
Mailer and Webhook with

Mailtrap

Chapter 1: Installing the Mailer

Hey friends! Welcome to "Symfony Mailer with Mailtrap"! I'm Kevin, and I'll be your postmaster for

this course, which is all about sending beautiful emails with Symfony's Mailer component, including

adding HTML, CSS - and configuring for production. On that note, there are many services you can

use on production to actually send your emails. This course will focus on one called Mailtrap: (1)

because it's great and (2) because it offers a fantastic way to preview your emails. But don't worry,

the concepts we'll cover are universal and can be applied to any email service. And bonus! We'll also

cover how to track email events like bounces, opens, and link clicks by leveraging some relatively

new Symfony components: Webhook and RemoteEvent.

Transactional vs Bulk Emails

Before we start spamming, ahem, delivering important info via email, we need to clarify something:

Symfony Mailer is for what's called transactional emails only. These are user-specific emails that

occur when something specific happens in your app. Things like: a welcome email after a user signs

up, an order confirmation email when they place an order, or even emails like a "your post was

upvoted" are all examples of transactional emails. Symfony Mailer is not for bulk or marketing

emails. Because of this, we don't need to worry about any kind of unsubscribe functionality. There

are specific services for sending bulk emails or newsletters, Mailtrap can even do this via their site.

Our Project

As always, to deliver the most bang for your screencast buck, you should totally code along with me!

Download the course code on this page. When you unzip the file, you'll find a start/ directory with

the code we'll start with. Follow the README.md file to get the app running. I've already done this and

ran symfony serve -d to start the web server.

Welcome to "Universal Travel": a travel agency where users can book trips to different galactic

locations. Here are the currently available trips. Users can already book these, but there are no

confirmation emails sent when they do. We're going to fix that! If I'm spending thousands of credits

on a trip to Naboo, I want to know that my reservation was successful!

Installing the Mailer Component

Step 1: let's install the Symfony Mailer! Open your terminal and run:

composer require mailer

The Symfony Flex recipe for mailer is asking us to install some Docker configuration. This is for a

local SMTP server to help with previewing emails. We're going to use Mailtrap for this so say "no".

Installed! Run:

git status

to see what we got. Looks like the recipe added some environment variables in .env and added the

mailer configuration in config/packages/mailer.yaml .

MAILER_DSN

In your IDE, open .env . The Mailer recipe added this MAILER_DSN environment variable. This is a

special URL-looking string that configures your mailer transport: how your emails are actually sent,

like via SMTP, Mailtrap, etc. The recipe defaults to null://null and is perfect for local

development and testing. This transport does nothing when an email is sent! It pretends to deliver

the email, but really sends it out an airlock. We'll preview our emails in a different way.

Ok! We're ready to send our first email! Let's do that next!

Chapter 2: Sending our First Email

Let's take a trip! "Visit Krypton", Hopefully it hasn't been destroyed yet! Without bothering to check,

let's book it! I'll use name: "Kevin", email: "kevin@example.com" and just any date in the future. Hit

"Book Trip".

This is the "booking details" page. Note the URL: it has a unique token specific to this booking. If a

user needs to come back here later, currently, they need to bookmark this page or Slack themselves

the URL if they're like me. Lame! Let's send them a confirmation email that includes a link to this

page.

I want this to happen after the booking is first saved. Open TripController and find the show()

method. This makes the booking: if the form is valid, create or fetch a customer and create a booking

for this customer and trip. Then we redirect to the booking details page. Delightfully boring so far, just

how I like my code, and weekends.

Inject MailerInterface

I want to send an email after the booking is created. Give yourself some room by moving each

method argument to its own line. Then, add MailerInterface $mailer to get the main service for

sending emails:

src/Controller/TripController.php

 // ... lines 1 - 17
18
19
 // ... lines 20 - 27
28
29
 // ... lines 30 - 33
34
35
 // ... lines 36 - 54
55
56

Create the Email

final class TripController extends AbstractController
{

 #[Route('/trip/{slug:trip}', name: 'trip_show')]
 public function show(

 MailerInterface $mailer,
): Response {

 }
}

After flush() , which inserts the booking into the database, create a new email object:

$email = new Email() (the one from Symfony\Component\Mime). Wrap it in parentheses so we

can chain methods. So what does every email need? A from email address: ->from() how about

info@univeral-travel.com . A to email address: ->to($customer->getEmail()) . Now, the

subject : ->subject('Booking Confirmation') . And finally, the email needs a body:

->text('Your booking has been confirmed') - good enough for now:

src/Controller/TripController.php

 // ... lines 1 - 18
19
20
 // ... lines 21 - 29
30
 // ... lines 31 - 35
36
 // ... lines 37 - 38
39
 // ... lines 40 - 48
49
50
51
52
53
54
 // ... lines 55 - 56
57
 // ... lines 58 - 62
63
64

Send the Email

Finish with $mailer->send($email) :

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())
 ->from('info@universal-travel.com')
 ->to($customer->getEmail())
 ->subject('Booking Confirmation')
 ->text('Your booking has been confirmed!')
 ;

 }

 }
}

src/Controller/TripController.php

 // ... lines 1 - 18
19
20
 // ... lines 21 - 29
30
 // ... lines 31 - 35
36
 // ... lines 37 - 38
39
 // ... lines 40 - 55
56
 // ... lines 57 - 58
59
 // ... lines 60 - 64
65
66

Let's test this out!

Back in our app, go back to the homepage and choose a trip. For the name, use "Steve", email,

"steve@minecraft.com", any date in the future, and book the trip.

Ok... this page looks exactly the same as before. Was an email sent? Nothing in the web debug

toolbar seems to indicate this...

The email was actually sent on the previous request - the form submit. That controller then

redirected us to this page. But the web debug toolbar gives us a shortcut to access the profiler for

the previous request: hover over 200 and click the profiler link to get there.

Email in the Profiler

Check out the sidebar - we have a new "Emails" tab! And it shows 1 email was sent. We did it! Click

it, and here's our email! The from, to, subject, and body are all what we expect.

Remember, we're using the null mailer transport, so this email wasn't actually sent, but it's super

cool we can still preview it in the profiler!

Though ... I think we both know this email... is... pretty crappy. It doesn't give any of the useful info!

No URL to the booking details page, no destination, no date, no nothing! It's so useless, I'm glad the

null transport is just throwing it out the space window.

Let's fix that next!

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $mailer->send($email);

 }

 }
}

Chapter 3: Better Email

I think you, me, anyone that's ever received an email, can agree that our first email stinks. It doesn't

provide any value. Let's improve it!

Address Object

First, we can add a name to the email. This will show up in most email clients instead of just the

email address: it just looks smoother. Wrap the from with new Address() , the one from

Symfony\Component\Mime . The first argument is the email, and the second is the name - how

about Universal Travel :

src/Controller/TripController.php

 // ... lines 1 - 19
20
21
 // ... lines 22 - 30
31
 // ... lines 32 - 36
37
 // ... lines 38 - 39
40
 // ... lines 41 - 49
50
51
 // ... lines 52 - 54
55
 // ... lines 56 - 59
60
 // ... lines 61 - 65
66
67

We can also wrap the to with new Address() . and pass $customer->getName() for the name:

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())
 ->from(new Address('info@universal-travel.com', 'Universal Travel'))

 ;

 }

 }
}

src/Controller/TripController.php

 // ... lines 1 - 19
20
21
 // ... lines 22 - 30
31
 // ... lines 32 - 36
37
 // ... lines 38 - 39
40
 // ... lines 41 - 49
50
 // ... line 51
52
 // ... lines 53 - 54
55
 // ... lines 56 - 59
60
 // ... lines 61 - 65
66
67

For the subject , add the trip name: 'Booking Confirmation for ' . $trip->getName() :

src/Controller/TripController.php

 // ... lines 1 - 19
20
21
 // ... lines 22 - 30
31
 // ... lines 32 - 36
37
 // ... lines 38 - 39
40
 // ... lines 41 - 49
50
 // ... lines 51 - 52
53
 // ... line 54
55
 // ... lines 56 - 59
60
 // ... lines 61 - 65
66
67

For the text body. We could inline all the text right here. That would get ugly, so let's use Twig! We

need a template. In templates/ , add a new email/ directory and inside, create a new file:

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->to(new Address($customer->getEmail()))

 ;

 }

 }
}

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->subject('Booking Confirmation for '.$trip->getName())

 ;

 }

 }
}

booking_confirmation.txt.twig . Twig can be used for any text format, not just html . A good

practice is to include the format - .html or .txt - in the filename. But Twig doesn't care about the

that - it's just to satisfy our human brains. We'll return to this file in a second.

Twig Email Template

Back in TripController::show() , instead of new Email() , use new TemplatedEmail() (the

one from Symfony\Bridge\Twig):

src/Controller/TripController.php

 // ... lines 1 - 19
20
21
 // ... lines 22 - 30
31
 // ... lines 32 - 36
37
 // ... lines 38 - 39
40
 // ... lines 41 - 49
50
 // ... lines 51 - 64
65
 // ... lines 66 - 70
71
72

Replace ->text() with ->textTemplate('email/booking_confirmation.txt.twig') :

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 }

 }
}

src/Controller/TripController.php

 // ... lines 1 - 19
20
21
 // ... lines 22 - 30
31
 // ... lines 32 - 36
37
 // ... lines 38 - 39
40
 // ... lines 41 - 49
50
 // ... lines 51 - 53
54
 // ... lines 55 - 59
60
 // ... lines 61 - 64
65
 // ... lines 66 - 70
71
72

To pass variables to the template, use ->context() with

'customer' => $customer, 'trip' => $trip, 'booking' => $booking :

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->textTemplate('email/booking_confirmation.txt.twig')

 ;

 }

 }
}

src/Controller/TripController.php

 // ... lines 1 - 19
20
21
 // ... lines 22 - 30
31
 // ... lines 32 - 36
37
 // ... lines 38 - 39
40
 // ... lines 41 - 49
50
 // ... lines 51 - 54
55
56
57
58
59
60
 // ... lines 61 - 64
65
 // ... lines 66 - 70
71
72

Note that we aren't technically rendering the Twig template here: Mailer will do that for us before it

sends the email.

This is normal, boring Twig code. Let's render the user's first name using a cheap trick, the trip

name, the departure date, and a link to manage the booking. We need to use absolute URLs in

emails - like https://univeral-travel.com/booking - so we'll leverage the url() Twig function instead

of path() : {{ url('booking_show', {'uid': booking.uid}) }} . End politely with,

Regards, the Universal Travel team :

templates/email/booking_confirmation.txt.twig

1
2
3
4
5
6
7
8
9

10

final class TripController extends AbstractController
{

 public function show(

): Response {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->context([
 'customer' => $customer,
 'trip' => $trip,
 'booking' => $booking,
])
 ;

 }

 }
}

Hey {{ customer.name|split(' ')|first }},

Get ready for your trip to {{ trip.name }}!

Departure: {{ booking.date|date('Y-m-d') }}

Manage your booking: {{ url('booking_show', {uid: booking.uid}) }}

Regards,
The Universal Travel Team

https://univeral-travel.com/booking

Email body done! Test it out. Back in your browser, choose a trip, name: Steve , email:

steve@minecraft.com , any date in the future, and book the trip. Open the profiler for the last

request and click the Emails tab to see the email.

Much better! Notice the From and To addresses now have names. And our text content is definitely

more valuable! Copy the booking URL and paste it into your browser to make sure it goes to the right

place. Looks like it, nice!

Next, we'll use Mailtrap's testing tool for a more robust email preview.

https://mailtrap.io/

Chapter 4: Previewing Emails with Mailtrap (Email
Testing)

Previewing emails in the profiler is okay for basic emails, but soon we'll add HTML styles and images

of space cats. To properly see how our emails look, we need a more robust tool. We're going to use

Mailtrap's email testing tool. This gives us a real SMTP server that we can connect to, but instead of

delivering emails to real inboxes, they go into a fake inbox that we can check out! It's like we send an

email for real, then hack that person's account to see it... but without the hassle or all that illegal

stuff!

Fake Inbox

Go to https://mailtrap.io and sign up for a free account. Their free tier plan has some limits but is

perfect for getting started. Once you're in, you'll be on their app homepage. What we're interested in

right now is email testing, so click that. You should see something like this. If you don't have an inbox

yet, add one here.

Open that shiny new inbox. Next, we need to configure our app to send emails via the Mailtrap

SMTP server. This is easy! Down here, under "Code Examples", click "PHP" then "Symfony". Copy

the MAILER_DSN .

MAILER_DSN for Fake Inbox

Because this is a sensitive value, and may vary between developers, don't add it to .env as that's

commited to git. Instead, create a new .env.local file at the root of your project. Paste the

MAILER_DSN here to override the value in .env .

We are set up for Mailtrap testing! That was easy! Test'r out!

Back in the app, book a new trip: Name: Steve , Email: steve@minecraft.com , any date in the

future, and... book! This request takes a bit longer because it's connecting to the external Mailtrap

SMTP server.

https://mailtrap.io/
https://mailtrap.io/

Email in Mailtrap

Back in Mailtrap, bam! The email's already in our inbox! Click to check it out. Here's a "Text" preview

and a "Raw" view. There's also a "Spam Analysis" - cool! "Tech Info" shows all the nerdy "email

headers" in an easy-to-read format.

These "HTML" tabs are greyed out because we don't have an HTML version of our email... yet...

Let's change that next!

Chapter 5: HTML-powered Emails

Emails should always have a plain-text version, but they can also have an HTML version. And that's

where the fun is! Time to make this email more presentable by adding HTML!

HTML Email Template

In templates/email/ , copy booking_confirmation.txt.twig and name it

booking_confirmation.html.twig . The HTML version acts a bit like a full HTML page. Wrap

everything in an <html> tag, add an empty <head> and wrap the content in a <body> . I'll also wrap

these lines in <p> tags to get some spacing... and a
 tag after "Regards," to add a line break.

This URL can now live in a proper <a> tag. Give yourself some room and cut "Manage your

booking". Add an <a> tag with the URL as the href attribute and paste the text inside.

templates/email/booking_confirmation.html.twig

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Finally, we need to tell Mailer to use this HTML template. In TripController::show() , above

->textTemplate() , add ->htmlTemplate() with email/booking_confirmation.html.twig :

<html>
<head></head>
<body>
<p>Hey {{ customer.name|split(' ')|first }},</p>

<p>Get ready for your trip to {{ trip.name }}!</p>

<p>Departure: {{ booking.date|date('Y-m-d') }}</p>

<p>

 Manage your booking

</p>

<p>
 Regards,

 The Universal Travel Team
</p>
</body>
</html>

src/Controller/TripController.php

 // ... lines 1 - 19
20
21
 // ... lines 22 - 30
31
 // ... lines 32 - 36
37
 // ... lines 38 - 49
50
 // ... lines 51 - 53
54
55
 // ... lines 56 - 60
61
 // ... lines 62 - 65
66
 // ... lines 67 - 71
72
73

Test it out by booking a trip: Steve , steve@minecraft.com , any date in the future, book... then

check Mailtrap. The email looks the same, but now we have an HTML tab!

Oh and the "HTML Check" is really neat. It gives you a gauge of what percentage of email clients

support the HTML in this email. If you didn't know, email clients are a pain in the butt: it's like the 90s

all over again with different browsers. This tool helps with that.

Back in the HTML tab, click the link to make sure it works. It does!

So our email now has both a text and HTML version but... it's kind of a drag to maintain both. Who

uses a text-only email client anyway? Probably nobody or a very low percentage of your users.

Automatically Generating Text Version

Let's try something: in TripController::show() , remove the ->textTemplate() line. Our email

now only has an HTML version.

Book another trip and check the email in Mailtrap. We still have a text version? It looks almost like

our text template but with some extra spacing. If you send an email with just an HTML version,

Symfony Mailer automatically creates a text version but strips the tags. This is a nice fallback, but it's

not perfect. See what's missing? The link! That's... kind of critical... The link is gone because it was in

the href attribute of the anchor tag. We lost it when the tags were stripped.

final class TripController extends AbstractController
{

 public function show(

): Response {

 $email = (new TemplatedEmail())

 ->htmlTemplate('email/booking_confirmation.html.twig')
 ->textTemplate('email/booking_confirmation.txt.twig')

 ;

 }

 }
}

So, do we need to always manually maintain a text version? Not necessarily. Here's a little trick.

HTML to Markdown

Over in your terminal, run:

composer require league/html-to-markdown

This is a package that converts HTML to markdown. Wait, what? Don't we usually convert markdown

to HTML? Yes, but for HTML emails, this is perfect! And guess what? There's nothing else we need

to do! Symfony Mailer automatically uses this package instead of just stripping tags if available!

Book yet another trip and check the email in Mailtrap. The HTML looks the same, but check the text

version. Our anchor tag has been converted to a markdown link! It's still not perfect, but at least it's

there! If you need full control, you'll need that separate text template, but, I think this is good enough.

Back in your IDE, delete booking_confirmation.txt.twig .

Next, we'll spice up this HTML with CSS!

Chapter 6: CSS in Email

CSS in email requires... some special care. But, pffff, we're Symfony developers! Let's recklessly go

forward and see what happens!

Add a CSS Class

In email/booking_confirmation.html.twig , add a <style> tag in the <head> and add a

.text-red class that sets the color to red :

templates/email/booking_confirmation.html.twig

1
2
3
4
5
6
7
8
 // ... lines 9 - 26
27

Now, add this class to the first <p> tag:

templates/email/booking_confirmation.html.twig

 // ... lines 1 - 8
9

10
 // ... lines 11 - 25
26
 // ... lines 27 - 28

In our app, book another trip for our good friend Steve. He's really racking up the parsecs! Do you

think he'd be interested in the platinum Universal Travel credit card?

In Mailtrap, check the email. Ok, this text is red like we expect... so what's the problem? Check the

HTML Source for a hint. Hover over the first error:

“The style tag is not supported in all email clients.”

<html>
<head>
 <style>
 .text-red {
 color: red;
 }
 </style>
</head>

</html>

<body>
<p class="text-red">Hey {{ customer.name|split(' ')|first }},</p>

</body>

The more important problem is the class attribute: it's also not supported in all email clients. We

can travel to space but can't use CSS classes in emails? Yup! It's a strange world.

Inline CSS

The solution? Pretend like it's 1999 and inline all the styles. That's right, for every tag that has a

class , we need to find all the styles applied from the class and add them as a style attribute.

Manually, this would suuuuck... Luckily, Symfony Mailer has you covered!

inline_css Twig Filter

At the top of this file, add a Twig apply tag with the inline_css filter. If you're unfamiliar, the

apply tag allows you to apply any Twig filter to a block of content. At the end of the file, write

endapply :

templates/email/booking_confirmation.html.twig

1
2
 // ... lines 3 - 27
28
29

Book another trip for Steve. Oops, an error! The inline_css filter is part of a package we don't

have installed but the error message gives us the composer require command to install it! Copy

that, jump over to your terminal and paste:

composer require twig/cssinliner-extra

Back in the app, rebook Steve's trip and check the email in Mailtrap.

The HTML looks the same but check the HTML Source. This style attribute was automatically

added to the <p> tag! That's amazing and way better than doing it manually.

If your app sends multiple emails, you'll want them to have a consistent style from a real CSS file,

instead of defining everything in a <style> tag in each template. Unfortunately, it's not as simple as

linking to a CSS file in the <head> . That's something else that email clients don't like.

No problem!

{% apply inline_css %}
<html>

</html>
{% endapply %}

External CSS File

Create a new email.css file in assets/styles/ . Copy the CSS from the email template and paste

it here:

assets/styles/email.css

1
2
3

Back in the template, celebrate by removing the <style> tag.

So how can we get our email to use the external CSS file? With trickery of course!

Twig "styles" Namespace

Open config/packages/twig.yaml and create a paths key. Inside, add

%kernel.project_dir%/assets/styles: styles :

config/packages/twig.yaml

1
 // ... line 2
3
4
 // ... lines 5 - 9

I know, this looks weird, but it creates a custom Twig namespace. Thanks to this we can now render

templates inside this directory with the @styles/ prefix. But wait a minute! email.css file isn't a

twig template that we want to render! That's ok, we just need to access it, not parse it as Twig.

inline_css() with source()

Back in booking_confirmation.html.twig , for inline_css 's argument, use

source('@styles/email.css') :

templates/email/booking_confirmation.html.twig

1
 // ... lines 2 - 24

The source() function grabs the raw content of a file.

.text-red {
 color: red;
}

twig:

 paths:
 '%kernel.project_dir%/assets/styles': styles

{% apply inline_css(source('@styles/email.css')) %}

Jump to our app, book another trip and check the email in Mailtrap. Looks the same! The text here is

red. If we check the HTML Source, the classes are no longer in the <head> but the styles are still

inlined: they're being loaded from our external style sheet, it's brilliant!

Up next, let's improve the HTML and CSS to make this email worthy of Steve's inbox and the

expensive trip he just booked.

Chapter 7: Real Email Styling with Inky & Foundation
CSS

To get this email looking really sharp, we need to improve the HTML and CSS.

Let's start with CSS. With standard website CSS, you've likely used a CSS framework like Tailwind

(which our app uses), Bootstrap, or Foundation. Does something like this exist for emails? Yes! And

it's even more important to use one for emails because there are so many email clients that render

differently.

Foundation CSS for Emails

For emails, we recommend using Foundation as it has a specific framework for emails. Google

"Foundation CSS" and you should find this page.

Download the starter kit for the "CSS Version". This zip file includes a foundation-emails.css file

that's the actual "framework".

I already included this in the tutorials/ directory. Copy it to assets/styles/ .

In our booking_confirmation.html.twig , the inline_css filter can take multiple arguments.

Make the first argument source('@styles/foundation-emails.css') and use email.css for

the second argument:

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

This will contain custom styles and overrides.

I'll open email.css and paste in some custom CSS for our email:

{% apply inline_css(source('@styles/foundation-emails.css'),
source('@styles/email.css')) %}

assets/styles/email.css

1
2
3
4
5
6
7
8
9

10
11

Tables!

Now we need to improve our HTML. But weird news! Most of the things we use for styling websites

don't work in emails. For example, we can't use Flexbox or Grid. Instead, we need to use tables for

layout. Tables! Tables, inside tables, inside tables. Gross!

Inky Templating Language

Luckily, there's a templating language we can use to make this easier. Search for "inky templating

language" to find this page. Inky is developed by this Zurb Foundation. Zurb, Inky, Foundation...

these names fit in perfectly with our space theme! And they all work together!

You can get an idea of how it works on the overview. This is the HTML needed for a simple email. It's

table-hell! Click the "Switch to Inky" tab. Wow! This is much cleaner! We write in a more readable

format and Inky converts it to the table-hell needed for emails.

There are even "inky components": buttons, callouts, grids, etc.

In your terminal, install an Inky Twig filter that will convert our Inky markup to HTML.

composer require twig/inky-extra

inky_to_html Twig Filter

.trip-name {
 font-size: 32px;
}

.accent-title {
 color: #666666;
}

.trip-image {
 border-radius: 12px;
}

In booking_confirmation.html.twig , add the inky_to_html filter to apply , piping

inline_css after:

templates/email/booking_confirmation.html.twig

1

 // ... lines 2 - 24

First, we apply the Inky filter, then inline the CSS.

I'll copy in some inky markup for our email.

templates/email/booking_confirmation.html.twig

1

2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17

18
19
20

21
22
23
24
25
26
27
28
29
30
31
32

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),
source('@styles/email.css')) %}

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),
source('@styles/email.css')) %}
 <container>
 <row>
 <columns>
 <spacer size="40"></spacer>
 <p class="accent-title">Get Ready for your trip to</p>
 <h1 class="trip-name">{{ trip.name }}</h1>
 </columns>
 </row>
 <row>
 <columns>
 <p class="accent-title">Departure: {{ booking.date|date('Y-m-d') }}
</p>
 </columns>
 </row>
 <row>
 <columns>
 <button class="expanded rounded center" href="{{ url('booking_show',
{uid: booking.uid}) }}">
 Manage Booking
 </button>
 <button class="expanded rounded center secondary" href="{{
url('bookings', {uid: customer.uid}) }}">
 My Account
 </button>
 </columns>
 </row>
 <row>
 <columns>
 <p>We can't wait to see you there,</p>
 <p>Your friends at Universal Travel</p>
 </columns>
 </row>
 </container>
{% endapply %}

We have a <container> , with <rows> and <columns> . This will be a single column email, but you

can have as many columns as you need. This <spacer> adds vertical space for breathing room.

Let's see this email in action! Book a new trip for Steve, oops, must be a date in the future, and book!

Check Mailtrap and find the email. Wow! This looks much better! We can use this little widget

Mailtrap provides to see how it'll look on mobile and tablets.

Looking at the "HTML Check", seems like we have some issues, but, I think as long we're using

Foundation and Inky as intended, we should be good.

Check the buttons. "Manage Booking", yep, that works. "My Account", yep, that works too. That was

a lot of quick success thanks to Foundation and Inky!

Next, let's improve our email further by embedding the trip image and making the lawyers happy by

adding a "terms of service" PDF attachment.

Chapter 8: Attachments and Images

Can we add an attachment to our email? Of course! Doing this manually is a complex and delicate

process. Luckily, the Symfony Mailer makes it a cinch.

In the tutorial/ directory, you'll see a terms-of-service.pdf file. Move this into assets/ ,

though it could live anywhere.

In TripController::show() , we need to get the path to this file. Add a new string $termsPath

argument and with the #[Autowire] attribute and

%kernel.project_dir%/assets/terms-of-service.pdf' :

src/Controller/TripController.php

 // ... lines 1 - 20
21
22
 // ... lines 23 - 31
32
 // ... lines 33 - 38
39
40
41
 // ... lines 42 - 75
76
77

Cool, right?

Attachments

Down where we create the email, write ->attach and see what your IDE suggests. There are two

methods: attach() and attachFromPath() . attach() is for adding the raw content of a file (as a

string or stream). Since our attachment is a real file on our filesystem, use attachFromPath() and

pass $termsPath then a friendly name like Terms of Service.pdf :

final class TripController extends AbstractController
{

 public function show(

 #[Autowire('%kernel.project_dir%/assets/terms-of-service.pdf')]
 string $termsPath,
): Response {

 }
}

src/Controller/TripController.php

 // ... lines 1 - 20
21
22
 // ... lines 23 - 31
32
 // ... lines 33 - 40
41
 // ... lines 42 - 53
54
 // ... lines 55 - 57
58
 // ... lines 59 - 64
65
 // ... lines 66 - 69
70
 // ... lines 71 - 75
76
77

This will be the name of the file when it's downloaded. If the second argument isn't passed, it

defaults to the file's name.

Attachment done. That was easy!

Embedding Images

Next, let's add the trip image to the booking confirmation email. But we don't want it as an

attachment. We want it embedded in the HTML. There are two ways to do this: First, the standard

web way: use an tag with an absolute URL to the image hosted on your site. But, we're going

to be clever and embed the image directly into the email. This is like an attachment, but isn't

available for download Instead, you reference it in the HTML of your email.

First, like we did with our external CSS files, we need to make our images available in Twig.

public/imgs/ contains our trip images and they're all named as <trip-slug.png> .

In config/packages/twig.yaml , add another paths entry:

%kernel.project_dir%/public/imgs: images :

final class TripController extends AbstractController
{

 public function show(

): Response {

 $email = (new TemplatedEmail())

 ->attachFromPath($termsPath, 'Terms of Service.pdf')

 ;

 }

 }
}

config/packages/twig.yaml

1
 // ... line 2
3
 // ... line 4
5
 // ... lines 6 - 10

Now we can access this directory in Twig with @images/ . Close this file.

The email Variable

When you use Twig to render your emails, of course you have access to the variables passed to

->context() but there's also a secret variable available called email . This is an instance of

WrappedTemplatedEmail and it gives you access to email-related things like the subject, return

path, from, to, etc. The thing we're interested in is this image() method. This is what handles

embedding images!

Let's use it!

In booking_confirmation.html.twig , below this <h1> , add an tag with some classes:

trip-image from our custom CSS file and float-center from Foundation.

For the src , write {{ email.image() }} , this is the method on that WrappedTemplatedEmail

object. Inside, write '@images/%s.png'|format(trip.slug) . Add an alt="{{ trip.name }}"

and close the tag:

templates/email/booking_confirmation.html.twig

1

2
3
4
 // ... lines 5 - 6
7
8
9

10
11
12
13
 // ... lines 14 - 34
35
36

twig:

 paths:

 '%kernel.project_dir%/public/imgs': images

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),
source('@styles/email.css')) %}
 <container>
 <row>
 <columns>

 <h1 class="trip-name">{{ trip.name }}</h1>
 <img
 class="trip-image float-center"
 src="{{ email.image('@images/%s.png'|format(trip.slug)) }}"
 alt="{{ trip.name }}">
 </columns>
 </row>

 </container>
{% endapply %}

Image embedded! Let's check it!

Back in the app, book a trip... and check Mailtrap. Here's our email and... here's our image! We rock!

It fits perfectly and even has some nice rounded corners.

Up here, in the top right, we see "Attachment (1)" - just like we expect. Click this and choose "Terms

of Service.pdf" to download it. Open it up and... there's our PDF! Our space lawyers actually made

this document fun - and it only cost us 500 credits/hour! Investor credits well spent!

Next, we're going to remove the need to manually set a from to each email by using events to add it

globally.

Chapter 9: Global From (and Fun) with Email Events

I bet that most, if not every email your app sends will be from the same email address, something

clever like hal9000@universal-travel.com or the tried-and-true but sleepier

info@universal-travel.com .

Because every email will have the same from address, there's no point to set it in every email.

Instead, let's set it globally. Oddly, there isn't any tiny config option for this. But that's great for us: it

gives us a chance to learn about events! Very powerful, very nerdy.

The MessageEvent

Before an email is sent, Mailer dispatches a MessageEvent .

To listen to this, find your terminal and run:

symfony console make:listener

Call it GlobalFromEmailListener . The gives us a list of events we can listen to. We want the first

one: MessageEvent . Start typing Symfony and it's autocompleted for us. Hit enter.

Listener created!

To be extra cool, let's set our global from address as a parameter. In config/services.yaml ,

under parameters , add a new one: global_from_email .

Special Email Address String

This will be a string, but check this out: set it to Universal Travel , then in angle brackets, put the

email: <info@universal-travel.com> :

config/services.yaml

 // ... lines 1 - 5
6
7
 // ... lines 8 - 26

When Symfony Mailer sees a string that looks like this as an email address, it'll create the proper

Address object with both a name and email set. Sweet!

MessageEvent Listener

Open the new class src/EventListener/GlobalFromEmailListener.php . Add a constructor with

a private string $fromEmail argument and an #[Autowire] attribute with our parameter

name: %global_from_email% :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 8
9

10
11
12
13
14
15
 // ... lines 16 - 21
22

Down here, the #[AsEventListener] attribute is what marks this method as an event listener. We

can actually remove this event argument - it'll be inferred from the method argument's type-hint:

MessageEvent :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 17
18
19
20
 // ... lines 21 - 31
32
33

Inside, first grab the message from the event: $message = $event->getMessage() :

parameters:
 global_from_email: 'Universal Travel <info@universal-travel.com>'

final class GlobalFromEmailListener
{
 public function __construct(
 #[Autowire('%global_from_email%')]
 private string $fromEmail,
) {
 }

}

final class GlobalFromEmailListener
{

 #[AsEventListener]
 public function onMessageEvent(MessageEvent $event): void
 {

 }
}

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 18
19
20
21
 // ... lines 22 - 31
32
33

Jump into the getMessage() method to see what it returns. RawMessage ... jump into this and look

at what classes extend it. TemplatedEmail ! Perfect!

Back in our listener, write if (!$message instanceof TemplatedEmail) , and inside, return; :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 18
19
20
 // ... lines 21 - 22
23
24
25
 // ... lines 26 - 31
32
33

This will likely never be the case, but it's good practice to double-check. Plus, it helps our IDE know

that $message is a TemplatedEmail now.

It's possible that an email might still set its own from address. In this case, we don't want to override

it. So, add a guard clause: if ($message->getFrom()) , return; :

final class GlobalFromEmailListener
{

 public function onMessageEvent(MessageEvent $event): void
 {
 $message = $event->getMessage();

 }
}

final class GlobalFromEmailListener
{

 public function onMessageEvent(MessageEvent $event): void
 {

 if (!$message instanceof TemplatedEmail) {
 return;
 }

 }
}

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 18
19
20
 // ... lines 21 - 26
27
28
29
 // ... lines 30 - 31
32
33

Now, we can set the global from : $message->from($this->fromEmail) :

src/EventListener/GlobalFromEmailListener.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 18
19
20
 // ... lines 21 - 30
31
32
33

Perfect!

Back in TripController::show() , remove the ->from() for the email.

Time to test this! In our app, book a trip and check Mailtrap for the email. Drumroll... the from is set

correctly! Our listener works! I never doubted us.

Reply-To

One more detail to make this completely airtight (like most of our ships).

Imagine a contact form where the user fills their name, email, and a message. This fires off an email

with these details to your support team. In their email clients, it'd be nice if, when they hit reply, it

goes to the email from the form - not your "global from".

final class GlobalFromEmailListener
{

 public function onMessageEvent(MessageEvent $event): void
 {

 if ($message->getFrom()) {
 return;
 }

 }
}

final class GlobalFromEmailListener
{

 public function onMessageEvent(MessageEvent $event): void
 {

 $message->from($this->fromEmail);
 }
}

You might think that you should set the from address to the user's email. But that won't work, as

we're not authorized to send emails on behalf of that user. More on email security soon.

Fortunately, there's a special email header called Reply-To for just this scenario. When building

your email, set it with ->replyTo() and pass the user's email address.

Strap in because the booster tanks are full and ready for launch! Time to send real emails in

production! That's next.

Chapter 10: Production Sending with Mailtrap

Alrighty, it's finally time send real emails in production!

Mailer Transports

Mailer comes with various ways to send emails, called "transports". This smtp one is what we're

using for our Mailtrap testing. We could set up our own SMTP server to send emails... but... that's

complex, and you need to do a lot of things to make sure your emails don't get marked as spam.

Boo.

3rd-Party Transports

I highly, highly recommend using a 3rd-party email service. These handle all these complexities for

you and Mailer provides bridges to many of these to make setup a breeze.

Mailtrap Bridge

We're using Mailtrap for testing but Mailtrap also has production sending capabilities! Fantabulous! It

even has an official bridge!

At your terminal, install it with:

composer require symfony/mailtrap-mailer

After this is installed, check your IDE. In .env , the recipe added some MAILER_DSN stubs. We can

get the real DSN values from Mailtrap, but first, we need to do some setup.

Sending Domain

Over in Mailtrap, we need to set up a "sending domain". This configures a domain you own to allow

Mailtrap to properly send emails on its behalf.

Our lawyers are still negotiating the purchase of universal-travel.com , so for now, I'm using a

personal domain I own: zenstruck.com . Add your domain here.

Once added, you'll be on this "Domain Verification" page. This is super important but Mailtrap makes

it easy. Just follow the instructions until you get this green checkmark. Basically, you'll need to add a

bunch of specific DNS records to your domain. DKIM, which verifies emails sent from your domain,

and SPF, which authorizes Mailtrap to send emails on your domain's behalf are the most important.

Mailtrap provides great documentation on these if you want to dig deeper on how exactly these work.

But basically, we're telling the world that Mailtrap is allowed to send emails on our behalf.

Once you have the green checkmark, click "Integrations" then "Integrate" under the "Transaction

Stream" section.

We can now decide between using SMTP or API. I'll use the API, but either works. And hey! This

looks familiar: like with Mailtrap testing, choose PHP, then Symfony. This is the MAILER_DSN we

need! Copy it and jump over to your editor.

This is a sensitive environment variable, so add it to .env.local to avoid committing it to git.

Comment out the Mailtrap testing DSN and paste below. I'll remove this comment because we like to

keep life tidy.

Almost ready! Remember, we can only send emails in production from the domain we configured. In

my case, zenstruck.com . Open config/services.yaml and update the global_from_email to

your domain.

Let's see if this works! In your app, book a trip. This time use a real email address. I'll set the name

to Kevin and I'll use my personal email: kevin@symfonycasts.com . As much as I love you and

space travel, put your own email here to avoid spamming me. Choose a date and book!

We're on the booking confirmation page, that's a good sign! Now, check your personal email. I'll go

to mine and wait... refresh... here it is! If I click it, this is exactly what we expect! The image,

attachment, everything is here!

Next, let's see how we can track sent emails with Mailtrap plus add tags and metadata to improve

that tracking!

Chapter 11: Email Tracking with Tags and Metadata

We're now sending emails for realsies. Let's just double-check our links are working... All good!

Mailtrap can do more than just deliver & debug emails: we can also track emails and email events.

Jump over to Mailtrap and click "Email API/SMTP". This dashboard shows us an overview of each

email we've sent. Click "Email Logs" to see the full list. Here's our email! Click it to see the details.

Hey! This look familiar... it's similar to the Mailtrap testing interface. We can see general details, a

spam analysis and more. But this is really cool: click "Event History". This shows all the events that

happened during the flow of this email. We can see when it was sent, delivered, even opened by the

recipient! Each event has extra details, like the IP address that opened the email. Super useful for

diagnosing email issues. Mailtrap also has a link tracking feature that, if enabled, would show which

links were clicked in the email.

Back on the "Email Info" tab, scroll down a bit. Notice that the "Category" is "missing". This isn't

actually a problem, but a "category" is a string that helps organize the different emails your app

sends. This makes searching easier and can give us interesting stats like "how many user signup

emails did we send last month?".

Symfony Mailer calls this a "tag" that you can add to emails. The Mailtrap bridge takes this tag and

converts it to their "category". Let's add one!

In TripController::show() , after the email creation, write:

$email->getHeaders()->add(new TagHeader()); - use booking as the name.

Mailer also has a special metadata header that you can add to emails. This is a free-form key-value

store for adding additional data. The Mailtrap bridge converts these to what they call "custom

variables".

Let's add a couple:

$email->getHeaders()->add(new MetadataHeader('booking_uid', $booking->getUid()));

And:

$email->getHeaders()->add(new MetadataHeader('customer_uid', $customer->getUid()));

Attached to every booking email is now a customer and booking reference. Awesome!

To see how these'll look in Mailtrap, jump over to our app and book a trip (remember, we're still using

production sending so use your personal email). Check our inbox... here it is. Back in Mailtrap, go

back to the email logs... and refresh... there it is! Click it. Now, on this "Email Info" tab, we see our

"booking" category! Down a bit further, here's our metadata or "custom variables".

To filter on the "category", go to the email logs. In this search box, choose "Categories". This filter

lists all the categories we've used. Select "booking" and "Search". This is already more organized

than the Jeffries tubes down in engineering!

So that's production email sending with Mailtrap! To make things easier for the next chapters, let's

switch back to using Mailtrap testing. In .env.local , uncomment the Mailtrap testing MAILER_DSN

and comment out the production sending MAILER_DSN .

Next, let's use Symfony Messenger to send our emails asynchronously. Ooo!

Chapter 12: Async & Retryable Sending with
Messenger

When we send this email, it's sent right away - synchronously. This means that our the user sees a

delay while we connect to the mailer transport to send the email. And if there's a network issue

where the email fails, the user will see a 500 error: not exactly inspiring confidence in a company

that's going to strap you to a rocket.

Instead, let's send our emails asynchronously. This means that, during the request, the email will be

sent to a queue to be processed later. Symfony Messenger is perfect for this! And we get the

following benefits: faster responses for the user, automatic retries if the email fails, and the ability to

flag emails for manual review if they fail too many times.

Let's install messenger! At your terminal, run:

composer require messenger

Like Mailer, Messenger has the concept of a transport: this is where the messages are sent to be

queued. We'll use the Doctrine transport as it's easiest to set up.

composer require symfony/doctrine-messenger

Back in our IDE, the recipe added this MESSENGER_TRANSPORT_DSN to our .env and it defaulted to

Doctrine - perfect! This transport adds a table to our database so technically we should create a

migration for this. But... we're going to cheat a bit and have it automatically create the table if it

doesn't exist. To allow this, set auto_setup to 1 .

The recipe also created this config/packages/messenger.yaml file. Uncomment the

failure_transport line. This enables the manual failure review system I mentioned earlier. Then,

uncomment the async line under transports - this enables the transport configured with

MESSENGER_TRANSPORT_DSN and names it async . It's not obvious here, but failed messages are

retried 3 times, with an increasing delay between each attempt. If a message still fails after 3

attempts, it's sent to the failure_transport , called failed , so uncomment this transport too.

The routing section is where we tell Symfony which messages should be sent to which transport.

Mailer uses a specific message class for sending emails. So send

Symfony\Component\Mailer\Messenger\SendEmailMessage to the async transport.

That's it! Symfony Messenger and Mailer dock together beautifully so there's nothing we need to

change in our code.

Let's test this! Back in our app... book a trip. We're back to using Mailtrap's testing transport so we

can use any email. Now watch how much faster this processes.

Boom!

Open the profiler for the last request and check out the "Emails" section. This looks normal, but

notice the Status is "Queued". It was sent to our messenger transport, not our mailer transport. We

have this new "Messages" section. Here, we can see the SendEmailMessage that contains our

TemplatedEmail object.

Jump over to Mailtrap and refresh... nothing yet. Of course! We need to process our queue.

Spin back to your terminal and run:

symfony console messenger:consume async -vv

This processes our async transport (the -vv just adds more output so we can see what's

happening). Righteous! The message was received and handled successfully. Meaning: this should

have actually sent the email.

Go check Mailtrap... it's already here! Looks correct... but... click one of our links.

What the heck? Check out the URL: that's the wrong domain! Boo. Let's find out which part of our

email rocket ship has caused this and fix it next!

Chapter 13: Generating URLs in the CLI Environment

When we switched to asynchronous email sending, we broke our email links! It's using localhost

as our domain, but that's not right!

Back in our app, we can get a hint as to what's going on by looking at the profiler for the request that

sent the email. Remember, our email is now marked as "queued". Go to the "Messages" tab and find

the message: SendEmailMessage . Inside is our TemplatedEmail object. Open this up. Notice the

htmlTemplate is our Twig template but html is null . The little detail is important: the email

template is not when our controller sends the message to the queue. Nope! the template isn't

rendered until we run messenger:consume command.

This is the problem. messenger:consume is a CLI command, and when generating absolute URLs

in these, Symfony doesn't know what the domain should be (or if it should be http or https). So why

does it when in a controller? In a controller, Symfony can access the current request to get this

information. A CLI command has no request available so it defaults to http://localhost .

Changing this default is the solution!

Back in our IDE, open up config/packages/routing.yaml . Under framework , routing , these

comments are explaining this exact issue. Uncomment default_uri and set it to

https://universal-travel.com - our lawyers are close to a deal!

In development though, we need to use our local dev server's URL. For me, this is 127.0.0.1:8000

but this could change or be customized by other developers on your team.

Here's a trick: the Symfony CLI server sets a special environment variable with the correct value that

we can leverage.

Back in our routing config, add a new section: when@dev: , framework: , router: , default_uri:

and set this to %env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL)% . This environment variable will only

be available if the Symfony CLI server is running and you're running commands via

symfony console (not bin/console). To ensure we don't get an exception if this environment

variable isn't set, let's set a default value. Also under when@dev , add parameters: with

env(SYMFONY_PROJECT_DEFAULT_ROUTE_URL): set to http://localhost - the original default.

Let's try this out, but first, jump back to your terminal. Because we made some changes to our

config, we need to restart the messenger:consume command. Stop it with CTRL+C and run it again:

symfony console messenger:consume async -vv

Cool, those changes are now picked up. Back to our app... and book a trip! Quickly go back to the

terminal and we can see the message was processed.

Pop over to Mailtrap and... here it is! Moment of truth: click a link... Sweet, it's working again!

If you're like me, you probably find having to keep this messenger:consume command running in a

terminal during development a drag. Plus, having to restart it every time you make a code or config

change is super annoying.

Here's another Symfony CLI trick: in your IDE, open this .symfony.local.yaml file. This is the

Symfony CLI server config for this project. Check this workers key, this allows you to define

additional processes to run in the background when you start the server. We already have this

tailwind command configured.

Add another worker for messenger:consume . Call it messenger and set the cmd to

['symfony', 'console', 'messenger:consume', 'async'] . So this solves the issue of having

to keep this running in a separate terminal window but what about restarting? Symfony CLI has you

covered! Add a watch key and set it to the directories where you have files that, when changed,

should trigger a restart: config , src , templates and vendor .

Back in your terminal, restart the server with symfony server:stop and symfony serve -d . Now,

our messenger:consume is running in the background. To prove it, run:

symfony server:status

We see 3 workers running: the first is the actual PHP webserver. The second is our existing

tailwind:build worker, and the third is our new messenger:consume worker. I think this is so

cool!

Next, I want to show you how to make assertions about sent emails in your functional tests!

With <3 from SymfonyCasts

