory methods: public function createBookingConfirmation() ,

which will accept Booking $booking , and return TemplatedEmail . Then,

public function createBookingReminder(Booking $booking) also returning a

TemplatedEmail :

class BookingEmailFactory

{

 public function __construct(

 #[Autowire('%kernel.project_dir%/assets/terms-of-service.pdf')]

 private string $termsPath,

) {

 }

}

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

 // ... lines 22 - 25

26

 // ... line 27

28

29

 // ... lines 30 - 33

34

 // ... lines 35 - 54

55

Create a method to house that darn duplication: private function createEmail() , with

arguments Booking $booking and string $tag that returns a TemplatedEmail :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 35

36

37

 // ... lines 38 - 53

54

55

Jump to TripController::show() , copy all the email creation code, and paste it here. Up top,

we need two variables: $customer = $booking->getCustomer() and

$trip = $booking->getTrip() . Remove attachFromPath() , subject() , and

htmlTemplate() . In this TagHeader , use the passed $tag variable. We can leave the

metadata the same. Finally, return the $email :

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 }

 public function createBookingReminder(Booking $booking): TemplatedEmail

 {

 }

}

class BookingEmailFactory

{

 private function createEmail(Booking $booking, string $tag): TemplatedEmail

 {

 }

}

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

With our shared logic in place, use it in createBookingConfirmation() . Write

return $this->createEmail() , passing the $booking variable and booking for the tag.

Now, ->subject() , copy this from TripController::show() , changing the $trip variable

to $booking->getTrip() . Finally,

->htmlTemplate('email/booking_confirmation.html.twig') :

class BookingEmailFactory

{

 private function createEmail(Booking $booking, string $tag): TemplatedEmail

 {

 $customer = $booking->getCustomer();

 $trip = $booking->getTrip();

 $email = (new TemplatedEmail())

 ->to(new Address($customer->getEmail()))

 ->context([

 'customer' => $customer,

 'trip' => $trip,

 'booking' => $booking,

])

 ;

 $email->getHeaders()->add(new TagHeader($tag));

 $email->getHeaders()->add(new MetadataHeader('booking_uid', $booking-

>getUid()));

 $email->getHeaders()->add(new MetadataHeader('customer_uid', $customer-

>getUid()));

 return $email;

 }

}

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

22

23

24

25

26

 // ... lines 27 - 54

55

For createBookingReminder() , copy the insides of createBookingConfirmation() and

paste here. Change the tag to booking_reminder , the subject to Booking Reminder , and the

template to email/booking_reminder.html.twig :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

22

23

24

25

26

 // ... lines 27 - 54

55

The Refactor

Now the fun part! Using our factory and removing a whole wack of code!

In TripController::show() , instead of injecting $termsPath , inject

BookingEmailFactory $emailFactory :

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 return $this->createEmail($booking, 'booking')

 ->subject('Booking Confirmation for '.$booking->getTrip()->getName())

 ->htmlTemplate('email/booking_confirmation.html.twig')

 ;

 }

}

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 return $this->createEmail($booking, 'booking')

 ->subject('Booking Confirmation for '.$booking->getTrip()->getName())

 ->htmlTemplate('email/booking_confirmation.html.twig')

 ;

 }

}

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 35

36

37

 // ... lines 38 - 58

59

60

Delete all the email creation code and inside $mailer->send() , write

$emailFactory->createBookingConfirmation($booking) :

src/Controller/TripController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 52

53

 // ... lines 54 - 58

59

60

Over in SendBookingRemindersCommand , again, remove all the email creation code. Up in the

constructor, autowire private BookingEmailFactory $emailFactory :

final class TripController extends AbstractController

{

 public function show(

 BookingEmailFactory $emailFactory,

): Response {

 }

}

final class TripController extends AbstractController

{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $mailer->send($emailFactory->createBookingConfirmation($booking));

 }

 }

}

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 18

19

20

21

 // ... lines 22 - 24

25

26

 // ... line 27

28

 // ... lines 29 - 48

49

Down here, inside $this->mailer->send() , write

$this->emailFactory->createBookingReminder($booking) :

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

31

 // ... lines 32 - 37

38

39

 // ... line 40

41

 // ... lines 42 - 47

48

49

Test It

Oh yeah, that felt good! But did we break anything? We Canadians are known for being a bit

wild. Check by running the tests:

bin/phpunit

class SendBookingRemindersCommand extends Command

{

 public function __construct(

 private BookingEmailFactory $emailFactory,

) {

 }

}

class SendBookingRemindersCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface $output):

int

 {

 foreach ($io->progressIterate($bookings) as $booking) {

 $this->mailer->send($this->emailFactory-

>createBookingReminder($booking));

 }

 }

}

Uh oh, a failure! Good thing we have these tests, eh?

The failure comes from BookingTest :

“Message does not include file with filename [Terms of Service.pdf].”

Fix It

Easy fix! During our refactor, I forgot to attach the thrilling terms of service PDF to the booking

confirmation email. And our customers depend on that. Find

BookingEmailFactory::createBookingConfirmation() , and add

->attachFromPath($this->termsPath, 'Terms of Service.pdf') :

src/Email/BookingEmailFactory.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 19

20

21

22

 // ... lines 23 - 24

25

26

27

 // ... lines 28 - 55

56

Re-run the tests:

bin/phpunit

Passing! Successful refactor? Check!

Next, let's switch gears a bit and dive into two new Symfony components to consume the email

webhook events from Mailtrap.

class BookingEmailFactory

{

 public function createBookingConfirmation(Booking $booking): TemplatedEmail

 {

 return $this->createEmail($booking, 'booking')

 ->attachFromPath($this->termsPath, 'Terms of Service.pdf')

 ;

 }

}

Chapter 19: The Webhook Component for Email

Events

In Mailtrap, when we send emails in production, remember that we can check each email: was it

sent, delivered, opened, bounced (which is important!) and more. Mailtrap lets us set a webhook

URL so it can send info about these events to us.

Webhook & RemoteEvent Components

As a bonus, we get to discover two new Symfony components! Find your terminal and install

them:

composer require webhook remote-event

The webhook component gives us a single endpoint to send all webhooks to. It parses the data

sent to us - called the payload, converts it to a remote event object, and sends it to a consumer.

You can think of remote events as similar to Symfony events. Instead of your app dispatching an

event, a third-party service does it - hence remote event. And instead of event listeners, we say

that remote events have consumers.

Run

git status

to see what the recipe added: config/routes/webhook.yaml . Cool! That adds the webhook

controller. Check out the route with:

symfony console debug:route webhook

Check the first one. The path is /webhook/{type} . So now we need to configure some sort of

a type.

3rd party webhooks - like from Mailtrap or a payment processor or a supernova alert system -

can send us wildly different payloads, we typically need to create our own parsers and remote

events. Since email events are pretty standard, Symfony provides some out-of-the-box remote

events for these: MailerDeliveryEvent and MailerEngagementEvent . Some mailer bridges,

including the Mailtrap bridge we're using, provide parsers for each service's webhook payload to

create these objects. We just need to set it up.

Mailtrap Parser Configuration

In config/packages/ , create a webhook.yaml file. Add: framework , webhook , routing ,

mailtrap (this is the type used in the URL), and then service . To figure out the Mailtrap

parser service id, pop over to the Symfony Webhook documentation. Find the service id for the

Mailtrap parser, copy it... and paste it here:

config/packages/webhook.yaml

1

2

3

4

5

EmailEventConsumer

Now we need a consumer. Create a new class called EmailEventConsumer in the

App\Webhook namespace. This needs to implement ConsumerInterface from RemoteEvent

Add the necessary consume() method. To tell Symfony which webhook type we want this to

consume, add the #[AsRemoteEventConsumer] attribute with mailtrap :

framework:

 webhook:

 routing:

 mailtrap:

 service: mailer.webhook.request_parser.mailtrap

https://symfony.com/doc/current/webhook.html

src/Webhook/EmailEventConsumer.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 16

17

18

 // ... line 19

20

21

Above consume() , add a docblock to help our IDE:

@param MailerDeliveryEvent|MailerEngagementEvent $event :

src/Webhook/EmailEventConsumer.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

 // ... line 19

20

21

These are the generic mailer remote events Symfony provides. Inside, write $event-> to see

the methods available.

In a real app, this would be where you'd do something with these events like save them to the

database or notify an admin if an email bounced. Actually if an email bounces a few times, you

may want to update something to prevent trying again as this can hurt your email reliability. But

for our purposes, just dump($event) :

#[AsRemoteEventConsumer('mailtrap')]

class EmailEventConsumer implements ConsumerInterface

{

 public function consume(RemoteEvent $event): void

 {

 }

}

class EmailEventConsumer implements ConsumerInterface

{

 /**

 * @param MailerDeliveryEvent|MailerEngagementEvent $event

 */

 public function consume(RemoteEvent $event): void

 {

 }

}

src/Webhook/EmailEventConsumer.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 16

17

18

19

20

21

Asynchronous Consumers

One last thing: the webhook controller sends the remote event to the consumer via Symfony

Messenger, inside of a message class called ConsumeRemoteEventMessage .

To handle this asynchronously & keep your webhook responses fast, in

config/packages/messenger.yaml , under routing , add

Symfony\Component\RemoteEvent\Messenger\ConsumeRemoteEventMessage and send it to

our async transport:

config/packages/messenger.yaml

1

2

 // ... lines 3 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 25

Ok! We're ready to demo this webhook. That's next!

class EmailEventConsumer implements ConsumerInterface

{

 public function consume(RemoteEvent $event): void

 {

 dump($event);

 }

}

framework:

 messenger:

 routing:

 'Symfony\Component\RemoteEvent\Messenger\ConsumeRemoteEventMessage':

async

Chapter 20: Demoing our Webhook via a

Wormhole

Time to test-drive the Mailtrap webhook!

First, we need to switch our development environment to send in production again. In

.env.local , switch to your production Mailtrap MAILER_DSN and in config/services.yaml ,

make sure the global_from_email 's domain is the one you configured with Mailtrap.

Create a Webhook on Mailtrap

Over in Mailtrap, go to "Settings" > "Webhooks" and click "Create New Webhook". First thing we

need is a Webhook URL. Hmm, this needs to be /webhook/mailtrap but it needs to be an

absolute URL. In production, this wouldn't be a problem: it would be your production domain. In

development, it's a bit trickier. We can't just use the URL the Symfony CLI server gives us...

ngrok

Somehow we need to expose our local Symfony server to the public. And there's a neat tool that

does exactly this: ngrok. Create a free account, log in, and follow the instructions to configure

the ngrok CLI client.

Over in the terminal, restart with Symfony webserver:

symfony server:stop

Oh, it isn't running. Start it with:

symfony serve -d

https://ngrok.com/

Expose the Local Server

This is the URL we need to expose, copy it and run:

ngrok http <paste-url>

Paste the URL, and hit enter. Wormhole open!

This crazy looking "Forwarding" URL is the public URL. Copy and paste it into your browser.

This warning just lets you know you're running through a tunnel. Click "Visit Site" to see your

app. Cool!

Mailtrap Webhook URL

Back in Mailtrap, paste this URL and add /webhook/mailtrap to the end. For "Select Stream",

choose "Transactional". For "Select Domain", choose your configured Mailtrap domain. Go nuts

and select all events, then "Save".

Go back into the new webhook and click "Run Test".

“Webhook URL test completed successfully”

That's a good sign!

Dump Server

Remember in our EmailEventConsumer , we're just dumping the event? Since hitting the

webhook happens behind the scenes, we can't see the dump... or can we? In a new terminal

run:

symfony console server:dump

This hooks into our app and any dumps will be output here live. Clever!

In your browser, book a trip, remember to use a real email address (but not mine!)

MailerDeliveryEvent

Moment of truth! Back in the terminal running the dump server, wait a bit... Alright! We have a

dump! Scroll up a bit... This is a MailerDeliveryEvent for delivered . We see the internal ID

Mailtrap assigned, the raw payload, date, recipient email, even our custom metadata and tag.

MailerEngagementEvent

Let's try an engagement event! In your email client, open the email.

Back in the dump server terminal, wait a bit... and boom! Another event! This time, it's a

MailerEngagementEvent for open . This is cool!

Alright space cadets, that's it for this course! We managed to cover almost all of Symfony Mailer

features without SPAM'ing our users. Win!

'Til next time, happy coding!

Chapter 21: Bonus: Scheduling our Email

Command

Hey! You're still here? Great! I have a bonus chapter for you.

One of our interns, Hugo, is complaining that he has to log in to our server and run the booking

reminders command, every night at midnight. I don't know what the problem is - isn't that what

interns are for?!

Installing Symfony Scheduler

But... I guess to be more robust, we should automate this in case he's sick or forgets. We could

set up a CRON job... but that wouldn't be nearly as cool or flexible as using the Symfony

Scheduler component. It's perfect for this. At your terminal, run:

composer require scheduler

Think of Symfony Scheduler as an add-on for Messenger. It provides its own special transport

that, instead of a queue, determines if it's time to run a job. Each job, or task, is a messenger

message, so it requires a message handler. You consume the schedule, like any messenger

transport with the messenger:consume command.

make:schedule

Create a schedule with:

symfony console make:schedule

 Note

symfony/scheduler now has an official recipe that creates src/Schedule.php for you, so

this step is no longer required.

Transport name? Use default . Schedule name? Use the default: MainSchedule . Exciting!

It's possible to have multiple schedules, but for most apps, a single schedule is enough.

Configuring the Schedule

Check it out: src/Scheduler/MainSchedule.php . It's a service that implements

ScheduleProviderInterface and is marked with the #[AsSchedule] attribute with the name

default . The maker automatically injected the cache, and we'll see why in a second. The

getSchedule() method is where we configure the schedule and add tasks.

This ->stateful() that we're passing $this->cache to is important. If the process that's

running this schedule goes down - like our messenger workers stop temporarily during a server

restart - when it comes back online, it will know all the jobs it missed and run them. If a task was

supposed to run 10 times while it was down, it will run them all. That might not be desired so

add ->processOnlyLastMissedRun(true) to only run the last one:

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... lines 23 - 29

30

31

32

33

Bulletproof!

For more complex apps, you might be consuming the same schedule on multiple workers. Use

->lock() to configure a lock so that only one worker runs the task when its due.

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->processOnlyLastMissedRun(true)

 ;

 }

}

Adding a Task

Time to add our first task! In ->add() , write RecurringMessage:: . There are a few different

ways to trigger a task. I like to use cron() . I want this task to run at midnight, every day, so use

0 0 * * * . The second argument is the messenger message to dispatch. We want to run the

SendBookingRemindersCommand , but we can't add it here directly. Instead, use

new RunCommandMessage() and pass the command name: app:send-booking-reminders

(you can pass arguments and options here too):

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 30

31

32

33

Debugging the Schedule

At your terminal, list our schedule's tasks by running:

symfony console debug:schedule

Oh, we have an error.

“You cannot use "CronExpressionTrigger" as the "cron expression" package is not installed”

Easy fix: copy the install command and run it:

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->add(

 RecurringMessage::cron(

 '0 0 * * *',

 new RunCommandMessage('app:send-booking-reminders')

)

)

 ;

 }

}

composer require dragonmantank/cron-expression

Cool name! Now run the debug command again:

symfony console debug:schedule

Here we go, the output's a little wonky on this small screen, but you can see the cron

expression, the message (and command), and the next runtime: tonight at midnight.

#[AsCronTask]

There's an alternate to schedule commands. In MainSchedule::getSchedule() , delete the

->add() . Then jump over to our SendBookingRemindersCommand and add another attribute:

#[AsCronTask()] passing: 0 0 * * * :

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 52

In your terminal, debug the schedule again to make sure it's still listed:

symfony console debug:schedule

And it is, pretty neat.

If you have a lot of tasks scheduled at the same time, like midnight, you might see a CPU spike

at this time on your server. Unless it's super important that tasks run at a very specific time, you

should spread them out. One way to do this of course, is to manually make sure they all have

different cron expressions but... that's a bore.

#[AsCronTask('0 0 * * *')]

class SendBookingRemindersCommand extends Command

Hashed Cron Expressions

For our app:send-booking-reminders command, I don't care when it runs, just that it runs

once a day. We can use a hashed cron expression. In our expression, replace the 0's with #'s.

The # means "pick a random, valid value for this part":

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 52

Debug the schedule again:

symfony console debug:schedule

It's set to run at 5:11am. Run the command again:

symfony console debug:schedule

It's still 5:11am. Ok, so it's not truly random, the values are calculated deterministically based on

the message details. In our case, the string app:send-booking-reminders . A different

command with the same hash expression will have different values.

The Scheduler documentation has all the details on this. There's even aliases for common

hashes. For instance, #mignight will pick a time between midnight and 3am. Use that for our

expression:

src/Command/SendBookingRemindersCommand.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 52

and debug the schedule again:

#[AsCronTask('# # * * *')]

class SendBookingRemindersCommand extends Command

#[AsCronTask('#midnight')]

class SendBookingRemindersCommand extends Command

symfony console debug:schedule

Oops, a typo, I'll fix that and run again:

symfony console debug:schedule

It's now scheduled to run every day at 2:11am. Cool!

Running the Schedule

We've configured our schedule, but how do we run it? Remember, schedules are just

Messenger transports. The transport name is scheduler_<schedule_name> , in our case,

scheduler_default . Run it with:

symfony console messenger:consume scheduler_default

On your production server, configure this to run in the background just like a normal messenger

worker.

Alright, that's a quick rundown of the Scheduler component. Check out the documentation to

learn more about it!

Happy coding and happy scheduling!

Chapter 22: Bonus: Messenger Monitor Bundle

Hey, you're still here? Great! Let's do one final bonus chapter!

When you have a bunch of messages and schedules running in the background, it can be hard

to know what's happening. Are my workers running? Is my schedule running? And where is it

running to? What about failures? I mean, we have logs, but... logs. Instead, let's explore a cool

bundle that gives us a UI to get some visibility on what's going on with our army of worker

robots!

Installation

At your terminal, run:

composer require zenstruck/messenger-monitor-bundle

It's asking to install a recipe, say yes. Jump back to our IDE and see what was added.

First, a src/Schedule.php was added. This is unrelated to this bundle. Since the last chapter,

where we added the Symfony Scheduler , it now has an official recipe that adds a default

schedule. Since we already have one, delete this file.

MessengerMonitorController

A new controller was added: src/Controller/Admin/MessengerMonitorController.php .

This is a stub to enable the bundle's UI. It extends this BaseMessengerMonitorController

from the bundle and adds a route prefix of /admin/messenger . It also adds this

#[IsGranted('ROLE_ADMIN')] attribute. This is super important for your real apps. You only

want site admins to access the UI as it shows sensitive information. We don't have security

configured in this app, so I'll just remove this line:

src/Controller/Admin/MessengerMonitorController.php

 // ... lines 1 - 7

8

9

10

11

ProcessedMessage

src/Entity/ProcessedMessage.php is a new entity added by the recipe. This is also a stub

that extends this BaseProcessedMessage class and adds an ID column. This is used to track

the history of your messenger messages. For every message processed, a new one of these

entities is persisted. Don't worry though, this is done in your worker process, so it won't slow

down your app's frontend.

Since we have a new entity, we should be adding a migration, but I don't have migrations

configured for this project. So in your terminal, run:

symfony console doctrine:schema:update --force

Install Optional Dependencies

Before we check out the UI, the bundle has two optional dependencies that I want to install.

First:

composer require knplabs/knp-time-bundle

This makes the UI's timestamps human-readable - like "4 minutes ago". Next:

composer require lorisleiva/cron-translator

#[Route('/admin/messenger')]

class MessengerMonitorController extends BaseMessengerMonitorController

{

}

Since we're using cron expressions for our scheduled tasks, this package makes them human-

readable. So instead of "11 2 * * *", it will display this as "every day at 2:11 AM". Slick!

We're ready to go! Start the server with:

symfony serve -d

Dashboard

Jump over to the browser and visit: /admin/messenger . This is the Messenger Monitor

dashboard!

This first widget shows running workers and their status. We can see we have 1 worker running

for our async transport. This is the one we configured to run with our Symfony CLI server.

Below, we see our available transports, how many messages are queued, and how many

workers are running them. Notice it shows our scheduler_default transport as not running.

This is expected, as we didn't configure it to run locally.

Below that, we have a snapshot of statistics for the last 24 hours.

On the right, we will see the last 15 messages processed. This is of course empty right now.

All these widgets autorefresh every 5 seconds.

Schedule

Let's create some history! In the top bar, click on Schedule (note the icon is red to further

indicate the schedule isn't running). This is kind of a "more advanced debug:schedule

command". We see our single scheduled task: RunCommandMessage for

app:send-booking-reminders . It uses a CronExpressionTrigger to run "every day at 2:11

AM". 0 runs so far but we can run it manually by clicking "Trigger"... and selecting our async

transport.

"Details"

Jump back to the dashboard. It ran successfully, took 58ms, and consumed 31MB of memory.

Click "Details" to see even more information! "Time in Queue", "Time to Handle", timestamps...

lots of good stuff.

These tags are super helpful for filtering messages. You can add your own tags but some are

added by the bundle: manual , because we "manually" ran a scheduled task, schedule ,

because it was a scheduled task, schedule:default , because it's part of our default schedule.

This schedule:default:<hash> is the unique ID for this scheduled task.

On the right here is the "result" of the message "handler" - in this case,

RunCommandMessageHandler . Different handlers have different results (some have none). For

this one, the result is the command's exit code and output.

“Sent 0 booking reminders”

Let's run this task again, but this time, with a booking that needs a reminder sent. Back in your

terminal, reload our fixtures:

symfony console doctrine:fixtures:load

Back to the browser. The dashboard is empty now but that's expected: reloading our fixtures

also cleared our message history. Click "Schedule", then "Trigger" on our "async" transport.

Back on the dashboard, we have 2 messages now. RunCommandMessage again but click its

"Details":

“Sent 1 booking reminders”

Now our second message: SendEmailMessage . This was dispatched by the command. Click its

"Details" to see email-related information for its results. Note the tag, booking_reminder . The

bundle automatically detected that we were sending an email with a "Mailer" tag, so it added it

here.

Transports

In the top menu, you can click "Transports" to see more details on each one's pending

messages (if applicable). The failed transport shows failed messages and gives you the

option to retry or remove them, right from the UI!

History

"History" is where we can filter messages: Period, limit to a specific date range. Transport, limit

to a specific transport. Status, show just successes or failures. Schedule, whether to include or

exclude messages triggered by a schedule. Message type, filter by message class.

Statistics

"Statistics" shows a per-message-class stat summary and can be limited to a specific date-

range.

Purge Message History

As you can probably imagine, if your app executes a lot of messages, our history table can get

really big. The bundle provides some commands to purge older messages.

In the bundle docs, scroll down to "messenger:monitor:purge" and copy the command. We need

to schedule this... but how? With Symfony Scheduler of course! Open

src/Scheduler/MainSchedule.php and add a new task with

->add(RecurringMessage::cron()) . Use #midnight so it runs daily between midnight and

3am. Add new RunCommandMessage() and paste the command. Add the

--exclude-schedules option:

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... lines 23 - 24

25

26

27

28

29

 // ... lines 30 - 34

35

36

37

This will purge messages older than 30 days except messages triggered by a schedule. This is

important because your scheduled tasks might run once a month or even once a year. This

enables you to keep a history of them regardless of their frequency.

Purge Schedule History

We should still clean these up though. So, back in the docs, copy a second command:

messenger:monitor:schedule:purge . And in the schedule, add it with

->add(RecurringMessage::cron('#midnight', new RunCommandMessage())) and paste:

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->add(RecurringMessage::cron(

 '#midnight',

 new RunCommandMessage('messenger:monitor:purge --exclude-

schedules'),

)

)

 ;

 }

}

src/Scheduler/MainSchedule.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

 // ... lines 23 - 29

30

31

32

33

34

35

36

37

This will purge the history of scheduled messages skipped by the command above but keep the

last 10 runs of each.

Let's make sure these tasks were added to our schedule. Back in the browser, click "Schedule"

and here we go: our two new tasks.

For the task we ran manually earlier, we can see the last run summary, details, and even its

history.

Ok friends! That's a quick run-through of the zenstruck/messenger-monitor-bundle . Check

out the docs for more information on all it's features.

'Til next time, happy monitoring!

final class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())

 ->add(RecurringMessage::cron(

 '#midnight',

 new RunCommandMessage('messenger:monitor:schedule:purge'),

)

)

 ;

 }

}

https://github.com/zenstruck/messenger-monitor-bundle

With <3 from SymfonyCasts

