Netgen Layouts: Building Pages
with Symfony

Chapter 1: Hello Layouts+ Setup!

Hey friends! I'm so glad you're here with me, because this tutorial is about something fun, cool,
and quite powerful. No, it's not about a masked, crime-fighting feline with superpowers, though

that would be pretty cool. This tutorial is all about the Netgen Layouts package.

What |s Layouts?

This library has existed for years, but I've only recently checked it out. Layouts is, very simply, a
way to take any existing Symfony app and add the ability to dynamically rearrange how your
pages are organized on the fly via an admin section... including adding new dynamic content.
It's a really cool mixture of a normal Symfony app with controllers and Twig templates... plus
content management features that you can opt into on a page-by-page basis. | particularly love

the opt-in approach

Who Needs Layouts?

Why would you go to the trouble of using Layouts in your Symfony app? Well, not all projects
need this. But if an admin user needs to be able to make changes to how your site and its
content are organized, then this is for you. This includes being able to add and change
collections of items - like featured products - right to the middle of an existing page, rearranging
content from a Twig template higher or lower on the page, adding some completely new
customizable content to a page or creating temporary landing pages and allowing all of this to
be done by regular ol' users. You can leverage Layouts for a single page on your site, leaving
everything else to be a normal Symfony app, or every page on your site can use it. Like | said,

you opt into Layouts as you see fit.

Project Setup

| could go on and on, but it's probably best to see the Layouts magic in action. It's super fun to
play with, so you should definitely download the course code from this page and code along

with me. When you unzip the file, you'll find a start/ directory with the same code that you see

here. Pop open this README .md file for all those sweet setup details. I've already gone over to

my terminal, installed my Node assets via:

yarn install

and ran:

yarn watch

to build my CSS and JS files. But that's all just to make our app and this tutorial more realistic.

Layouts doesn't require us to use Encore and it doesn't mess with our CSS and JS at all.

Anyway, the last step in the README is to open another terminal tab and run:

symfony serve -d

to start a web server at https://127.0.0.1:8000 - I'll cheat and click that. And... hello new side

project: it's Bark & Bake! Listen, dogs are pretty tired of our lazy attempts at canine cuisine.

Crunchy kibble? No thanks. So we've built this site to inspire people to be the best chefs they

can be... for their dogs.

This is a pretty traditional Symfony app with a few controllers and some Twig templates. It also
has two entities: A User entity for security, and a Recipe entity. On the site, we have a
homepage that shows the latest and greatest recipes, a recipe section, and the ability to open a
specific recipe, so we can follow along in the kitchen. That's it. This skills stuff isn't implemented

at all yet.

So, other than being able to edit the details of each recipe via an admin area, this is a static site!
Time to change that! Soon, we'll be able to take this homepage - which is written via a normal
Symfony controller and template... as you can see here - and use layouts to dynamically insert

content and rearrange things!

Installing_Layouts

https://127.0.0.1:8000/

So let's get Layouts installed. Find your terminal and run:

composer require netgen/layouts-standard

This will download several packages, including a couple of new bundles. When it finishes, run:

git status

to see that it also gave us two new route files, which add some admin routes that we're going to

see in a few minutes.

Running_the Migrations

Layouts also requires some extra database tables where it stores info about the layout's we'll
create as well as any custom content we're putting into them. We'll see all of that in the Layouts
admin section in a minute. To add the needed tables, scroll up and copy this nifty

doctrine:migrations:migrate line.

This is kind of cool. The layouts packages comes with migrations... and this executes those.
Paste this command, but if you're using the Docker database setup that we described in the
README - | am - then modify this to start with symfony console so that it can inject the

Docker environment variables that point to our database:

symfony console doctrine:migrations:migrate --configuration=vendor/netgen/layouts-core,

And... perfect! One caveat is that these migrations are written for MySQL specifically. Layouts

only supports MySQL right now.

Ignoring_ the Custom Tables

For the most part, Layouts is going to entirely manage all of the tables that we just added: we

don't need to do anything with them. But now that those exist in our database, if we were to add

a new entity and then generate a migration for that... the migration would try to drop all of the

Netgen Layouts tables. Watch! Run:

symfony console doctrine:schema:update --dump-sql --complete

This mimics generating a migration, and... yup! It wants to drops all of the Layouts tables. To fix
this, head into config/packages/doctrine.yaml and, under dbal, add schema_filter,

and pass a regular expression... which you can copy from the Layouts documentation:

config/packages/doctrine.yaml

1 doctrine:

2 dbal:

T /7 ... lines 3 - 7

8 schema_filter: ~~(?!nglayouts_)~
$ // ... lines 9 - 44

Perfect! With that, if we go back and run the doctrine:schema:update command again...

symfony console doctrine:schema:update --dump-sql --complete

It's clean, except for doctrine_migration_versions. But, no worries: the make:migration

command is smart enough not to drop its own table.

Ok, Netgen Layouts is installed and it has the database tables it needs. If we go back and
refresh our site now... congratulations! Absolutely nothing is different. Though, we do have a

cute little web debug toolbar icon down here that we'll talk about later.

This, again, is one of the great things about Layouts. Just installing it does not take over your

app. Layouts is not being used at all to render this page.

Next, let's dive into the Layouts admin area to create our first layout. Then, we'll see how that

interacts with the real pages on our site.

Chapter 2: Creating & Mapping Layouts

Ok, let's see what Layouts is all about. In this chapter, we'll, step-by-step, create & use a

"layout", learning exactly how Layouts works its magic along the way.

To check out the Layouts admin section, head to /nglayouts/admin to find... a login form! The
login form has nothing to do with the Layouts... it's just that the layouts admin area requires you
to be logged in... and I've already added a login form to our site. There's even a user in the

database! Log in with doggo@barkbite.com, password woof.

The Security Role Needed for the Admin Area

And when we submit... access denied! No worries: click down on the web debug toolbar's
security icon... and go to "Access Decision". Yup: we were denied access because it was
looking for a role called ROLE_NGLAYOUTS_ADMIN. To access the layouts admin area, we need

to have this role.

The simplest way to add it is to go to config/packages/security.yaml. The user we're
logged in as right now has ROLE_ADMIN. So, under role_hierarchy also give our user

ROLE_NGLAYOUTS_ADMIN:

config/packages/security.yaml

1 security:
// ... lines 2 - 6
role_hierarchy:
ROLE_ADMIN: [ROLE_USER, ROLE_NGLAYOUTS_ ADMIN]
// ... lines 9 - 56

& 0 N &

Creating_our First Layout

And now if we click back, ta-da! Welcome to the layouts admin section! To understand what
layouts does... it's best to see it in action. Start in this Layouts section... and click to create a
new layout. This shows us about six different layout types we can choose from. As you'll see,

these are much less important than they might seem at first, because, once you're in a layout,

you can really do whatever you want, including floating things left and right. | typically choose

"Layout 2". Call this "Homepage Layout" because I'm planning to use this on our homepage.

And... welcome to the layout editor! Quick tour: these items on the left side are called "blocks",
and there are many different types, from simple title blocks to Google maps... to more complex
things like lists and grids where you can render dynamic collections of things, like featured
recipes. The main things we "do" on this page is choose a block on the left... then drag it onto

one of the "zones" in the middle.

Putting_Blocks onto the Layout

Grab a "Title" block and drag it somewhere onto the page... then give it some text. Cool!
It's @ modest start, but, good enough! In the upper right, hit "Publish Layout".

And now that we have this new layout, open a second tab and go to the homepage to discover

that... absolutely nothing changed! Let me actually rearrange my tabs.

Mapping_a Layout

Anyways, nothing changed because, once you have a layout, you need to map it to a specific
page or set of pages. That's the job of the layout mapping section. These are really the only two

important sections in the admin area.

Here, add a new mapping and then go to Details. There are multiple ways that you can map a
layout to a specific URL. You could use, for example, the path info, which is a fancy term that
means "the URL, but without query parameters". Or you could use a path info prefix - like use
this layout for all URLs that start with "/products”. Or you can even map a layout to a specific

route name.

Let's try that one. Hit "Add target". Then... let's go find our homepage route name:

src/Controller/MainController.php. Here itis: app_homepage:

src/Controller/MainController.php

T // ... lines 1 - 9

10 class MainController extends AbstractController

11 {

12 #[Route('/', name: "app_homepage')]

13 public function homepage(RecipeRepository $recipeRepository): Response
14 {

$ // ... lines 15 - 22

23 }

24}

Move back over, paste and hit "Save target".

We're going to talk about other ways to map or "activate" a layout for pages later. But route and

path info are the simplest and flexible. They say:
“If the current route or URL matches what we have here, use this layout.”

Hit save changes. To choose which layout goes with this mapping, hit "Link layout" and select

the only one: "Homepage Layout".

Awesome! So now when we go to the homepage, it should use the homepage layout. But...
what does that even mean? Let's find out! Refresh and... we still don't see any difference! It's

the same static page from Symfony!

Extending_the Dynamic Base Layout

Oh, that's because we missed an important installation step. My bad! Go open the template for
this page: templates/main/homepage.html.twig. Right now, we're extending

base.html.twig:

templates/main/homepage.html. twig

1 {% extends 'base.html.twig' %}
2
T // ... lines 3 - 60

And that template, like usual, has a block called body in the middle:

templates/base.html.twig
1 <IDOCTYPE html>

2 <html>

T // ... lines 3 - 16

17 <body>

T // ... lines 18 - 46
47 {% block body %}{% endblock %}
$ // ... lines 48 - 60

61 </body>

62 </html>

So it's a super traditional setup.

Now, change the extends to a dynamic variable called nglayouts.layoutTemplate:

templates/main/homepage.html. twig

1 {% extends nglayouts.layoutTemplate %}
$ // ... lines 2 - 60

Configuring the Base Layout

Try the page again. Error! That's progress! It says:

“Base page layout, not specified. To render the page with Layouts, specify the base page

layout with this config.”

This will all make more sense in a minute. What it wants us to do is open config/packages/
and create a new file - which can be called anything - but let's call it netgen_layouts.yaml.

Inside, add netgen_layouts and, below that, pagelayout set to our base.html.twig:

config/packages/netgen_layouts.yaml

1 netgen_layouts:
2 pagelayout: 'base.html.twig'

I'll explain this all in a minute. If we refresh now... huh, same error! It's possible Symfony didn't

see my new config file... so let me clear the cache to be sure:

php ./bin/console cache:clear

And now... yes! It works! Except... it's still the same static page! But, for the first time, down on
the web debug toolbar, it shows that the "Homepage Layout" is being used. So it realized the

layout should be used... it just doesn't seem to be rendering it.

Rendering_the layout Block

To fix that, we need to do one last thing... then we'll back up and explain what's going on and
how cool itis. In base.html.twig, around {% block body %}, add {% block layout %} ...
then after {% endblock %} :

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

T // ... lines 3 - 16

17 <body>

$ // ... lines 18 - 46
47 {% block layout %}
438 {% block body %}{% endblock %}
49 {% endblock %}

$ // ... lines 50 - 62

63 </body>

64 </html>

Refresh one more time. And... whoa! Our page is gone! Okay, we still have the nav and footer...
which come from above and below the blocks in base.html.twig, but the actual contents of

our page are gone and replaced by the dynamic title block! What Black Magic is this?

The Layouts Template Inheritance Magic

First, before | explain, let me say that there are much faster ways to start with Netgen Layouts:
they have starter projects for normal Symfony apps, Sylius apps and Ibexa CMS apps. But we
did all this set up work manually on purpose... because | really want you to understand how

Layouts works: it's surprisingly simple.

First, our page is still hitting our normal route - app_homepage - and it's still executing our

normal controller and still rendering our normal template. No magic there at all.

But then, we extend nglayouts.layoutTemplate. What does that point to? If there is no

layout mapped to a particular page, nglayouts.layoutTemplate will resolve to

base.html.twig. That's thanks to the config we added here:

config/packages/netgen_layouts.yaml

1 netgen_layouts:
2 pagelayout: 'base.html.twig'

But if layouts does find a layout mapping for this page, then nglayouts.layoutTemplate
resolves to a core Layouts template. In this case, if you hit Shift+Shift, it's called

layout2.html. twig... since we selected "Layout 2".

This renders the dynamic layout via these nglayouts_render_zone tags: each of these refers

to a different section - or "zone" - inside our layout.

Anyways, what's really important is that it renders the layout into a Twig block called layout. It

then extends nglLayouts.pagelLayoutTemplate, which resolves to our base.html.twig.

The end result is that our page renders completely normally and it still extends
base.html.twig... but a block called layout has been added that holds the contents of the

dynamic layout.

That's why we didn't see any changes on the page at first. Until we actually included
{% block layout %} in base.html.twig, the layout was loading... we just weren't rendering

it anywhere.

The takeaway is this: if you're on a page that does not map to a layout, everything is exactly the
same as always. But if you are on a page that maps to a layout, it simply means that you now
have a block called 1layout whose contents are equal to whatever you have inside of that

layout.

Extending_the Dynamic Layout on All Pages

So as | mentioned earlier, we don't have to add layouts to every page on our site: we could add
it to the homepage and be done! But every page that we want to support layouts needs to
extend nglayouts.layoutTemplate. The nice thing is, even if we extend this, nothing
happens unless we actually map a layout to this page. So, there's no downside to using it

everywhere. I'll quickly update login.html.twig to use it:

templates/security/login.html.twig

1 {% extends nglayouts.layoutTemplate %}
$ // ... lines 2 - 39

then list.html.twig and show.html.twig:

templates/recipes/list.html.twig

1 {% extends nglayouts.layoutTemplate %}
T // ... lines 2 - 33

templates/recipes/show.html. twig

1 {% extends nglayouts.layoutTemplate %}
T // ... lines 2 - 38

| can really move fast when | need to!

Back in the browser, the recipe list and recipe show pages still look the same... because no

layout is resolved. But they're now ready to use layouts, if we want to.

Now, as interesting as it is to dynamically control the content on the homepage, we uh, kind of
did too much! All of our old content is gone. Is it possible to mix dynamic content with some of
the static content from our homepage Twig template? Absolutely. And that's a big part of what

makes layouts special. That's next.

Chapter 3: Adding Twig Blocks to your Dynamic
Layout

So we just completely replaced our homepage with a dynamic layout. But, that's not really that
interesting. What | really want to be able to do is use my existing homepage template and all

this good content I've prepared:

templates/main/homepage.html. twig

1 {% extends nglayouts.layoutTemplate %}

2

3 {% block body %}

4 <div class="hero-wrapper">

5 <hl class="header">Bark & Bake</h1>

6 <p class="text-center">Doggone Good Treat & Meal Recipes</p>
7 <div class="d-flex justify-content-center">

8 <img src="{{ asset('images/dog-bone.png') }}" width="auto"

height="50" alt="dog bone icon">

9 </div>
10 </div>

$ // ... lines 11 - 58

59 {% endblock %}

but then tweak it by adding little bits of dynamic content here and there... or even rearrange
things. To do that in the layout, under the blocks, at the bottom, add a special one called "Twig
Block"... and let's put that right below the title. Notice that you can put as many blocks as you

want inside of a single zone. These zones don't really end up being all that important.

Anyways, when you click a block, on the right side, you'll see that block's options. This has an
important one called "Twig block name". Enter body to match the {% block body %} that we

have in the template:

templates/main/homepage.html. twig

1 {% extends nglayouts.layoutTemplate %}

2
3 {% block body %}
T // ... lines 4 - 58

59 {% endblock %}

Ok, hit "publish and continue editing"... then go over and refresh the homepage. Holy content
batman! Our Twig content now lives inside this dynamic page. That's awesome! And everything

still works: even the fancy "live component" in the center of the page.

Adding_More Blocks to your Template

Okay, so this is cool... but it's still just a bunch of dynamic content on top... then Twig template

content on the bottom: we can't really mix anything into the middle of our page.

Unless... we add more blocks to our template. For example, keep the block body... just so the
page keeps working even if we don't map a layout... but then add a {% block hero %} around
the top section, a block called, how about, 1atest _recipes, {% endblock %}, another called
subscribe_newsletter, {% endblock %} and a final one called featured skills,

{% endblock %}:

templates/main/homepage.html. twig

T // ... Llines 1 - 2

3 {% block body %}

4

5 {% block hero %}

6 <div class="hero-wrapper">

T // ... lines 7 - 11

12 </div>

13 {% endblock %}

14

15 {% block latest recipes %}

16 <div class="container">

$ // ... lines 17 - 31

32 </div>

33 {% endblock %}

34

35 {% block subscribe_newsletter %}
36 <div class="text-center pt-4 pb-5 my-4" style="background-color: #fdedf0;">
$ // ... lines 37 - 40
41 </div>
42 {% endblock %}
43
44 {% block featured skills %}
45 <div class="container py-4 my-5">
T // ... lines 46 - 65

66 </div>

67 {% endblock %}

68

69 {% endblock %}

If we stopped now, this would make no difference to our app: we're still rendering the body

block down here... which includes all of those. But we just gave ourselves a /ot of new power.

Check it out: change the body block name to hero. And then let's add a few more Twig blocks.
Render latest_recipes for this one. Oh, by the way, the block "labels" are just for us in the
admin area: just for clarity. If | enter "Latest Recipes", that shows up above the block. Totally

optional.

Add two more blocks: one that renders subscribe_newsletter and finally one for

featured_skills. Then, up here, I'm going to remove the title block for now.

By the way, I'm using the word "block" to mean two different things at once. Blocks are the

"things" we add to our layout - like a title, Google map, or list of items. But blocks also refer to

the Twig blocks in our templates. And of course, one of the types of blocks we can add... is one

that renders... Twig blocks. A little confusing - but that's as bad as it gets.

Anyways, say "Publish and continue editing"... then go refresh the frontend. And... sweet! Our
page works. | know, it looks exactly like it did a minute ago, but it's now being rendered by

layouts... and we can rearrange the pieces!

Watch: I'll move the subscribe newsletter down to the bottom, hit "Publish and continue

editing", refresh, and... boom! That static part of the page magically moved to the bottom. That

is cool.

Or, we could move that back up... then add some dynamic content, like text, in between one of
the other blocks.

Next, let's get even more aggressive and flexible by allowing the top navigation and bottom

footer to be optional, but easy to add, inside the Layout.

Chapter 4: Shared Layouts

Open up base.html.twig and move the {% block layout %} to be around everything. So,
put the start just inside the body tag... and the end just before the closing body tag:

templates/base.html. twig

1 <!DOCTYPE html>

2 <html>

T // ... lines 3 - 16

17 <body>

18 {% block layout %}

19 <nav class="navbar navbar-expand-1lg navbar-light bg-light">
$ // ... lines 20 - 45
46 </nav>
47
48 {% block body %}{% endblock %}
49

50 <div class="container mt-5">

$ // ... Lines 51 - 60

61 </div>

62 {% endblock %}

63 </body>

64 </html>

If we refresh the homepage now... it's destroyed! The top nav and footer are gone. Why did |
do this? Because | love chaos! Kidding - | did it because it gives us the power, inside layouts, to
design fotally custom pages: even pages without the traditional navigation and footer,

maybe like a temporary landing page for a promotion.

But let's be honest, 99% of the time, we will want the nav and footer. No problem, head back
over to base.html.twig. Remember: adding blocks give us more flexibility. So, above the
navigation, add a new block called navigation, with {%# endblock %} after. Then, down here,

another called footer... and {% endblock %}:

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

$ // ... lines 3 - 16

17 <body>

18 {% block layout %}

19 {% block navigation %}

20 <nav class="navbar navbar-expand-1lg navbar-light bg-light">
T // ... lines 21 - 46
47 </nav>
48 {% endblock %}
49

50 {% block body %}{% endblock %}
51

52 {% block footer %}

53 <div class="container mt-5">

$ // ... lines 54 - 63

64 </div>

65 {% endblock %}

66 {% endblock %}

67 </body>

68 </html>

| bet you know what I'll do next. In the layout admin, we can now add a Twig block to the top that
renders navigation... then one down here on the bottom. It doesn't need to be in this last

zone... but it makes sense there. Render footer.

Let's try it! Hit "Publish and continue editing" and... refresh. We are back!

Creating_a Second Layout

Let's create a second layout, this time for the /recipes page. If you look at
RecipeController, you'll see that | already did all the work to query for the recipes, and pass

them into this template:

src/Controller/RecipeController.php

$ // ... lines 1 - 12

13 class RecipeController extends AbstractController

14 {

15 #[Route('/recipes/{page<\d+>}"', name: 'app_recipes')]

16 public function recipes(RecipeRepository $recipeRepository, int $page = 1):
Response

17 {

18 $queryBuilder = $recipeRepository->createQueryBuilderOrderedByNewest();

19 $adapter = new QueryAdapter($queryBuilder);

20 /** @var Recipe[]|Pagerfanta $pagerfanta */

21 $pagerfanta = Pagerfanta::createForCurrentPageWithMaxPerPage($adapter,
$page, 4);

22

23 return $this->render('recipes/list.html.twig', [

24 ‘pager' => $pagerfanta,

25 1);

26 }

T // ... lines 27 - 34

35 %}

And in that template, we loop over and render each one, with pagination:

templates/recipes/list.html.twig

T // ... lines 1 - 4
5 {% block body %}

6 <div class="hero-wrapper">

7 <h1>Doggone Good Recipes</hl>

8 <p>Recipes your pup will lovel</p>
9 </div>

T // ... lines 10 - 31

32 {% endblock %}

And so, | definitely want to include all of this custom work in the new layout.

Back in the admin area, I'll hit "Publish layout" as an easy way to get back to the layout list.
Then hit new layout, I'll choose my favorite layout 2 and call it "Recipes List Layout". To start,

add a new block called "Full View"... and drag it anywhere onto the page, whoops! There we go.

What is this "Full View". It's nothing special, in fact, it's kind of redundant! It's nothing more than
a "Twig block" that renders the block called body. So, yes, we could have just as easily done

this by using the normal Twig block and typing in body .

Publish this layout... then go to "Layout Mappings". Add a new one... and this time I'll link it

first... to "Recipes List Layout". Then click "Details". Like last time, we could map this via the

route name. But to see something different, use "Path Info", which, again, is just a fancy word
for the URL, but without any query parameters. Make it match /recipes... "Save Changes"

and... sweet!

When we try the page... it looks awesome! Except, whoops, | forgot the nav and footer! Adding
those two blocks to "Recipe List Layout" is easy. But what if, later we decide that every page
should render both the navigation block on top as well as a dynamic banner, maybe for a sale
that we're having. If that happened, we would need to edit every layout to manually add that

new banner.

Shared Layouts

Fortunately, there's a better way to handle repeated layout elements like this.

Hit "Discard" to get back to the layouts list, then click "Shared layouts" and "New shared layout".
As usual, the layout type doesn't matter much, so I'll use my normal one... and call it "Nav &

Footer Layout".

This is not going to be a real layout that's linked to any pages. Nope, it's just going to be a
layout that we steal pieces from. Up in the top zone, create a Twig Block that renders
navigation... and I'll even label it "Top Nav" to make it more clear. Then in any other zone -
you can put it at the bottom, but you don't have to, add another twig block that renders footer

and is labeled Footer.

Cool! Hit "Publish layout". Now we have one shared layout. Again, these are not meant to be

mapped to pages: they're meant for us to use in other real layouts.

Check it out: edit "Recipe List Layout". On the bottom left of the screen, hiding behind the web
debug toolbar - I'll close that temporarily - there's a button to link a zone with a shared layout
zone. Click that, then select the top zone... called the "Header" zone, though that name isn't

important.

Now, we can find a shared zone from a shared layout... and we only have one. Hit "Select Zone
and... that's it! The top zone in our layout will now equal whatever block or blocks are in the top
zone of that shared layout. If we added more stuff to that zone in the shared layout, it would

automatically show up here.

Do that one more time: select the last zone so that the footer definitely shows up at the bottom,

select the shared zone and... done!

Publish that, move over, refresh and... the full page is back! Let's quickly repeat that for the
"Homepage Layout". Oh, but this is tricky because | put all of my blocks inside this top zone.
Mostly, these zones don't matter, but in this case, to avoid overwriting all of this, I'll drag

everything except for the navigation twig block down here. We can fix the order later.

And now, set the top zone to use the one from the shared layout. Yup! It replaced what we had

there before. Below, also link the bottom zone with the shared layout.

Perfect! Let's check the order of our blocks... which is kind of the beauty of layouts. If | don't like
the order of what's on my page, | can always change it! That's better. Publish the layout, head

back to the homepage on the frontend and... beautiful!

Next: let's make our recipe list page more flexible by allowing this top h1 area to be built and

customized from inside layouts... instead of it being hardcoded in the template.

Chapter 5: Adding More Customized Blocks

We're going to work more on this Recipe List Layout later. But, let's do one more things right
now. Edit that layout. | want to give our admin users the flexibility to change this title. Cool! Let's

add a new title block right above... and enter some text.

Hit "Publish and continue editing"... then go to the frontend. What I'm attempting to do is
replicate this title, or "hero" area - so that we can remove it from our Twig template. But when

we refresh, that doesn't look right yet.

Go over and look at that template. Ok: to replicate this, we need an h1 tag wrapped in a

hero-wrapper div:

templates/recipes/list.html.twig

T // ... lines 1 - 4
5 {% block body %}

6 <div class="hero-wrapper">

7 <h1>Doggone Good Recipes</hl>

8 <p>Recipes your pup will lovel</p>
9 </div>

T // ... lines 10 - 31

32 {% endblock %}

Right now, layouts is simply rendering an h1. And, by the way, you can, in the title block

options, choose between hl, h2, or h3. hl is what we need this time.

Adding_a Wrapper Div Column

So: how can we wrap this in a div and give it a hero-wrapper class? The answer: add a nifty
"column" block... then move the title into that column. Cool right? Finally, when you click on the

column, you can add any class you want. Add hero-wrapper.

Let's try it! Hit "Publish and continue editing", refresh the frontend and... much better! What
about that text? Copy it, add a new "text" block right below our "title" and... paste. Publish and

continue editing again... try the frontend again and... look at that! A perfect replica!

To celebrate, over in the template, we can remove that section entirely:

templates/recipes/list.html.twig

T // ... lines 1 -5

6 <div class="hero-wrapper">

7 <h1>Doggone Good Recipes</hl>

8 <p>Recipes your pup will lovel</p>
9 </div>

$ // ... lines 10 - 33

The end result is the same as before... except admin users now have the ability to change the

text.

Custom CSS in Layouts or Pre-Made Custom Block Type?

Though, you probably noticed that this did require me to be a bit technical: | had to know the
CSS class that the column needed. If the admin users designing your layouts are a bit technical,
then this might be no problem. But if your editors are less technical, you could, instead, create a
custom block type - like a hero block - where the user just types in the text and you render this
whole thing for them. We're not going to create custom blocks in this tutorial... but that's mostly

because, by the end of the tutorial, you'll know everything you need to follow the docs for that.

The Layouts Web Debug Toolbar

All right, back on the front end, layouts comes with its own web debug toolbar icon. And if you
click this, it's pretty cool. We're going to use this a bunch of times. It shows you the layout that

was resolved and even the reason why it was chosen.

But the really useful thing is the "Rendered blocks" section. This shows us all the layouts blocks
that were rendered to build this page. You can see there's one called "Twig block" for the top
nav, a "Column", then the "Title", "Text", "Full view" block and finally the last "Twig" block for the
footer. This is a great way to see all the different blocks that are being rendered, as well as the
template behind each one. Later, we're going to talk about overriding those templates, so we

can customize how they look.

Linking_to the Layouts Admin

Back in the Layouts admin, publish the layout to get back to the main page. If you go to

/admin, you'll find that our app already has EasyAdmin installed. Let's add a link from the menu
here to Layouts to make life easier. Open
src/Controller/Admin/DashboardController.php... and find configureMenuItems().
Add another with yield MenuItem::1inkToUrl(), callit "Layouts" and give it some icons:
fas fa-list. Forthe url, use this->generateUrl() and pass in the route name, which

happens to be nglayouts_admin_layouts_index:

src/Controller/Admin/DashboardController.php

T // ... lines 1 - 12

13 class DashboardController extends AbstractDashboardController

14 {

T // ... lines 15 - 34

35 public function configureMenuItems(): iterable

36 {

T // ... lines 37 - 38

39 yield MenulItem::1linkToUrl('Layouts', 'fas fa-list', $this-
>generateUrl('nglayouts _admin_layouts index'));

40 }

41 }

Perfect! That's a small detail, but now when we're on /admin, we can click "Layouts" to jump

right there.

Okay, status check! We can render Twig blocks and mix in title, text, HTML, Google Maps and
other blocks wherever we want. The more Twig blocks we have in the template, the more

flexibility we have here.

But what about being able to render a collection of recipes from our database, like the "Latest
Recipes" we have on the homepage? That's a big piece of layouts: so let's start diving into it

next.

Chapter 6: Adding Lists: Value Type

We have a Recipe entity and, on the frontend, a page that lists the recipes. We also saw how

easy it is to create a layout, which instantly makes parts of this page configurable.

Adding_Lists of Existing_Content via Layouts?

But now, looking at the homepage, I'm wondering if we can add more complex blocks, beyond
just text. Could we, for example, add a block that renders a list of recipes? Something similar to
what we have here right now... except instead of adding this via a Twig block, it's added entirely
via layouts by an admin user? And, to go further, could we even let the admin user choose

which recipes to show here?

Totally! If the first big idea of Layouts is allowing Twig template blocks to be rearranged and
mixed with dynamic content, then the second big idea is allowing pieces of existing content - like

recipes from our database - to be embedded onto our page by admin users.

How? Edit the Homepage Layout. In the blocks on the left, check out this one called "Grid". Add
that after our "Hero" Twig block. The Grid allows us to add individual items to it... which could be

anything. But, | don't see a way to do that!

Ok, so we know that a lot of blocks, like titles, maps, markdown, etc can be added to our pages
in layouts out-of-the-box with no extra setup work. But the purpose of some blocks - like List,
Grid, and the Gallery blocks down here (which are just fancy grids that have JavaScript
behavior attached to them) - is to render a collection of "items" that are loaded from somewhere
else, like our local database, CMS, or even your Sylius store. The "things" or "items" we can add
to these blocks are called "value types". And... we currently have zero. If this were a Sylius
project, we could install the Sylius and Layouts integration and instantly be able to select

products. The same is true if you're using Ibexa CMS.

Adding_a Value Type

So here's our next big goal: to add our Recipe Doctrine entity as a "value type" in layouts so

that we can create lists and grids containing recipes.

Step one to adding a value type is to tell Layouts about it in a config file. Over in
config/packages/netgen_layouts.yaml, very simply, say value_types, and below that,
doctrine_recipe . This is the internal name of the value type, and we'll refer to it in a few
places. Give it a human-friendly name - Recipe - and for now, set manual_items to false...

and make sure that has an "s" on the end:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 3

4 value_ types:

5 doctrine_recipe:

6 name: Recipe

7 manual items: false

We'll talk about manual_items more later, but it's easier to set this to false to start.

Head over, refresh our layouts page (it's okay to reload it)... and check out our Grid block!
There's a new "Collection type" field and "Manual collection" is our only option right now. So...
this still doesn't seem to be working. | can't change this to anything else... and | also can't select

items manually.

Dynamic vs Manual Queries

There are two ways to add items to one of these "collection" blocks. The first is a dynamic
collection where we choose from a pre-made query. We could choose a "Most Popular" query
that would query for the most popular recipes or a "latest recipes" query, to give two examples.
The second way to choose items is manually: the admin user literally selects which they want

from a list.

Adding_a Query Type

We're going to start with the first type: the dynamic collection. We don't see "Dynamic collection"
as an option yet because we need to create one of those pre-made queries first. Those pre-
made queries are called query_types. We could, for example, create a query type for Recipe

called "Most Popular" and another one called "Latest".

How do we create those? Head back to the config file, add query_types and below that, let's
say latest_recipes. Once again, this is just an "internal name". Also give it a human-

readable name: Latest Recipes:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 8

9 query_types:

10 latest_recipes:

11 name: ‘'Latest Recipes'

So... what do we do now? If we head back and refresh... we get a very nice error that tells us

what to do next:
“Query type handler for Latest_recipes query type does not exist.”

It's trying to tell us that we need to build a class that represent this query type! Let's do it!

The Query Type Handler Class

Over in the src/ directory, I'm going to create a new Layouts/ directory: we'll organize a lot of
our custom Layouts stuff inside here. Then add a new PHP class called... how about

LatestRecipeQueryTypeHandler. Make this implement QueryTypeHandlerInterface:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 2
3 namespace App\Layouts;
T // ... lines 4 - 5
6 use Netgen\Layouts\Collection\QueryType\QueryTypeHandlerInterface;
T // ... lines 7 - 8
9 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
10 {

T // ... lines 11 - 29
30 }

Then go to "Code Generate" (or Command+N on a Mac), and select "Implement methods" to add

the four we need:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 4

5 use Netgen\Layouts\API\Values\Collection\Query;

$ // ... line 6

7 use Netgen\Layouts\Parameters\ParameterBuilderInterface;

8

9 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

10 {

11 public function buildParameters(ParameterBuilderInterface $builder): void
12 {

13 // TODO: Implement buildParameters() method.

14 }

15

16 public function getValues(Query $query, int $offset = 0, ?int $limit = null):

iterable

17 {

18 // TODO: Implement getValues() method.
19 }
20
21 public function getCount(Query $query): int
22 {
23 // TODO: Implement getCount() method.
24 }
25
26 public function isContextual(Query $query): bool
27 {
28 // TODO: Implement isContextual() method.
29 }

30}

Nice! Let's see... I'll leave buildParameters() empty for a minute, but we'll come back to it
soon:

src/Layouts/LatestRecipeQueryTypeHandler.php

0

10
11

()
16
17
18

0

41

// ... lines 1 - 9

class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
{

// ... lines 12 - 15

public function buildParameters(ParameterBuilderInterface $builder): void

{
}
// ... lines 19 - 40

}

The most important method is getValues() . This is where we'll load and return the "items". If

our recipes were stored on an API, we would make an API request here to fetch those. But

since they're in our local database, we'll query for them.

To do that, go to the top of the class, add a __construct() method with

private RecipeRepository $recipeRepository:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 4
5 use App\Repository\RecipeRepository;
T // ... lines 6 - 9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
11 {

12 public function _ construct(private RecipeRepository $recipeRepository)
13 {

14 }

T // ... lines 15 - 40

41 }

Then, down in getValues(), return $this->recipeRepository... and use a method that |
already created inside of RecipeRepository called
->createQueryBuilderOrderedByNewest (). Also add ->setFirstResult($offset) and
->setMaxResults($1limit) . The admin user will be able to choose how many items to show
and they can even skip some. And so, Layouts passes us those values as $1imit and

$offset... and we use them in our query. Finish with ->getQuery() and ->getResult():

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

11 {

$ // ... lines 12 - 19

20 public function getValues(Query $query, int $offset = 0, ?int $limit = null):
iterable

21 {

22 return $this->recipeRepository->createQueryBuilderOrderedByNewest()

23 ->setFirstResult($offset)

24 ->setMaxResults($1limit)

25 ->getQuery()

26 ->getResult();

27 }

T // ... Lines 28 - 40

41 }

Perfect! Below, for getCount(), let's do the exact same thing... except we don't need

->setMaxResults() or ->setFirstResult(). Instead, add

->select('COUNT(recipe.id)"'):

src/Layouts/LatestRecipeQueryTypeHandler.php

0

10
11

0
29
30
31
32
33

0
35

0

41

// ... lines 1 - 9
class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
{
// ... lines 12 - 28
public function getCount(Query $query): int
{

return $this->recipeRepository->createQueryBuilderOrderedByNewest()
->select('COUNT(recipe.id)")

->getQuery()
// ... Lline 34
}
// ... lines 36 - 40

I'm using recipe because, over in RecipeRepository... if we look at the custom method, it

uses recipe as the alias in the query:

src/Repository/RecipeRepository.php

()
18
19

0

43

44
45

0
54
55

// ... lines 1 - 17

class RecipeRepository extends ServiceEntityRepository
{

// ... lines 20 - 42

public function createQueryBuilderOrderedByNewest(string $search = null):
QueryBuilder

{
$queryBuilder = $this->createQueryBuilder('recipe’)
// ... lines 46 - 53

After that, update ->getResult() to be ->getSingleScalarResult():

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 -9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
11 {

T // ... lines 12 - 28

29 public function getCount(Query $query): int

30 {

31 return $this->recipeRepository->createQueryBuilderOrderedByNewest()
32 ->select('COUNT(recipe.id)")

33 ->getQuery()

34 ->getSingleScalarResult();

35 }

T // ... lines 36 - 40

41 %}

Phew! That was a bit of work, but fairly straightforward. Oh, and for isContextual(),

return false:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 9

10 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
11 {

$ // ... lines 12 - 36

37 public function isContextual(Query $query): bool

38 {

39 return false;

40 }

41 }

We won't need it, but this method is kinda cool. If you return true, then you can read
information from the current page to change the query - like if you were on a "category" page

and needed to list only products in that category.

Tagging_the Query Type Handler Class

Anyways, that's it. This is now a functional query type handler! But if you go over and refresh... it
still doesn't work. We get the same error. That's because we need to associate this query type
handler class with the 1atest_recipes query type in our config. To do that, we need to give

the service a tag... and there's a really cool way to do this thanks to Symfony 6.1.

Above the class, add an attribute called #[AutoconfigureTag()]. The name of the tag we

need is netgen_layouts.query_type_handler: this is straight out of the documentation. We

also need to pass an array with a type key setto latest_recipes:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 8

9 use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;

10

11 #[AutoconfigureTag('netgen_layouts.query type handler', ['type' =>
"latest_recipes'])]

12 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

13 {

T // ... lines 14 - 42

43 '}

This type must match what we have in our config:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 8

9 query_types:

10 latest_recipes:
$ // ... lines 11 - 12

It ties the two together.

And now... the page works! If we click on our Grid block... we can switch to "Dynamic collection".

Awesomel! I'll hit Apply and... everything immediately stops loading!

When you have an error in the admin section, there's a good chance it'll show up via an AJAX
call. Often, Layouts will show you the error in a modal. But if it doesn't, no worries: just look

down here on the web debug toolbar. Yup! We have a 400 error.

Let's fix that next by creating a value converter. Then we'll make our query even smarter.

Chapter 7: Value Converter

As soon as we changed our Grid type to use a Dynamic collection... it stopped loading. The
error is hiding down here in this AJAX call. The best way to see it is to open that URL in a new

tab. There we go:
“Value converter for App\Entity\Recipe type does not exist.”

Okay, so far, we've created a custom "value type" for Recipe, which was just this config, and a
custom "query type" which allows us to load a list of the latest recipes by running the query

inside of the associated class. Now we're getting this value converter error.

Creating_the Value Converter Class

A value converter is really simple: it's a class that transforms the underlying object - Recipe -
into a format that Layouts can understand. In that same src/Layouts/ directory, let's create a

RecipeValueConverter class... and make it implement ValueConverterInterface:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 2

3 namespace App\Layouts;

4

5 use Netgen\Layouts\Item\ValueConverterInterface;

6

7 class RecipeValueConverter implements ValueConverterInterface
8 {

T // ... lines 9 - 42
43 }

You know the drill: go to "Code" -> "Generate" (or Command+N on a Mac) and hit "Implement

methods" to generate the seven we need:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 6

7 class RecipeValueConverter implements ValueConverterInterface
8 {

9 public function supports(object $object): bool

10 {

11 // TODO: Implement supports() method.

12 }

13

14 public function getValueType(object $object): string
15 {

16 // TODO: Implement getValueType() method.

17 }

18

19 public function getId(object $object)

20 {

21 // TODO: Implement getId() method.

22 }

23

24 public function getRemoteld(object $object)

25 {

26 // TODO: Implement getRemoteId() method.

27 }

28

29 public function getName(object $object): string
30 {

31 // TODO: Implement getName() method.

32 }

33

34 public function getIsVisible(object $object): bool
35 {

36 // TODO: Implement getIsVisible() method.

37 }

38

39 public function getObject(object $object): object
40 {
41 // TODO: Implement getObject() method.
42 }
43 }

| know, that sounds like a lot, but these are super easy to fill in.

First, for supports(), Layouts will call this method every time it has a "value" it doesn't
understand. We want to tell it that we know how to convert the $object ifit's an instanceof

Recipe:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 4

5 use App\Entity\Recipe;

T // ... lines 6 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

10 public function supports(object $object): bool
11 {
12 return $object instanceof Recipe;
13 }

$ // ... lines 14 - 45
46 }

Second, for getValueType(), return the internal key of our value type: doctrine_recipe:

src/Layouts/RecipeValueConverter.php

T /7 ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ // ... lines 10 - 14

15 public function getValueType(object $object): string

16 {

17 return 'doctrine_recipe';

18 }

T // ... lines 19 - 45
46 }

Next is getId()... and we're literally going to return our ID with $object->getId():

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ // ... lines 10 - 19

20 public function getId(object $object)

21 {

22 return $object->getId();

23 }

T // ... lines 24 - 45
46 }

We don't have autocomplete on this, but we know this object will be a Recipe.

For getRemoteId(), just return $this->getId($object):

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

T // ... lines 10 - 24

25 public function getRemoteld(object $object)

26 {

27 return $this->getId($object);

28 }

T // ... Lines 29 - 45
46 '}

This method is only important if you plan to use the import feature in Layouts to move data, for
example, between staging and production. If were planning to do that, you could give your

objects a UUID and return that here.

Down here, for getName(), this will be a human-readable name shown in the admin area. This

time, to help my editor, let's assert() that $object instanceof Recipe:

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

T // ... lines 10 - 29

30 public function getName(object $object): string
31 {

32 assert($object instanceof Recipe);

T // ... lines 33 - 34

35 }

$ // ... lines 36 - 45
46 }

Two things about this. First, we know that this object will always be a Recipe because, up in
supports(), we said that's that only object we support. Second, if you haven't seen the
assert() function before, if the $object is not an instanceof Recipe, it will throw an
exception. It's a really easy way to tell your editor - or other tools like PHPStan - that the object
is definitely an instance of Recipe.... which means now we get autocompletion when we say

return $object->getName():

src/Layouts/RecipeValueConverter.php

T // ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ /7 ... lines 10 - 29

30 public function getName(object $object): string
31 {

32 assert($object instanceof Recipe);

33

34 return $object->getName();

35 }

$ // ... lines 36 - 45
46 }

Next is getIsVisible(). Just return true:

src/Layouts/RecipeValueConverter.php

$ /... lines 1 - 7

8 «class RecipeValueConverter implements ValueConverterInterface
9 {

T // ... lines 10 - 36

37 public function getIsVisible(object $object): bool

38 {

39 return true;
40 }

T // ... lines 41 - 45
46 '}

If your recipes could be published or unpublished, for example, then you could check that here

to return true or false.

Finally, for getObject(), return $object:

src/Layouts/RecipeValueConverter.php

T /7 ... lines 1 - 7

8 class RecipeValueConverter implements ValueConverterInterface
9 {

$ // ... lines 10 - 41
42 public function getObject(object $object): object
43 {
44 return $object;
45 }

46 }

| know, that seems a bit silly, but this is a handy way for you to change your Recipe after it's

loaded if you needed to. But that's not something that we need to do.
And... done!

This time, unlike with the query type handler, autoconfiguration takes care of everything... so we
don't need to add a manual tag up here. Watch: move over and try refreshing the AJAX
endpoint first. That works! Now go over, refresh the layouts admin page... and whoa. Check it
out! We see a bunch of items on our Grid! If we click that, we see the items loading below.

That's awesome!

Customizing_the Item Results

Notice that we only had to choose "dynamic collection". We... never told the system that we
wanted to use the "latest recipes" query type. That's simply because we only have one query
type... and so Layouts guessed that's what we wanted. If we added a second query type to the
system, we would see another select drop-down here where we could choose between latest

recipes and "most popular" recipes, for example.

So this is using our "latest recipes” query type to get 25 results. If we were trying to recreate this

area here, we would only want 4. So let's limit the number of items to four. Cool!

Checking_out the Frontend

What does this look like on the frontend? Let's find out! Hit "publish and continue editing" and....
once that saves, go over and refresh. It should show up right here but... we see absolutely

nothing! Or... it seems that way at first.

But when we inspect element... and zoom in a bit... there's a div with the class ngl-vt-grid
on it. And inside, a row and inside of that, a bunch of empty divs. If you ignore the clearfix
elements, this renders 1, 2, 3, 4 divs for our four items! So the items are rendering... they're just

rendering empty.

And, that makes sense. We haven't told layouts how recipe items should be rendered yet. More

on that in a few minutes.

Query Type Form Options (Parameters)

But before we get there, | want to make our query type a tiny bit fancier. On the first pass, we
ignored the buildParameters() method. Whelp, it turns out that this is a way for us to add

extra form fields so an admin user can pass options to the query.

For example, let's add an optional search term. Say $builder->add() passing term - that will

be the internal name for this new parameter - then TextType: the one from Netgen\Layouts:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 8

9 use Netgen\Layouts\Parameters\ParameterType\TextType;

T // ... lines 10 - 12

13 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface
14 {

$ // ... lines 15 - 18

19 public function buildParameters(ParameterBuilderInterface $builder): void
20 {

21 $builder->add('term', TextType::class);

22 }

T // ... lines 23 - 44

45 }

There are a bunch of other field types for URLs, dates and more.

With just this, when we refresh the admin section... and click down on the grid, there it is! We've
got a big new box! Of course, if we type anything inside, nothing happens... and it also has a

weird label.

Translating_the Field Label

Let's fix that label first. Layouts defaults to this odd string, but it's already running this through
the translator via a domain called nglayouts. So, in the translations/ directory, create a file

called nglayouts.en.yaml, or use whatever format you want.

Paste the label and set it to "Search term":

translations/nglayouts.en.yaml

1 query.latest recipes.term: 'Search term'

Try the admin section now. When we click... much better! If you still see the old label, try

clearing your cache:

symfony console cache:clear

Sometimes Symfony doesn't notice when you add a new translation file.

Using_the Parameter

Ok, to use the search term, head over to our query type handler. The Query object passed to
getValues() contains any parameters we added. And, | already prepared the
createQueryBuilderOrderedByNewest () method to accept an optional search term! Pass

this $query->getParameter(), its name - term - then ->getValue():

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 12

13 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

14 {

T // ... lines 15 - 23

24 public function getValues(Query $query, int $offset = 0, ?int $limit = null):
iterable

25 {

26 return $this->recipeRepository->createQueryBuilderOrderedByNewest($query-
>getParameter('term')->getValue())

T // ... lines 27 - 30

31 }

$ // ... lines 32 - 44

45 '}

Copy that and repeat it down here for the getCount() method:

src/Layouts/LatestRecipeQueryTypeHandler.php

T // ... lines 1 - 12

13 class LatestRecipeQueryTypeHandler implements QueryTypeHandlerInterface

14 {

T // ... lines 15 - 32

33 public function getCount(Query $query): int

34 {

35 return $this->recipeRepository->createQueryBuilderOrderedByNewest($query-
>getParameter('term')->getValue())

$ // ... lines 36 - 38

39 }

T // ... lines 40 - 44

45 '}

Alrighty, let's take this thing for a test drive! Refresh the Layouts area, go down here and I think
that worked! It shows no items... because | used a pretty silly search term. Clear it out. We get

everything. Now type just a few letters... and watch as it changes below.

Next, let's teach layouts how to render recipe items both on the frontend as well as for the

admin-area preview.

Chapter 8: Iltem View Template

Okay, team, things are looking good. We created a Recipe "value type", a custom query to load

them, and a value converter to help layouts understand our Recipe objects.

What we have not done yet is tell Layouts how to render a Recipe item, item being the word
Layouts uses for the individual "things" that grid and list blocks render. And actually, we need to
tell Layouts both how to render an admin version of a recipe item, which will show up here, as

well as the more-important frontend version of the item.

Adding_an Item View

How an item is rendered is called an "item view". To add a new item view, we'll start in the
config. Add a view key with item_view below it and app below that. I'll add a comment,
because, in Layouts, app means "admin". So what we're about to define under the app key will

be the admin view for our recipe item:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

1 // ... lines 2 - 12

13 view:

14 item_view:

15 # app = admin
16 app:

$ // ... lines 17 - 22

Next, add recipes_app ... with a little note to say that this key is not important:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item_view:

15 # app = admin

16 app:

17 # this key is not important
18 recipes_app:

T // ... lines 19 - 22

Unlike other things, such as latest_recipes, this internal key won't be used anywhere. Below,
we need two important things. First, template - don't include the "s" like | did - set to a
template path, like nglayouts/ - that's a standard directory name to use for templates, but you

could use anything - then, how about admin/recipe_item.html.twig:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

15 # app = admin
16 app:
17 # this key is not important
18 recipes_app:
19 template: 'nglayouts/admin/recipe_item.html.twig"'
T // ... lines 20 - 22

The second important thing is the very special match key. We need to tell Layouts that this is
the template that should be used when a recipe item is being rendered. For example, imagine if
we had two value types: recipes and also blog posts. Well, layouts would need to know that this

is the template to use for recipes... but to use a different item template for blog posts.

The "match" Config Key

To do that, we'll use a strange syntax: item\value_type setto doctrine_recipe:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

15 # app = admin

16 app:

17 # this key is not important

18 recipes_app:

19 template: 'nglayouts/admin/recipe_item.html.twig’
20 match:

21 item\value type: 'doctrine_recipe’

Where doctrine_recipe references the name of our value type up here:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ /... lines 2 - 3

4 value_types:

5 doctrine_recipe:
T // ... lines 6 - 22

We're going to see this match key several more times in this tutorial. Layouts has a bunch of
built-in "matchers", which are identified by strings like item\value_type. These are used to
help match one piece of config, like this template, with some other piece of config, like the
doctrine_recipe value type. There are a finite number of these matchers, and we're going to

see the most important ones along the way. So don't worry too much about them.

Oh, but let me fix my typo: this should be template with no"s".

The Two View Types: item_view & block_view

Anyways, | want to mention one quick thing about the view config key: there is only a small

number of sub-keys that go under it.

Find your terminal and run:

php ./bin/console debug:config netgen_layouts view

This will dump a huge list of config, but don't be overwhelmed! We'll check out the important
parts of this later. What | want you to look at are the root keys that go below view, like

block_view and layout_view.

It turns out that there are six different keys you are allowed to put below the view key in your
config, but we only care about two of them... which is why I'm mentioning this. When it comes to
customizing your views, it's really quite simple! The first key we care about is item_view, which
controls the templates used when rendering "items": so when rendering things inside of a grid or
list. The only other sub-key we care about is block_view, which is how you configure the

template used to render different block types, like the title block or the text block.

Yup, you're either rendering a block and want to customize its template or you're rendering an
item inside of a block and you want to customize the template for that item. So the configuration

looks gigantic, but most of these things are internal and you'll never need to worry about them.

Creating_the Admin Template

Ok: we have our item_view for our doctrine_recipe for the admin area. Let's go add that
template. In the templates/ directory, create two new sub-directories: nglayouts/admin/ .
And then, a new file called recipe_item.html.twig. Inside, write Does it work? and... let's

also use the dump() function so we can see what variables we have access to:

templates/nglayouts/admin/recipe_item.html.twig

1 Does it work?

2 {{ dump() }}

Alright, head back to your browser, refresh the layouts admin and... it does work! And,
apparently, we have access to several variables. The most important is item. This is a

CmsItem object from Layouts... and it has a property called object set to our Recipe!

Let's use that! Say {{ item.object.name }}, then a pipe, and... let's also print a date:
{{ item.object.createdAt }} - one of the other properties on Recipe piped into the date
filter with Y-m-d:

templates/nglayouts/admin/recipe_item.html.twig

1 {{ item.object.name }} | <time>{{ item.object.createdAt|date('Y-m-d') }}</time>

Let's check it! Move over, refresh and... got it! You can make this fancier if you want, but that'll

work for us.

Next: let's create the frontend item view.

Chapter 9: Frontend Item View

Time to create the Recipe item view for the frontend. This starts almost exactly the same. In
fact, copy the admin config... then paste. In Layouts, we know that the app key means the

"admin" section. And, it turns out, default is used to mean the frontend:

config/packages/netgen_layouts.yaml

1 netgen layouts:

T // ... lines 2 - 12

13 view:

14 item view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

24 # this key is not important
25 recipes_default:

$ // ... lines 26 - 29

Frontend (default) item_view & Template

Once again, this internal name isn't important, for the template, use the same path but

frontend... and keep match exactly the same:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item_view:

T // ... lines 15 - 21

22 # default = frontend

23 default:

24 # this key is not important

25 recipes_default:

26 template: 'nglayouts/frontend/recipe_item.html.twig'
27 match:

28 item\value_type: 'doctrine_recipe’

| love when things are boring and easy! Let's go create that template. In nglayouts/, make the

frontend/ directory... and inside, recipe_item.html.twig.

Layouts will pass this the same variables as the admin item template. This means we can, once
again, use {{ item.object }} to access our Recipe object. Let's print the name key to see if

things are working:

templates/nglayouts/frontend/recipe_item.html.twig

1 {{ item.object.name }}

And... they are working. It's alive!

Checking_Templates in the Twig_Profiler

One of my favorite things to do when | start working with templates inside Layouts is to click the
Twig item on the web debug toolbar. Here, we can actually see how Layouts is rendering. Yup, it
renders layout_2.html.twig... then starts rendering each zone. It renders our navigation
block, the hero block, then, eventually down here, the grid. You can see it's using
grid/3_columns.html.twig. This is something we can control in the admin area. Click the
grid. On the right, we're looking at the "Content" tab. But there's also a "Design" tab. Change

this to "4 columns"... and I'll hit "Publish and continue editing".

If we refreshed now and reloaded the Twig profiler, we would see it rendering
4 _columns.html.twig. Then, hey! Inside of each column, it renders our
recipe_item.html.twig. This is just really cool to see, and we're going to look at this again

later when we talk about overriding core templates.

Bootstrap 4 CSS

One thing | do need to mention is that our app is using Bootstrap version 4, not Bootstrap 5. The
reason is because, right now, the grid template renders Bootstrap version 4 markup. If you
wanted to use Bootstrap 5, that's totally possible, but you would need to override these columns
templates - like 4_columns.html.twig - to tweak the classes. Overriding core templates is

actually super easy, and we'll talk about how to do it soon.

Customizing_our Frontend Template

Ok, let's bring this frontend view to life! Open up the homepage template:
main/homepage.html.twig... and scroll up to where we loop over the latest recipes. Perfect.
What | basically want to do is steal the markup for one of these recipe tiles... then paste that into

the frontend template:

templates/nglayouts/frontend/recipe_item.html.twig

1 <a href="{{ path('app_recipes_show', { slug: recipe.slug }) }}" class="text-
center recipe-container p-3">

2 <div class="p-3 entity-img">

w

<img src="{{ asset(recipe.imageUrl) }}" width="auto" height="115" alt="{{
recipe.name }} image">
</div>
<h3 class="mt-3">{{ recipe.name }}</h3>
<small>{{ recipe.timeAsWords }} (prep & cook)</small>

N ool b

Now we just need to tweak some variables: instead of recipe.slug, it needs to be

item.object.slug. I'l do a find and replace: replace recipe. with item.object.:

templates/nglayouts/frontend/recipe_item.html.twig

1 <a href="{{ path('app_recipes_show', { slug: item.object.slug }) }}" class="text-
center recipe-container p-3">

2 <div class="p-3 entity-img">

3 <img src="{{ asset(item.object.imageUrl) }}" width="auto" height="115"
alt="{{ item.object.name }} image">

4 </div>

5 <h3 class="mt-3">{{ item.object.name }}</h3>

6 <small>{{ item.object.timeAsWords }} (prep & cook)</small>

7

Wrapping Blocks in a Container

Nice! Let's see if that worked. Move over, refresh... and it did! That looks like the frontend. We're
awesome! Except, it's missing the "gutter" that we have in the original. Inspect element. Ah, the
difference is that the original columns were inside of a container div, which adds the margin.

In the new code, we are inside of a row... but not a container.

To fix this in Layouts, let's add our favorite utility block: a column! Move the grid into that column.
Then, we could add a CSS class like we did before in the hero area. But instead, take a shortcut

and check "Wrap in container".

Hit "Publish and continue editing" and refresh. Whoops - wrong page. Head back to the

homepage and... it looks great! It's now inside of an element with a container class!

This "Wrap in container" is super handy: it literally adds an extra div around your block with
class="container" and every block supports this. Heck, we didn't even need a column: we

could have just checked the "Wrap in container" on the grid itself.

The only reason | put this inside of a column is so we can also add the "Latest Recipes" header
there too. Drag a new "Title" block into the column. Get outta here Apple! Inside, type "Latest

Recipes" and change to an h2.

Hit our favorite "Publish and continue editing", refresh and... even closer! We just need to center
this... and maybe give it a little top margin. Add two classes to the title: text-center and my-5
for some vertical margin: both classes come from Bootstrap. I'm just repeating the classes that

my designer was already using in the template.

Publish that... and when we try it... it matches exactly. Woo! But now, we have full control over
the recipes inside! We could change to a different query, change the number of items or, in a
little while, we could choose to manually select the exact recipes to show. We can also now

embed lists and grids of recipes anywhere we want on the site.

Cleanup!

To celebrate, remove the entire 1latest_recipes Twig block:

templates/main/homepage.html. twig

7

15
16
17
18
19
20
21

22
23

24
25
26
27
28
29
30
31

32
33
0

// ... lines 1 - 14
{% block latest recipes %}
<div class="container">
<h2 class="text-center my-5">Latest Recipes</h2>
<div class="row">
{% for recipe in latestRecipes %}
<div class="col-3">
<a href="{{ path('app_recipes_show', { slug: recipe.slug })
}}" class="text-center recipe-container p-3">
<div class="p-3 entity-img">
<img src="{{ asset(recipe.imageUrl) }}" width="auto"
height="115" alt="{{ recipe.name }} image">
</div>
<h3 class="mt-3">{{ recipe.name }}</h3>
<small>{{ recipe.timeAsWords }} (prep & cook)</small>

</div>
{% endfor %}
</div>
<div class="text-center mt-5 text-underline"><u>Show More
</u></div>

</div>
{% endblock %}
// ... lines 34 - 706

And, up in MainController, delete the query, the variable, the repository argument and the

use statement:

src/Controller/MainController.php

O 00 N O U1 b W

10
11
12
13
14
15
16
17

// ... Llines 1 - 2

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class MainController extends AbstractController

{
#[Route('/', name: 'app_homepage')]
public function homepage(): Response

{

return $this->render('main/homepage.html.twig', [

1)

When we refresh, we have just one "Latest Recipes" section coming from our dynamic block.
Oh, but notice in the layouts admin, we're still rendering the 1latest_recipes block... even

though it doesn't exist anymore! Layouts is pretty forgiving to admin users: instead of throwing

an error, it simply renders nothing.
But let's delete that... then publish... and take one last look. I love it!

Next: now that we have this grid inside of layouts, we can do some cool stuff with it, like

enabling Ajax-powered pagination.

Chapter 10: Ajax Pagination & CSS/JS

Now that we're rendering these recipe items via the grid block type, check out what we can do.
Click the grid, go to the design tab and then check "Enable pagination". Then you can choose
between a pager style with page links, like 1, 2, 3 and 4, or just a "load more" button. Let's use

that one.

All right, hit "Publish and continue editing". Then... once that saves, refresh to see... absolutely
nothing! The pagination is powered entirely via JavaScript and Ajax. And we don't see anything

because we haven't, yet, included the JavaScript needed onto our page.

Including_the CSS/JS Templates

Adding it is pretty easy. Go to templates/base.html.twig. Up here in the head area, we're
going to include two templates. The first is:
@NetgenLayoutsStandard/page_head.html.twig... and pass this an extra variable:

full: true:

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

3 <head>

T /... lines 4 - 7

8 {{ include('@NetgenLayoutsStandard/page_head.html.twig', { full: true })

1}

T // ... lines 9 - 16
17 </head>

$ // ... lines 18 - 69
70 </html>

This will load the CSS and JavaScript that support these gallery items down here. I'm not gonna
talk about these gallery blocks in this tutorial, but they're basically like a list or grid block, except

that they have JavaScript to turn them into sliders or thumb galleries.

So this includes the CSS and JavaScript for those, as well as a small grid CSS file to help

render the grid columns on your page in case you don't have Bootstrap. The full: true tells it

to bring in jQuery as well as two other JavaScript libraries called magnific-popup and

swiper. All of these are needed for those gallery blocks.

So, yes, if you're not using one of those gallery blocks, you could avoid including this file

entirely. But I'll leave it.

But notice, | didn't say anything about pagination. For that, we need to include a second
template. Copy this line, paste, remove the word Standard and this doesn't need the full

variable:

templates/base.html.twig

1 <!DOCTYPE html>

2 <html>

3 <head>

T // ... lines 4 - 7

8 {{ include('@NetgenLayoutsStandard/page_head.html.twig', { full: true })

1}

9 {{ include('@NetgenLayouts/page_head.html.twig') }}

$ // ... lines 10 - 16
17 </head>

T // ... lines 18 - 69
70 </html>

This template is dead simple: it brings in a tiny bit of CSS and a little bit of JavaScript to power
Ajax pagination. And these are the only two templates that you'll ever need to include for

Layouts JavaScript and CSS.

Adding_the "ajax" Item Template

Refresh and... there it is! And when we click the new link... it explodes with a 500 error! Whoops.

Open that URL in a new tab. Interesting:
“No template match could be found for "item_view" view and content "ajax".”

When we click "Load more", no surprise, that Ajax call renders the next recipe items. You might
think that this would re-use our "frontend" item view template. But... there's actually a different
section specifically for when content is rendered via Ajax. Copy the default frontend section

entirely, paste, then change it to ajax:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 view:

14 item_view:

T // ... lines 15 - 29

30 ajax:

31 # this key is not important

32 latest_recipes_default:

33 template: 'nglayouts/frontend/recipe_item.html.twig'
34 match:

35 item\value type: 'doctrine_recipe’

Nothing else needs to change: when we're in ajax mode, use the normal frontend template.

Now, if we refresh the Ajax endpoint... it works! Reload the homepage and click "Load more".

That is so nice!

Translating_ the Pagination Button

Though, minor thing, our designers really want to use the text "Show More". No problem:
everything that Layouts renders is processed through the translator. Click the translation icon on
the web debug toolbar. Oh, there it is! Apparently the translation key is

collection.pager.load_more.

Copy that... then go open our translation file - nglayouts.en.yaml - and paste. My editor
changed the format... which actually would work... but I'll go back to the flatter format. Set this to

"Show More":

translations/nglayouts.en.yaml

T /7 ... line 1
2 collection.pager.load_more: 'Show More'

Spin over and... we got it!

CSS Changes to Pagination

Ok, one more change to make our designers happy. Inspect element on the button. Layouts
adds a bunch of classes, which are styled via that CSS we included. And, of course, we can

override that if needed.

In our editor, open assets/styles/app.css. As a reminder, we're already running Webpack
Encore in the background. So, if we change this file, that change will automatically be rebuilt

and used on the frontend.

At the bottom, I'll paste some CSS to give that button more margin but no border:

assets/styles/app.css

$ // ... lines 1 - 101

102 .ajax-navigation {

103 margin-top: 2rem;
104 }

105 .ajax-load-more {

106 border: none;

107 }

Flip back over, refresh and... our designers are happy.

So thanks to layouts, we get free Ajax pagination, which we can pretty easily customize. That's

sweet.

Grids vs Custom Twig_Content

At this point, because we're able to render grids and lists of recipes, we could go into the
"Recipes List" layout and replace this hardcoded HTML, which comes from the template:
templates/recipes/list.html.twig. Yup, we could, in theory, remove this and replace it

with a list block.

The only problem... is that it wouldn't look quite right. Instead of rendering like it does now,

Layouts would use our item template: so each item would look like it does on the homepage.

Now, we can fix that by creating a second way to render recipe items, and we will talk about that
later. But I'm bringing this up for an important reason. Unless we're planning to reuse this list
and how it looks on other pages on our site, there's no huge benefit to doing the work to convert
it into something that we can render via Layouts. Since it's only used here, rendering it via Twig

is perfectly fine.

Next: let's improve the recipe system by making it possible to manually select items.

Chapter 11: Content Browser

We can now embed lists, grids, or thumb galleries of recipes into any layout dynamically. That's
super cool! And we could always create more query types to, for example, choose between the

latest recipes or most popular recipes.

But what about being able to manually select recipes? Maybe we want to feature four specific
recipes on the homepage. In the Layouts area, on the grid, if you change the "Collection type",

we can switch to "Manual collection". But then... we can't actually select any items.

Enabling_ Manual Items in the Config

To allow items (in our case, recipes) to be selected manually, we first need to allow that in the
config. Earlier, when we created the value_types config, we set manual_items to false.

Change that to true:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 3

4 value_types:

5 doctrine_recipe:

T // ... line 6

7 manual items: true
T // ... lines 8 - 36

And now, when we try the page, we're greeted with an error!
“Netgen Content Browser backend for doctrine_recipe value type does not exist.”

Yep! We need to implement a class that helps Layouts browse our recipes. That's called a

"content browser".

Configuring_the "item type" in NetgenContentBrowserBundle

Adding a content browser is actually done by a completely different bundle, which you can use
outside of Netgen Layouts. It's handy if you need a nice interface for browsing and selecting

items.

Since the content browser lives in a different bundle, it's not required, but I'm going to configure
this with a new config file called netgen_content_browser.yaml. Inside, set the root key to

netgen_content_browser to configure the "NetgenContentBrowserBundle":

config/packages/netgen_content_browser.yaml

1 netgen_content_browser:
T // ... lines 2 - 8

Inside of this, we get to describe all of the different "manual things" that we want to be able to
browse. To do that, add an item_types key, and, for the first item, go grab the value type's
internal name - doctrine_recipe - so that these match, paste, then give this a name. How

about... Recipes with a cute strawberry icon:

config/packages/netgen content browser.yaml

1 netgen_content_browser:
2 item_types:
must match "value_types" key in netgen_layouts config
doctrine_recipe:
name: 'Recipes @'
// ... lines 6 - 8

© v MW

The only other thing we need here is a preview key with a template sub-key, which I'll set to

nglayouts/content_browser/recipe_preview.html.twig:

config/packages/netgen_content_browser.yaml

1 netgen_content_browser:

2 item types:

3 # must match "value_types" key in netgen_layouts config

4 doctrine_recipe:

5 name: 'Recipes @'

6 preview:

7 template: 'nglayouts/content_browser/recipe_preview.html.twig'

Oh! And make sure you spell "template" correctly. Whoops! Anyways, we're setting this
preview.template because the configuration requires us to... but we'll worry about creating

that template later.

Creating_the Backend Class

If we head over and refresh... we get the same error. That's because we need a backend class
that will connect to this new item type. Creating a backend is a simple process, but it does

require a few different classes.

In the src/ directory, let's create a new directory called ContentBrowser/ ... and inside of that,
a PHP class called RecipeBrowserBackend. This needs to implement BackendInterface: the

one from Netgen\ContentBrowser\Backend:

src/ContentBrowser/RecipeBrowserBackend. php

T // ... lines 1 - 2

3 namespace App\ContentBrowser;

4

5 use Netgen\ContentBrowser\Backend\BackendInterface;

T // ... lines 6 - 8

9 class RecipeBrowserBackend implements BackendInterface
10 {

$ // ... lines 11 - 54

55 }

Then, go to "Code"->"Generate" (or Command+N on a Mac) to implement the nine methods this

needs! Don't worry: it's not as bad as it looks:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 2

3 namespace App\ContentBrowser;

4

5 use Netgen\ContentBrowser\Backend\BackendInterface;

6 use Netgen\ContentBrowser\Item\ItemInterface;

7 use Netgen\ContentBrowser\Item\LocationInterface;

8

9 «class RecipeBrowserBackend implements BackendInterface
10 {

11 public function getSections(): iterable

12 {

13 // TODO: Implement getSections() method.

14 }

15

16 public function loadLocation($id): LocationInterface
17 {

18 // TODO: Implement loadLocation() method.

19 }

20

21 public function loadItem($value): ItemInterface

22 {

23 // TODO: Implement loadItem() method.

24 }

25

26 public function getSubLocations(LocationInterface $location): iterable
27 {

28 // TODO: Implement getSubLocations() method.

29 }

30

31 public function getSubLocationsCount(LocationInterface $location): int
32 {

33 // TODO: Implement getSublLocationsCount() method.
34 }

35

36 public function getSubItems(LocationInterface $location, int $offset = 0, int

$limit = 25): iterable

37 {

38 // TODO: Implement getSubItems() method.

39 }
40
41 public function getSubItemsCount(LocationInterface $location): int
42 {
43 // TODO: Implement getSubItemsCount() method.
44 }

45

46 public function search(string $searchText, int $offset = @, int $limit = 25):

iterable
47 {
48 // TODO: Implement search() method.
49 }
50
51 public function searchCount(string $searchText): int
52 {
53 // TODO: Implement searchCount() method.
54 }
55}

Finally, to link this backend class to the item type in our config, we need to give this service a
tag. We'll do this the same way we did earlier for the query type: with AutoconfigureTag. In
fact, I'll steal this AutoconfigureTag since I'm here... paste that... and add the use statement
for it. This time, the tag name is netgen_content_browser.backend, and instead of type,
use item_type. Set this to the key we have in the config: doctrine_recipe. Paste and...

cool!

src/ContentBrowser/RecipeBrowserBackend. php

1 // ... lines 1 - 7
8 use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;
9

10 #[AutoconfigureTag('netgen_content_browser.backend', ['item_type' =>
"doctrine_recipe’])]

11 class RecipeBrowserBackend implements BackendInterface
12 {

1 // ... lines 13 - 56

57 }

This time when we refresh... the error is gone. Let's temporarily add a new Grid to the layout...
and choose "Manual collection". Now... check it out! Because we have a backend, we see an
"Add items" button! And when we click it... it fails. That shouldn't be too surprising... since our
backend class is still completely empty. If you want to see the exact error, you could open up the
AJAX call.

Creating_the Location Class

The content browser system works like this: in these methods, we describe a "tree structure”,
kind of like a filesystem. "Locations" are like directories and "items" are like the "files", or, in our

case, the individual recipes.

We're going to keep things really simple. Instead of having different "directories" or "categories"
of recipes that you can browse, we're going to have a single directory - or "location" - that all

recipes will live inside. You'll see what this looks like in the Ul in a few minutes.

To get this working, inside src/ContentBrowser/, we need to create a class that represents a
location. I'll call it BrowserRootLocation. This class... isn't super interesting: it's just some low-
level plumbing that we must have. Make this implement LocationInterface, and below,

generate the three methods we need:

src/ContentBrowser/BrowserRootLocation.php

T // ... lines 1 - 2

3 namespace App\ContentBrowser;
4
5 wuse Netgen\ContentBrowser\Item\LocationInterface;
6
7 class BrowserRootLocation implements LocationInterface
8 {
9 public function getLocationId()
10 {
11 // TODO: Implement getlLocationId() method.
12 }
13
14 public function getName(): string
15 {
16 // TODO: Implement getName() method.
17 }
18
19 public function getParentId()
20 {
21 // TODO: Implement getParentId() method.
22 }
23 }

Again, this class will represent the one and only "location". So for getLocationId(), we can
return anything. I'm going to return 0. You'll see how that's used in a second. For getName(),
this is what will be displayed in the admin section. I'll return 'All'. And for getParentId(),

return null:

src/ContentBrowser/BrowserRootLocation.php

T // ... lines 1 - 6

7 class BrowserRootLocation implements LocationInterface
8 {

9 public function getlLocationId()
10 {

11 return 0;

12 }

13

14 public function getName(): string
15 {

16 return 'All’;

17 }

18

19 public function getParentId()

20 {

21 return null;

22 }

23 }

If you have a more complex system with multiple sub-directories, you could create a hierarchy

of locations.

All right, let's update our backend class to use this. Up here, getSections() will be called as
soon as the user opens up the content browser. Our job is to return all of the root "directories" -

or "locations". We have just one: return [new BrowserRootLocation()]:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface
12 {

13 public function getSections(): iterable

14 {

15 return [new BrowserRootLocation()];

16 }

$ // ... lines 17 - 60

61 }

After this is called, the content browser will call getLocationId() on each one and make an
AJAX request to get more information about them. For us, this will happen just one time where
the ID is @. It looks weird, but all we need to do is return that same location:

if ($id === '@'), then return new BrowserRootLocation():

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface
12 {

$ // ... lines 13 - 17

18 public function loadLocation($id): LocationInterface
19 {

20 if ($id === '0') {

21 return new BrowserRootLocation();

22 }

$ // ... lines 23 - 24

25 }

$ // ... lines 26 - 60

61 }

Notice I'm using '@" as a string, but... in getLocationId() we returned an integer:

src/ContentBrowser/BrowserRootLocation.php

T // ... lines 1 - 6

7 class BrowserRootLocation implements LocationInterface
8 {

9 public function getLocationId()

10 {
11 return 0;
12 }

T // ... lines 13 - 22
23 }

That's because the id will be passed into JavaScript and used in an Ajax call. By the time it gets

here, it'll be a string. A small detail to keep in mind.

At the end, just in case throw a new \InvalidArgumentException() and pass a message

about an invalid location:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface

12 {

T // ... lines 13 - 17

18 public function loadLocation($id): LocationInterface

19 {

20 if ($id === '0') {

21 return new BrowserRootLocation();

22 }

23

24 throw new \InvalidArgumentException(sprintf('Invalid location "%s"',
$id));

25 }

$ // ... lines 26 - 606

61 1}

Ok! So our backend has one location. For the other methods, let's return the simplest thing
possible. Leave loadItem() empty for a moment, for getSubLocations(), return [], for
getSubLocationsCount(), return 0, for getSubItems(), return [], for
getSubItemsCount(), return @, for search(), return []... and finally, for

searchCount(), return o:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 10

11 class RecipeBrowserBackend implements BackendInterface

12 {

$ // ... lines 13 - 26

27 public function loadItem($value): ItemInterface

28 {

29 // TODO: Implement loadItem() method.

30 }

31

32 public function getSubLocations(LocationInterface $location): iterable

33 {

34 return [];

35 }

36

37 public function getSublLocationsCount(LocationInterface $location): int

38 {

39 return 0;

40 }

41

42 public function getSubItems(LocationInterface $location, int $offset = 0, int
$limit = 25): iterable

43 {

44 return [];

45 }

46

47 public function getSubItemsCount(LocationInterface $location): int

48 {

49 return 0;

50 }

51

52 public function search(string $searchText, int $offset = 0, int $limit = 25):
iterable

53 {

54 return [];

55 }

56

57 public function searchCount(string $searchText): int

58 {

59 return 0;

60 }

61 }

Phew... We'll talk about each of those methods later. But our backend class is at least

somewhat functional now.

If we refresh the admin area again... click on our grid, and go to "Add Iltems"... it loads! Say
"hello" to the content browser! It's currently empty, but you can see the "All", which is from our
one location. There are no items inside yet... because we need to return them from
getSubItems(). Let's do that next

Chapter 12: Content Browser: Returning the Iltems

Our Content Browser is sort of working. We can see our one location... we just don't have any
results yet. That's because, for whatever location is selected, the Content Browser calls
getSubItems(). Our job here is to return the results. In this case, all of our recipes. If we had
multiple locations, like recipes divided into categories, we could use the $location variable to

return the subset. But we'll query and return all recipes.

Querying_in getSubltems()

To do that, go to the top of the class and create a constructor with

private RecipeRepository $recipeRepository:

src/ContentBrowser/RecipeBrowserBackend. php

1 // ... lines 1 - 4

5 use App\Repository\RecipeRepository;

T // ... lines 6 - 11
12 class RecipeBrowserBackend implements BackendInterface
13 {
14 public function __ construct(private RecipeRepository $recipeRepository)
15 {
16 }

1 // ... lines 17 - 70
71 }

Then, down here in getSubItems(), say $recipes = $this->recipeRepository and use
that same method from earlier: ->createQueryBuilderOrderedByNewest (). Below add
->setFirstResult($offset)... and ->setMaxResults($limit). The Content Browser
comes with pagination built-in. It passes us the offset and limit for whatever page the user is on,

we plug it into the query, and everyone is happy. Finish with getQuery() and getResult():

src/ContentBrowser/RecipeBrowserBackend.php

T /7 ... lines 1 - 11

12 class RecipeBrowserBackend implements BackendInterface

13 {

T // ... lines 14 - 46

47 public function getSubItems(LocationInterface $location, int $offset = 0, int
$1limit = 25): iterable

48 {

49 $recipes = $this->recipeRepository

50 ->createQueryBuilderOrderedByNewest ()

51 ->setFirstResult($offset)

52 ->setMaxResults($limit)

53 ->getQuery()

54 ->getResult();

55 }

$ // ... Llines 56 - 70

71 }

Notice that getSubItems() returns an iterable... actually it's supposed to be an iterable of

something called an ItemInterface. So we can't just return these Recipe objects.

Creating_the Iteminterface Wrapper Class

Instead, in src/ContentBrowser/, create another class called, how about
RecipeBrowserItem. Make this implement ItemInterface - the one from

Netgen\ContentBrowser - then generate the four methods it needs:

src/ContentBrowser/RecipeBrowserItem.php

7

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// ... Llines 1 - 2

namespace App\ContentBrowser;

use Netgen\ContentBrowser\Item\ItemInterface;

class RecipeBrowserItem implements ItemInterface

{
public function getValue()
{
// TODO: Implement getValue() method.
}
public function getName(): string
{
// TODO: Implement getName() method.
}
public function isVisible(): bool
{
// TODO: Implement isVisible() method.
}
public function isSelectable(): bool
{
// TODO: Implement isSelectable() method.
}
}

This class will be a tiny wrapper around a Recipe object. Watch: add a __construct()

method with private Recipe $recipe:

src/ContentBrowser/RecipeBrowserItem.php

7

O 00 & U

10
11
12

7

33

// ... lines 1 - 4

use App\Entity\Recipe;

// ... lines 6 - 7

class RecipeBrowserItem implements ItemInterface

{
public function __construct(private Recipe $recipe)
{
}

// ... lines 13 - 32

}

Now, for getValue(), this should return the "identifier", so

return $this->recipe->getId(). For getName(), we just need something visual we can

show, like $this->recipe->getName().And for isVisible(), return true. That's useful if

a Recipe could be published or unpublished. We have a similar situation with

isSelectable():
T // ... lines 1 -7
8 class RecipeBrowserItem implements ItemInterface
9 {
$ // ... lines 10 - 13
14 public function getValue()
15 {
16 return $this->recipe->getId();
17 }
18
19 public function getName(): string
20 {
21 return $this->recipe->getName();
22 }
23
24 public function isVisible(): bool
25 {
26 return true;
27 }
28
29 public function isSelectable(): bool
30 {
31 return true;
32 }
33 }

If you had a set of rules where you wanted to show certain recipes but make them not

selectable, you could return false here.

And... we're done! That was easy!

Back over in our backend class, we need to turn these Recipe objects into
RecipeBrowserItem objects. We can do that with array_map() . I'll use the fancy fn() syntax
again, which will receive a Recipe $recipe argument, followed by

=> new RecipeBrowserItem($recipe). Forthe second arg, pass $recipes:

src/ContentBrowser/RecipeBrowserBackend.php

I
13
14

0

48

49

I
56
57

58

0

74

// ... lines 1 - 12

class RecipeBrowserBackend implements BackendInterface

{
// ... lines 15 - 47

public function getSubItems(LocationInterface $location, int $offset = 0, int
$1limit = 25): iterable

{
// ... Lines 50 - 55

return array_map(fn(Recipe $recipe) => new RecipeBrowserItem($recipe),
$recipes);

}
// ... lines 59 - 73

}

This is a fancy way of saying:

“Loop over all the recipes in the system, create a new RecipeBrowserItem for each one,

and return that new array of items.”

All right, let's see what this looks like! Refresh the layout, click on the Grid, go back to "Add

items" and... got it! We see ten items!

Implementing_getSubltemsCount()

But we should have multiple pages. Ah, that's because we're still returning @ from

getSubItemsCount() . Let's fix that. Steal the query from above... paste, return this, remove

setFirstResult() and setMaxResults(), add ->select('COUNT(recipe.id)"), and then

call getSingleScalarResult() atthe bottom:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface
14 {

$ /7 ... lines 15 - 59

60 public function getSubItemsCount(LocationInterface $location): int
61 {

62 return $this->recipeRepository

63 ->createQueryBuilderOrderedByNewest ()

64 ->select('COUNT(recipe.id)")

65 ->getQuery()

66 ->getSingleScalarResult();

67 }

T // ... lines 68 - 77

78 }

And just like that, when we refresh... and open the Content Browser... we have pages!

Adding_the Search Functionality

@ Tip

Though this solution works fine, search() and searchCount() are deprecated in favor of
searchItems() and searchItemsCount(). To use the new methods, keep the old
methods (because they're still part of the interface) and use the following for the new

methods:

class RecipeBrowserBackend implements BackendInterface

{
[oo

public function search(string $searchText, int $offset = 0, int $limit = 25): i
{
// deprecated

return [];

public function searchCount(string $searchText): int
{
// deprecated

return 0;

public function searchItems(SearchQuery $searchQuery)
{
$recipes = $this->recipeRepository

->createQueryBuilderOrderedByNewest ($searchQuery->getSearchText())
->setFirstResult($searchQuery->getOffset())
->setMaxResults($searchQuery->getLimit())
->getQuery()
->getResult();

return new RecipeBrowserSearchResults($recipes);

public function searchItemsCount(SearchQuery $searchQuery)
{
return $this->recipeRepository
->createQueryBuilderOrderedByNewest ($searchQuery->getSearchText())
->select('COUNT(recipe.id)")
->getQuery()
->getSingleScalarResult();

You'll also need a new RecipeBrowserSearchResults class:

// src/ContentBrowser/RecipeBrowserSearchResults.php

namespace App\ContentBrowser;

use Netgen\ContentBrowser\Backend\SearchResultInterface;
use App\Entity\Recipe;

class RecipeBrowserSearchResults implements SearchResultInterface

{
public function __construct(private array $results)

{
}

public function getResults(): iterable
{

return array_map(fn (Recipe $recipe) => new RecipeBrowserItem($recipe), $th

Thanks to Joris in the comments for noticing this!

Ok, but could we search for recipes? Absolutely. We can leverage search() and
searchCount (). This is simple. Steal all of the logic from getSubItems(), paste into

search() and pass $searchText to the QueryBuilder method, which already allows this
argument:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface

14 {

T // ... lines 15 - 68

69 public function search(string $searchText, int $offset = @, int $limit = 25):
iterable

70 {

71 $recipes = $this->recipeRepository

72 ->createQueryBuilderOrderedByNewest ($searchText)

73 ->setFirstResult($offset)

74 ->setMaxResults($limit)

75 ->getQuery()

76 ->getResult();

77

78 return array_map(fn(Recipe $recipe) => new RecipeBrowserItem($recipe),
$recipes);

79 }

T // ... Lines 80 - 88

89 }

If you want to have a bit less code duplication, you could isolate this into a private method at
the bottom.

Also copy the logic from the other count method... paste that into searchCount(), and pass it

$searchText as well:

src/ContentBrowser/RecipeBrowserBackend.php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface
14 {

T // ... lines 15 - 8o

81 public function searchCount(string $searchText): int
82 {

83 return $this->recipeRepository

84 ->createQueryBuilderOrderedByNewest ($searchText)
85 ->select('COUNT(recipe.id)")

86 ->getQuery()

87 ->getSingleScalarResult();

88 }

89 }

And just like that, if we move over here and try to search... it works. That's awesome!

Alright - select a few items, hit "Confirm" and... oh no! It breaks! It still says "Loading". If you look

down on the web debug toolbar, we have a 400 error. Dang. When we open that up, we see:

“Value loader for doctrine_recipe value type does not exist.”

There's just one final piece we need: A very simple class called the "value loader". That's next.

Chapter 13: Value Loader + Preview Template

So our content browser was working beautifully... until we selected an item. At that time, it chose

to do an odd thing: explode! The Ajax call that failed says:
“Value loader for doctrine_recipe value type does not exist.”

To review: we have a custom value type called doctrine_recipe, which we created so that we
could add grids and lists of Recipe entities. For this to work, we have (1): a value converter to
convert Recipe objects into a format understood by layouts. (2) a query type to allow us to use
dynamic collections. (3) a browser backend class to allow us to select manual items. And now
(4), we need a value loader that is able to take the "id" of these manually-selected items and

turn them into Recipe objects. This will be the last "thing" we need for our value type, | promise!

Creating_& Tagging_the Value Loader

Inside the src/Layouts/ directory, create a new class called RecipeValueloader, make it

implement ValueLoaderInterface and generate the two methods it needs:

src/Layouts/RecipeValueloader.php

T // ... lines 1 - 2

3 namespace App\Layouts;

4

5 use Netgen\Layouts\Item\ValuelLoaderInterface;

6

7 class RecipeValueloader implements ValuelLoaderInterface
8 {

9 public function load($id): ?object
10 {
11 // TODO: Implement load() method.
12 }
13
14 public function loadByRemoteId($remoteld): ?object
15 {
16 // TODO: Implement loadByRemoteId() method.
17 }

18 }

These are pretty simple. But, before we fill them in, go back to the Ajax endpoint, and refresh to
see... the exact same error. Why? Like we've seen with other things, we need to "associate" this
RecipeValueloader with our doctrine_recipe value type. How? No surprise! With a tag.
Say #[AutoconfigureTag()] and this time it's called netgen_layouts.cms_value_ loader.

For the second argument, pass value_type setto doctrine_recipe:

src/Layouts/RecipeValueloader.php

T // ... lines 1 - 5
6 use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;
7

8 #[AutoconfigureTag('netgen_layouts.cms_value_loader', ['value_type' =>
"doctrine_recipe'])]

9 class RecipeValuelLoader implements ValuelLoaderInterface

10 {

T // ... lines 11 - 19

20 }

Perfecto! If we reload now... better! That error is because we haven't actually filled in the logic

yet.

Adding_the Logic

Very simply, we need to take the ID and return the Recipe object. To do that, create a
constructor that accepts a RecipeRepository $recipeRepository argument. And... let me

clean things up:

src/Layouts/RecipeValueloader.php

T // ... lines 1 - 4

5 use App\Repository\RecipeRepository;

$ // ... lines 6 - 9
10 class RecipeValueloader implements ValuelLoaderInterface
11 {
12 public function __ construct(private RecipeRepository $recipeRepository)
13 {
14 }

$ // ... lines 15 - 24
25 }

Now, down here, return $this->recipeRepository->find() and pass $id. For
loadByRemoteId(), which we only need if we're using the import feature to move content

across databases, just return $this->load($id):

src/Layouts/RecipeValueloader.php

T // ... lines 1 - 9

10 class RecipeValueloader implements ValuelLoaderInterface
11 {

T // ... lines 12 - 15

16 public function load($id): ?object

17 {

18 return $this->recipeRepository->find($id);

19 }

20

21 public function loadByRemoteId($remoteId): ?object
22 {

23 return $this->load($remoteld);

24 }

25 }

And now... the Ajax call works! More importantly, if we refresh the entire layouts admin... yes!
Look at our grid! We have four manual items! That is awesome! We can reorder these if we

want, add more, remove them, whatever.

Try publishing this page and then reloading the homepage. There they are! Though our "latest
recipes" are missing. Whoops! | think | accidentally changed this to a manual collection also.
Change that back to a dynamic collection, looks good, publish and.... now... cool: everything is
back.

Adding_the Preview

So we now have the power to select manual items via the content browser... though when we

originally add the config for all of this, we set a preview template... but never created it!

Let's open the content browser again. So on the manual grid, hit "Add items". The preview
template powers the preview mode up here. If we click an item, it shows us a preview. Well, it

would... except that we haven't actually added that template.

To get this working, we need to do two small things. First, open RecipeBrowserBackend. We
skipped a few methods in here. For example, we skipped getSubLocations() and

getSubLocationsCount() because those are only need if you have a hierarchy of locations.

We also skipped loadItem() . This is used for the preview. It will pass us the ID of the thing

that's loaded and we need to return an ItemInterface. So very simply, we can return a

new RecipeBrowserItem() - that's the little class that wraps around the Recipe - passing

$this->recipeRepository->find($value):

src/ContentBrowser/RecipeBrowserBackend. php

T // ... lines 1 - 12

13 class RecipeBrowserBackend implements BackendInterface

14 {

T // ... lines 15 - 32

33 public function loadItem($value): ItemInterface

34 {

35 return new RecipeBrowserItem($this->recipeRepository->find($value));
36 }

$ // ... lines 37 - 88

89 1}

Cool! The only other thing we need to do is... actually create the preview template! In
templates/nglayouts/, add a new directory called content_browser/, and inside, a new

file called recipe_preview.html.twig. To start, just print the dump() function:

templates/nglayouts/content_browser/recipe_preview.html.twig

1 {{ dump() }}

The cool thing is, we don't even need to refresh. As long as we click on an item that we haven't
already clicked on... it works! And look at this item variable: it's an instance of

RecipeBrowserItem... so an instance of this class right here.

That's great... except that RecipeBrowserItem doesn't have a way for us to get the actual
Recipe object. Fortunately, we can fix that ourselves. After all, this is our class! I'll go to "Code"-

>"Generate" to generate a getRecipe() method:

src/ContentBrowser/RecipeBrowserItem.php

T // ... lines 1 - 7

8 class RecipeBrowserItem implements ItemInterface
9 {

T // ... lines 10 - 33

34 public function getRecipe(): Recipe

35 {

36 return $this->recipe;

37 }

38 }

Now, in the template, we can say {{ item.recipe.name }}.And to make this fancier, add an

<img whose src is setto item.recipe.imageUrl... also with an alt attribute:

templates/nglayouts/content_browser/recipe_preview.html.twig

1 {{ item.recipe.name }}
2

3

Once again, we don't need to refresh. If you click on an item that you've already previewed, it'll

load it from memory. But if you click a new one... yeah! There's our preview! Pretty cool.

Ok, we are done with manual items, the content browser and all of this. By the way, there is a
way to add more columns to this table, like filename, file size, created date, etc. We're not going

to talk about that, but it's totally possible.

Status check: at this point, we have the ability to add a layout to any page, reorder the content
on the page, add title, text, HTML blocks, or even lists and grids of dynamic recipes. That is a /ot
of power. Now | want more power! | want to make it possible to use the grid and list blocks to

add other items to our page... items that do not live in our database at all. That's next.

Chapter 14: Contentful: Loading Data from an
External CMS

If we added five more entities and we wanted to be able to select those as items in the Layouts
admin, we could add five more value types, query types, and item views. Now that we know

what we're doing, it's a pretty quick process and would give us a /ot of power on our site.

But one of the beautiful things about Layouts is that our value types can come from anywhere: a
Doctrine Entity, data on an external API, data in a Sylius store or from Ibexa CMS. In fact,
systems like Sylius and Ibexa already have packages that do all of the work of integrating and

adding the value types for you.

One of the biggest missing pieces on our site is the skills. The skills on the homepage are hard-
coded and the "All Skills" link doesn't even go anywhere! We could have chosen to store these
skills locally via another Doctrine Entity. But instead, we're going to load them from an external

API via a service called "Contentful".

Hello Contentful!

I'll head over to Contentful.com and log in. This takes me to a "Contentful" space called "Bark &
Bake" that I've already created. Contentful is awesome! It's basically a CMS as a service. It
allows us to create different types of content called "content models". Right now, | have a
content model called "Skill" and another one called "Advertisement". If we clicked on these, we
could enter content via a super-friendly interface. I've already created 5 skills, each with a bunch

of data.

So, you create and maintain your content here. Then Contentful has a restful API that we can

use to fetch all of this.

Contentful is cool. But the point of this isn't to teach you about Contentful. Nope! It's to show you
how we could grab content for Layouts from anywhere. For example, if we want to load "skills"
from Contentful, we could manually create a new value type and do all the work that we did

before, except making API requests to Contentful instead of querying the database.

But! We don't even need to do that! Why? Because Layouts already has a bundle that supports
Contentful. That bundle add the value type, some query types, the item views and even the

content browser integration for us. Woh.

Let's grab it!

Installing_the Contentful Bundle

Spin over to your terminal and run:

composer require netgen/layouts-contentful -W

The -W is there just because, at least when recording this, Composer needs to be able to
downgrade one small package to make all the dependencies happy. That flag allows it to do
that.

OkK! The recipe for this package added a new config file: config/packages/contentful.yaml:

config/packages/contentful.yaml

1 # For the complete configuration, please visit

2 # https://www.contentful.com/developers/docs/php/tutorials/getting-started-with-
contentful-and-symfony/

3 contentful:
delivery:

4

5 main:
6 token: "%env(CONTENTFUL_ACCESS_TOKEN)%"
7 space: "%env(CONTENTFUL_SPACE_ID)%"

And this reads two new environment variables... which live in .env:

T // ... lines 1 - 30

31 ###> contentful/contentful-bundle ###
32 CONTENTFUL_SPACE_ID=cfexampleapi

33 CONTENTFUL_ACCESS_TOKEN=b4cOn73n7ful
34 ###< contentful/contentful-bundle ###

While we're here, let's update these values to point at my Contentful space. Copy the keys from

the code block on this page and paste them here. Here's my CONTENTFUL_SPACE_ID... and my

CONTENTFUL_ACCESS_TOKEN, which will give us read access to my space:

T // ... lines 1 - 30

31 ###> contentful/contentful-bundle ###

32 CONTENTFUL_SPACE_ID=uvx9svgj8112

33 CONTENTFUL_ACCESS_TOKEN=3qgirzZC8zMKQEnGgXNtrjRibdXYuhiFEBY9tHPyfjnw
34 ###< contentful/contentful-bundle ###

Contentful + Layouts

Okay, the Layouts + Contentful integration give us two very separate things, and it's super

important to understand the difference to keep everything clear.

First, the package adds an integration between Layouts and Contentful. This means it adds new
value types, new query types, and all the other stuff we just added for Doctrine. In other words,
we can instantly add the skills or advertisements from Contentful into list or grid blocks. That is

great, and we'll see it soon.

The second thing the Contentful integration adds is completely unrelated to Layouts. It's
dynamic routes. It adds a system so that every "item" in Contentful is available via its own URL.
Literally, all of these skills will instantly have their own page on our site. This has nothing to do
with Layouts, which is all about controlling the layout for existing pages on your site, not adding

new pages.

Setting_up the Dynamic Routing

But, since Contentful is a CMS, it is nice to have a page for each piece of content. To get the
dynamic routes working, go into the config/packages/ directory and add a new file called
cmf_routing.yaml. CMF Routing is a package that Contentful uses behind the scenes to add

the dynamic routes. I'll paste some config here:

config/packages/cmf_routing.yaml

1 cmf_routing:

2 chain:

3 routers_by id:

4 router.default: 200

5 cmf_routing.dynamic_router: 100

6 dynamic:

7 default_controller: netgen_layouts.contentful.controller.view
8 persistence:

9 orm:
10 enabled: true

It's ugly... but this part doesn't have anything to do with Layouts, so it doesn't matter too much.

This is all about allowing Contentful to automatically add dynamic URLSs to our site.

This routing system stores routes in the database... and that means we need some new

database. Head over to your console and run:

symfony console make:migration

And... | get an error. Rude. Let's try clearing our cache... maybe something weird happened... or

it didn't see my new config file yet.

php bin/console cache:clear

Once the cache clears... I'll make the migration again:

symfony console make:migration

This time... perfect! Open the migrations/ directory, find that file and... it looks good!

migrations/Version20221024142326.php

0
13
14
15
16
17
18
19
20
21
22
23

24

25

26

27

28

// ... lines 1 - 12
final class Version20221024142326 extends AbstractMigration
{
public function getDescription(): string
{
return '';
}

public function up(Schema $schema): void

{

// this up() migration is auto-generated, please modify it to your needs

$this->addSql('CREATE TABLE contentful_entry (id VARCHAR(255) NOT NULL,
name VARCHAR(255) NOT NULL, json LONGTEXT NOT NULL, is_published TINYINT(1) NOT
NULL, is_deleted TINYINT(1) NOT NULL, PRIMARY KEY(id)) DEFAULT CHARACTER SET
utf8mb4 COLLATE ~utf8mb4 unicode ci® ENGINE = InnoDB');

$this->addSql('CREATE TABLE contentful entry route (contentful entry id
VARCHAR(255) NOT NULL, route_id INT NOT NULL, INDEX IDX 58B6BC6E877C153C
(contentful_entry id), INDEX IDX_58B6BC6E34ECB4E6 (route_id), PRIMARY
KEY(contentful_entry_id, route_id)) DEFAULT CHARACTER SET utf8mb4 COLLATE
“utf8mb4_unicode ci® ENGINE = InnoDB');

$this->addSql('CREATE TABLE orm_redirects (id INT AUTO_INCREMENT NOT
NULL, host VARCHAR(255) NOT NULL, schemes LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', methods LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\',
defaults LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\', requirements LONGTEXT NOT
NULL COMMENT \'(DC2Type:array)\', options LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', condition_expr VARCHAR(255) DEFAULT NULL, variable_pattern
VARCHAR(255) DEFAULT NULL, staticPrefix VARCHAR(255) DEFAULT NULL, routeName
VARCHAR(255) NOT NULL, uri VARCHAR(255) DEFAULT NULL, permanent TINYINT(1) NOT
NULL, routeTargetId INT DEFAULT NULL, UNIQUE INDEX UNIQ 6CA17E©391F30BA8
(routeName), INDEX IDX_6CA17E034C0848C6 (routeTargetId), INDEX
IDX_6CA17EO@3A5B5867E (staticPrefix), PRIMARY KEY(id)) DEFAULT CHARACTER SET
utf8mb4 COLLATE ~“utf8mb4 unicode ci® ENGINE = InnoDB');

$this->addSql('CREATE TABLE orm_routes (id INT AUTO_INCREMENT NOT NULL,
host VARCHAR(255) NOT NULL, schemes LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', methods LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\',
defaults LONGTEXT NOT NULL COMMENT \'(DC2Type:array)\', requirements LONGTEXT NOT
NULL COMMENT \'(DC2Type:array)\', options LONGTEXT NOT NULL COMMENT
\'(DC2Type:array)\', condition_expr VARCHAR(255) DEFAULT NULL, variable_pattern
VARCHAR(255) DEFAULT NULL, staticPrefix VARCHAR(255) DEFAULT NULL, name
VARCHAR(255) NOT NULL, position INT NOT NULL, INDEX IDX_ 5793FCA5B5867E
(staticPrefix), UNIQUE INDEX name_idx (name), PRIMARY KEY(id)) DEFAULT CHARACTER
SET utf8mb4 COLLATE “utf8mb4_unicode_ci® ENGINE = InnoDB');

$this->addSql('ALTER TABLE contentful_entry_route ADD CONSTRAINT
FK_58B6BC6E877C153C FOREIGN KEY (contentful entry id) REFERENCES contentful_entry
(id) ON DELETE CASCADE');

$this->addSql('ALTER TABLE contentful entry route ADD CONSTRAINT
FK_58B6BC6E34ECB4E6 FOREIGN KEY (route_id) REFERENCES orm_routes (id) ON DELETE
CASCADE"');

29 $this->addSql('ALTER TABLE orm_redirects ADD CONSTRAINT
FK_6CA17E034C0848C6 FOREIGN KEY (routeTargetId) REFERENCES orm_routes (id)');

30 }
T // ... lines 31 - 42
43}

We have a few tables that hold info about our Contentful data... and a few to store those

dynamic routes.

Now run:

symfony console doctrine:migrations:migrate

And... woohoo! We have the new tables we need.

Finally, we can run a command to /oad all of our content from Contentful and create those

dynamic routes. Once again, this is functionality that has nothing to do with Layouts. Run:

symfony console contentful:sync

And... beautiful! It loaded six items. On production you can set up a webhook so your site is
instantly synced with any changes that you make on Contentful. But while we're developing,

running this command works fine.

The result of this command is that every piece of content on Contentful now has its own page!

To see them, run:

symfony console contentful:routes

And... awesome! Apparently | have a URL called /mashing. Let's go check it out! Go back to

our site, navigate to /mashing and... it works! Sort of. It's here, but the middle of it is empty.

Let's talk about what's going on next and how we can leverage Layouts to bring this page to life.

Chapter 15: Mapping a Layout to Contentful Pages

The Contentful integration we just installed added two things to our site. First, it added a
Layouts integration: new value types, query types, etc so that we can select our Contentful
content in list and grid blocks. Second, it added the ability for every piece of content on
Contentful to have its own URL and page on our site. The second part has nothing to do with

Layouts.

A minute ago, we used this handy dandy contentful:routes command to see that there
should now be a page at the URL /mashing. When we went there, it didn't give us a 404 error,

but it didn't exactly work. The page is nearly empty.

Debugging_How the Dynamic Contentful Pages Work

Let's see what's going on. Click the Twig icon in the web debug toolbar to find out what
templates are being rendered. Let's see here... if we go down a bit... it apparently renders
@NetgenLayoutsContentful/contentful/content.html.twig. That must be the template

for this page! Let's go check it out.

I'll hit Shift+Shift and search for content.html.twig: we want the one from
layouts-contentful. And... cool! This is the template that's rendering that page. It prints
content.name... but we never actually see that. Ah, that's because it renders it into a block
called content. This eventually extends base.html.twig... and since our base template
never renders block content, we see nothing. Again, this part of Contentful where you get a
URL that renders a controller, that then renders this template... has nothing to do with Layouts.

It's just a nice way to expose every piece of Contentful content as a page on our site.

So, unrelated to Layouts, if we wanted to, we could override this template in our app and
customize it to work. We could change it to use block body and leverage this content

variable, which represents the piece of content, to render all of the different fields.

But... hold on a second. Isn't that the whole point of Layouts? Layouts lets us build pages

dynamically, instead of writing them entirely in Twig. Right now, this page is not linked to a

layout. But if we did link it, we could start building the page using data from the matching

Contentful Skill, in this case, from the "Mashing" Skill.

Mapping_a Layout to the Dynamic Page

Head over to our admin section, publish that layout, and then create a new layout. I'll call it
"Individual Skill Layout"... and choose "Layout 2". Eventually, we'll make this look more like
"Layout 5"... but we can do that later via the column blocks. That's one of the reasons why |
really like "Layout 2": it's simple enough, and we can make it more complex /ater with the tools

we already have.

Okay, start like normal. Close the web debug toolbar so we can link the header to the shared
header... and our footer to the shared footer. Awesome. Then, just to get rolling, add a Title

block, type something... then publish the layout.

Mapping_a Layout to Contentful Entries

Next, we need to map this layout to that page. So far, we've mapped layouts either by the route
name or the URL, also known as the "Path info". We could do that again here. But, as you'll see,
what we really want to do is use this layout for all Skills pages. In a few minutes, we're going
change the URL for these page from something like /mashing to /skills/mashing. When we
do that (let me add a new mapping here and hit details), we could then use the "Path info prefix"

to map this layout to any URL that starts with /skills/.

But, one thing that can be added to Layouts is another way to map or resolve which layout
should be used on which page. And, yea! The Contentful bundle added two new ones:
Contentful Entry and Contentful Space. When we go to one of these Contentful pages, the
dynamic route tells Symfony which Contentful Entry - that's the individual piece of content on

Contentful - and which Contentful Space that this page maps to.

Thanks to this, we can leverage one of these new targets to match the entry or space. For
example, we could use Contentful Entry to map a specific layout to a specific item on

Contentful. Literally, we could say:

“If the current Content is specifically this "Mashing" skill, then use this layout.”

Or, we could do what I'm going to do: map via the Contentful Space. We only have one Space,

so it's pretty easy. Basically, we're saying:
“If we are on any dynamic Contentful page, | want you to map to this layout.”
Let's save this... then link this layout to the "Individual Skill Layout". Hit "Confirm" and... good!

Head over, refresh and... it works! Yes!

Mapping_to a Specific Content Type

As | mentioned earlier, we actually have two types of content in Contentful: Skills and
Advertisements. Advertisements aren't meant to have their own page - only skills are. We're

going to embed advertisements onto some existing pages a bit later.

Head back to the layout linking details. In addition to the Contentful Space, we can go down
here to a list of conditions and select "Contentful content types". Conditions are a way to make
your matching more specific. Add that condition. And, this is a bit hard to see, but we can select
"Skill" or "Advertisement". Select "Skill", save changes, and... sweet! Now this will only match if

we go to a Contentful URL that is rendering a skill.

At the command line, you can see that we do have one advertisement... it's this funny-looking
URL. Yes, right now, the advertisement is available as a page on our site. We'll fix that in a few
minutes. But, at the very least, if we went to that weird URL, the page would work... but wouldn't

match any layout thanks to our mapping. So, it would basically be blank.

So we now have control over Contentful pages. Cool! Though... all we're rendering is a manual

title. Snooze.

Next: Let's make our layout smarter by rendering real content from the matching skill.

Chapter 16: Building the Contentful Page

We now have full control over how the Contentful pages render. That's thanks to the "Individual

Skill layout" that we mapped to all Contentful "Skill" pages.

But... all we have is this manual h1 title. How can we render the real data for whichever

Contentful Skill we're viewing?

First, on Contentful's site, if | navigate to "Content model" and click on "Skill", you can see that
every Skill has 5 fields... and each field has an internal name. It's... almost easier to see this via
the JSON preview. Here we go. So there's a "Title" field, it's internal name is title, "Short
Description", "Technique", and a few other like "Image" and "Advertisement". Advertisement is

actually a link to that other type of content.

Using_the "Contentful Entry Field" Block Type

Anyways, what we really want to do up here is print the skill's title in the hl. Fortunately, that is
possible, thanks to a new block type that the Contentful bundle added. It's here at the bottom:

"Contentful entry field".

This allows us to render a single field from whatever Contentful entry is currently being
rendered. Let's try it! Then delete the old h1l.

The new block has one super important option: field identifier. Set that to the internal name of

the field: title. And make this an hl. As usual, the block label is optional, but I'll include it.

Cool! Hit publish and continue editing, move over and... yes! It's dynamic. If we go to the URL

for some other skill, like /basic-chop, that works too!

Adding_the Fancy Hero Area

So let's get fancier. Add a column... and move this title inside. Can you guess what I'm about to
do? Give the column that same hero-wrapper class that we used earlier. And you know what

else? Each skill has a "Short description”. Lets add another entry field block right below.

Notice that one option for this block is "view type". We're going to talk more about that soon, but
this should match the "type" of the content that you're pulling from Contentful. So far, both

title and this shortDescription are "string" types. Leave this as div.

Testing timer! Hit "Publish and continue editing". And... let's see how it looks. | love that! Let's

add more!

Adding_a Contentful Image

Every skill has an image. Inside of that same hero column, add another Contentful entry block at
the bottom. This will be called image... and the type is "referenced assets". You do need to set

a width and height. Let's do 200 by 200. Publish that... refresh and... we're on a roll!

One last thing: rendering the skill content below everything. By the way, we could render this in

the same zone... or use the zone below. Zones don't matter much in most case.

Using_a 2-Column Block

But let's make this spot more interesting. | want to render the skill content on the left and an
advertisement on the right. To do that, for the first time, use a 2-column block. Set this to 66, 33
so that the left side takes up most of the space. Add a title to the left side and make it an h3

with the text "The Technique:". Below, drag over a contentful entry field.

This one... if | go check my fields... is called technique and it holds rich text. If you modified it
in Contentful, you'd see a rich text editor... and the final value is HTML. So, type technique,

keep it as a div and select Richtext.

Rendering_a Related Contentful Entry

Finally, on the right side, add one more Contentful entry field. Look back at the content model for
Skills... and scroll down a bit. The one we want to use is called advertisement, and this is a
"Referenced entry" type. Yup, if you edited a skill, you would choose the Advertisement from the

list of Advertisements we have in Contentful. It's like a database relation.

Anyways, enter advertisement, hit "Publish and continue editing"... refresh and... ok! Sort of

awesome. We need a container to bring those in. We already have a column, so click "Wrap in

container".

And... yea... though this could also use some top margin. On that same column, add a class:
my-3. Publish this... and reload. So much better! Though, the Advertisement is just printing a
URL... not rendering an ad. That's because Contentful doesn't know how to render the

"Advertisement" content type. We'll help it soon.

But first, let's fix our Skill pages by prefixing all URLs with /skills.

Chapter 17: Customizing the Contentful Slugger

Before we go further into customizing the look and feel of our site, | want to fix the skill URLs so
that instead of just /mashing, the page is /skills/mashing. Remember: the fact that our
Contentful content instantly has URLs on our site comes from the Contentful package we
installed earlier. But that magic has nothing to do with Layouts. So, customizing this URL is also

specific to Contentful, not Layouts. But... | really want to fix it.

Creating_the Slugger Class

Over in the src/Layouts/ directory, create a new class called ContentfulSlugger. Make this
implement EntrySluggerInterface... and then generate the one method we need:

getSlug():

src/Layouts/ContentfulSlugger.php

? /... lines 1 - 2

namespace App\Layouts;

3
4
5 use Netgen\Layouts\Contentful\Entity\ContentfulEntry;

6 use Netgen\Layouts\Contentful\Routing\EntrySluggerInterface;
7

8

9

class ContentfulSlugger implements EntrySluggerInterface

{
10 public function getSlug(ContentfulEntry $contentfulEntry): string
11 {
12 // TODO: Implement getSlug() method.
13 }
14 }

We're going to set things up so that this method is called when the dynamic URLs for all
Contentful entries are being created. It will allow us to control the "slug", which is really the URL

for each item.

To make life easier, use FilterSlugTrait to get access to a method we'll use in a minute:

src/Layouts/ContentfulSlugger.php

0

6
)
9

10

11

0

21

// ... lines 1 - 5

use Netgen\Layouts\Contentful\Routing\EntrySlugger\FilterSlugTrait;
// ... Llines 7 - 8

class ContentfulSlugger implements EntrySluggerInterface

{

use FilterSlugTrait;
// ... lines 12 - 20
}

Ok, on Contentful, we have both Skills and Advertisements. But we don't really want

advertisements to have their own page. Unfortunately, with the Contentful integration, there's no

way to disable URLs for one specific content type. I'll talk about how to work around that in a

minute.

Anyways, this method will be passed both skills and advertisements. Use the new PHP

match() function to match $contentfulEntry->getContentType()->getId(). That will

return the internal name for each type, which you can find in Contentful. If it's skill, return

/skills/ then $this->filtersSlug() - that comes from the trait - passing

$contentfulEntry->get('title"):

src/Layouts/ContentfulSlugger.php

0
9

10

0
13
14
15
16

0

19
20
21

// ... lines 1 - 8
class ContentfulSlugger implements EntrySluggerInterface
{
// ... lines 11 - 12
public function getSlug(ContentfulEntry $contentfulEntry): string
{
return match ($contentfulEntry->getContentType()->getId()) {
'skill' => '/skills/'.$this->filterSlug($contentfulEntry-
>get('title')),
// ... lines 17 - 18
}s
}
}

For advertisement, return /_ad for all of them:

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 8

9 class ContentfulSlugger implements EntrySluggerInterface

10 {

T // ... lines 11 - 12

13 public function getSlug(ContentfulEntry $contentfulEntry): string

14 {

15 return match ($contentfulEntry->getContentType()->getId()) {

16 'skill' => '/skills/'.$this->filterSlug($contentfulEntry-
>get('title')),

17 ‘advertisement' => '/ ad',

T // ... line 18

19 s

20 }

21 }

At least, at this point, only one ad could ever have a page on our site: if the user wentto /_ad,

it would match the first one.

At the bottom, throw a new Exception with "Invalid Type":

src/Layouts/ContentfulSlugger.php

T // ... lines 1 - 8

9 class ContentfulSlugger implements EntrySluggerInterface

10 {

T /... lines 11 - 12

13 public function getSlug(ContentfulEntry $contentfulEntry): string

14 {

15 return match ($contentfulEntry->getContentType()->getId()) {

16 'skill' => '/skills/'.$this->filterSlug($contentfulEntry-
>get('title")),

17 'advertisement' => '/ ad',

18 default => throw new \Exception('Invalid type'),

19 s

20 }

21 }

So, yes, at this point, advertisements will still have their own page. There's no way to turn that
off out-of-the-box. But if you care enough, | would map all advertisements to the same URL or
URL pattern like this. Then | would create a route & controller with the same URL and return a

404. That route will take precedence over the dynamic one.

Tagging_& Configuring_the Slugger

To tell Contentful to use our slugger, we need to, of course, give it tag! Add
#[AutoconfigureTag] and this one is called netgen_layouts.contentful.entry slugger.

This also needs a type option... which you can set to any string. Let's use default_slugger:

src/Layouts/ContentfulSlugger.php

T /7 ... lines 1 - 7
8 use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;

10 #[AutoconfigureTag('netgen_layouts.contentful.entry_slugger', ['type' =>
"default_slugger'])]

11 class ContentfulSlugger implements EntrySluggerInterface
12 {

T // ... lines 13 - 22

23}

How is that used? In config/packages/, we need to create a new config file for the layouts

contentful package. Let's call it netgen_layouts_contentful.yaml.

Repeat that for the root key. Below, add entry_slug type, then default set to the type we

used in our tag: default_slugger:

config/packages/netgen_layouts_ contentful.yaml

1 netgen_layouts_contentful:
2 entry_slug type:
3 default: default_slugger

This funny syntax says:

“For every content type in Contentful, use default_slugger when generating the URL. So,

use our ContentfulSlugger.”

Ok, done! But... this is not called when we reload the page. Nope. This is called when we "sync"

our content from Contentful. Ok, let's re-sync! At your terminal, run:

symfony console contentful:sync

This updates our local database with the latest data from Contentful... and it worked just fine.

But when we run:

symfony console contentful:routes

The URLs didn't change! This is a quirk... or maybe a feature so that existing pages don't break.

Either way, once a route is imported the first time, it's URL never changes.

The easiest way to reset things is to drop the routes table and reimport everything.

And, this is kind of fun. We can run:

symfony console doctrine:migrations:migrate current-1

That will reverse the most recent migration, causing the contentful and route tables to be

dropped. Put them back with:

symfony console doctrine:migrations:migrate

Re-sync the content again:

symfony console contentful:sync

And now check the routes:

symfony console contentful:routes

Yes! The URL is /skills/mashing! So, over on /mashing, we get a good-old fashioned 404.
But /skills/mashing works.

Next: we don't yet have a page that lists all of the skills. Let's fix that!

Chapter 18: The Skills List Page + A Grid of Skills

Thanks to the Contentful integration, in addition to our doctrine_recipe value type, we now
have a second value type that can load things from Contentful. This means that we can render

lists and grids of skills inside any layout, like over here on our homepage.

Let's try it! Publish this layout... then edit the Homepage Layout. Oh, and we can delete this old

grid we were playing with earlier.

Below, we're currently rendering the featured skills Twig block. But in reality, if you looked

at our template, those are totally hardcoded!

Adding A Grid of Skills

No problem! Add a Grid block... which is already set it to a "Manual Collection". But check this
out! We can now choose between manually selecting "Contentful entries" or recipes! And when

we click "Add Items", the content browser already works!

Select a few of these... good... then publish this. Refresh. Um... ok! They do render... but just the
title. Good start. To make this a tiny bit better, go to the "Design" tab... and wrap this in a

container.

That should, at least, give us some gutters. There we go. Ultimately, we want these to render

like the hardcoded skills below them. And we're going to work on that in a few minutes.

Adding_a /skills Page

But before we get there, what about a /skills page that lists all of the skills? Well, the
Contentful integration did not give us this URL. But, no problem! We can create it ourselves in

Symfony!

Well, actually, we could do this entirely in Contentful! We could create a "Page" content type,
create a "Skills" page, which could become /skills, then map that to a Layout. This is the

type of thing you'd normally do when you have a CMS at your fingertips

But we'll create this page the manual way. After all, Layouts is really about helping organize how

existing pages look... it's not really about adding dynamic pages. That's a job for a CMS.

In your editor, open up src/Controller/MainController.php. Copy the homepage() action,
paste, change to /skills, call it app_skills and rename the method to skills() . For the

template, render main/skills.html.twig:

src/Controller/MainController.php

T // ... lines 1 - 8

9 class MainController extends AbstractController

10 {

T // ... lines 11 - 17

18 #[Route('/skills', name: 'app_skills')]

19 public function skills(): Response

20 {

21 return $this->render('main/skills.html.twig"');
22 }

23 }

Now, in the templates/main/ directory, create that: skills.html.twig. Let's start with the

smallest possible thing: extend nglayouts.layoutTemplate:

templates/main/skills.html.twig

1 {% extends nglayouts.layoutTemplate %}

Cool. While we're here, open base.html.twig and link to this. Search for "Skills". There's the
link. Set the href to {{ path('app_skills') }}:

templates/base.html.twig

1
2
)

19

20

21

22
0

33

34
)

38

39

40
41

I
48
49
50

I
68
69
70

<!DOCTYPE html>
<html>
// ... Llines 3 - 18
<body>
{% block layout %}
{% block navigation %}
<nav class="navbar navbar-expand-1lg navbar-light bg-light">
// ... lines 23 - 32
<div class="collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
// ... lines 35 - 37
<li class="nav-item">
All
Skills
</1i>

// ... lines 42 - 47
</div>
</nav>
{% endblock %}
// ... lines 51 - 67
{% endblock %}
</body>
</html>

| like it! Refresh, try the link in the header and... the page works!

Adding_Content Manually?

To put content onto this page, we could also do that manually by writing code in our app! The

Contentful library we installed earlier has a ClientInterface service that we could use to

fetch all of these skills from Contentful in our controller.

But instead, let's take the easy way out and let layouts fetch the skills for us. Oh, but before we
do that, back in skills.html.twig, add a {% block title %}, write "All Skills" and then
{% endblock %}:

templates/main/skills.html.twig

1
2
3

{% extends nglayouts.layoutTemplate %}

{% block title %}All Skills{% endblock %}

This, as you probably know, controls the page's title. I'm doing this here because the title
block is actually not something you can control via Layouts. Remember: everything we build in

our layout becomes part of a block called layout.

Adding_the Skill List Layout

Ok, hit "Publish" on the Homepage Layout... and then create a new layout. I'll use my favorite

"Layout 2" and call it "Skills List Layout".

You know the drill. Start by linking the header zone... and the footer zone. Then, let's build
another hero. Add a column, give it a hero-wrapper class, then put a "Title" block inside with

"All Skills". To be even cooler, add a text block below with some intro content.

Nice start! Publish the layout... so we can go link it to the /skills page. Hit "Add New
Mapping" and link this to the "Skills List Layout". Then go to Details. This time I'll map via the

Path Info, setto /skills. Hit save changes.

Let's go see how our first attempt looks. And... not bad!

Adding_the Skills Grid

Now let's add the important stuff. Head back to the layouts admin and edit this layout.

Below the column, add a new Grid. Change this from a manual collection to a dynamic
collection. The Contentful package gives us two new "query types", or ways to "fetch" data from

Contentful. Use "Contentful Search". That's the main one.

This allows you to choose which content types to show, like all of them... or just skills. We can

then sort them, add a search, skip items or limit them. It's everything we want, out-of-the-box!

What does it look like? Hit "Publish". | bet you can guess. Yup! It "works"... by printing out the

titte of each skill. Oh, let me at least add that "container” class... to get the left and right margin.

But, this is obviously not what we want! We need to be able to style this and print out more fields

than just the title. We have the same problem on the homepage.

And actually, this is even more complex than it seems! When we customize how a grid of skills

renders, | want to be able to make those items look one way on the homepage, and a different

way on the "Skills" page, probably larger and with more fields printed.

Next: let's start learning the very important topic of how we can override and customize the

templates from Layouts so that we can make things look exactly like we want.

Chapter 19: Themes & Overriding Templates

We can now add a /ot of dynamic content to our site, like these static blocks up here, grids, or
lists. The grids and lists can hold items from Contentful or our Recipe entity. But to really make
our site shine, we need flexibility over how these pieces look. Let's start simple, by overriding

the template that renders what the "Title" block looks like for our entire app.

Finding_Block Templates in the Profiler

To do that... we first need to figure out which template is currently responsible for rendering this
block. An easy way to find out is to go to a page that renders one of these, refresh, and click on
the Twig icon on the web debug toolbar. Down at the bottom, we see the whole tree. And if we

look closely, ah ha! Apparently there's a template called block/title.html.twig!

Layouts itself also has a really nice web debug toolbar section. If you go to "Rendered blocks", it
shows "Block definition: title", "Text", "List", and "Footer". And, as we saw, the Title is rendered
by title.html.twig.

Hello Themes

Notice that almost all of these templates are nestled inside themes/standard/ directories.
Layouts has a concept of themes, though we won't need to create multiple themes unless we're
building some sort of multi-site application. In our case, we're just going to use the one built-in

theme called standard.

But themes are still important, because anything inside of a theme can be easily overridden by
putting a template in just the right location. We're going to use that convention to override the

Title template.

Qverriding_the Title Template

Let's do it! First, in the templates/ directory, make sure you have an nglayouts/
subdirectory. Inside of that, add a new one called themes/ ... followed by a another subdirectory
called standard/. You may have noticed that we're matching the structure that's over here:

nglayouts/themes/standard/.

Inside of this, since the target template is named block/title.html.twig, if we create that
same path, our title.html.twig will win. Do it: add another directory called block/ and a

new file inside: title.html.twig. To see if it works, just write some dummy text:

templates/nglayouts/themes/standard/block/title.html.twig

1 OVERRIDING TITLES!!

Let's try this thing! Go back to the Skills page, refresh, and... absolutely nothing happens. That's

because the first time we create this themes/ directory, we need to clear the cache.

php bin/console cache:clear

Do that... then with that behind us, try the page again. Woohoo! We now control how the Title

block renders! The power!

Making_the Title Template More Realistic

Okay, but even if we want to customize how the Title renders... we probably don't want to start
from scratch. It would be better to reuse part of the core template, or at least use it as a

reference.

Hit Shift+Shift, search for title.html.twig, and select "Include non-project items". Open

the core one from nglayouts/themes/.

Wow. There is a lot going on here... including the fact that this extends another template:

block.html.twig. Open that up.

This contains a /ot of base functionality, like reading the dynamic css_class variable, which
contains any CSS classes we enter into the admin. It also handles if there's a container or not.

That's useful stuff!

In title.html.twig, it has code for whether or not the title is a link and other stuff. We could
totally replace this template and ignore all this if we wanted to. But instead, copy the core

template, paste it into our version:

templates/nglayouts/themes/standard/block/title.html.twig

=

{% extends '@nglayouts/block/block.html.twig"' %}

{% import '@NetgenlLayouts/parts/macros.html.twig' as macros %}

{% set tag = block.parameter('tag').value|default('h1') %}
set link = block.parameter('link') %}

{% block content %}

{# Located inside the "content" block to include the context from the parent
template #}

10 {% set title = macros.inline_template(block.parameter('title').value,
_context) %}

O 00 N O U1 h W N
~
R

11

12 <{{ tag }} class="title">

13 {% if block.parameter('use_link').value and not link.empty %}
14 {{ nglayouts_render_parameter(link, {content: title}) }}
15 {% else %}

16 {{ title }}

17 {% endif %}

18 </{{ tag }}>

19 {% endblock %}

And just to prove that we can, let's remove that title class:

templates/nglayouts/themes/standard/block/title.html.twig

T // ... lines 1 - 7
8 {% block content %}
T // ... lines 9 - 11

12 <{{ tag }p>
T // ... lines 13 - 17

18 </{{ tag }}>
19 {% endblock %}

Cool! Now go over, refresh and... it goes back to how it looked before. But down here, that

title class on the <hl1> is gone!

So the simplest way to control how something looks is to find the template that renders it and

override it completely using this themes/ directory structure.

Let's use that trick again next to customize what it looks like when you render an "asset" field
from Contentful, like this skill image field. But along the way, we're going to deep dive into a

some massively important concepts: block views and view types.

Chapter 20: Block Views & View Types

Let's override one other template completely. Go into the Individual Skill Layout. We're using a
Contentful entry here, which is a "Referenced asset"... and it's rendering as this image tag.

Cool!

Block "View Types" / Templates

This is a great example of how a single Block type - for example the "Contentful Entry Field"
block type - can have multiple View types, which basically means "multiple templates". Each of
these different View types will be rendered by a different template. We actually see this with a lot
of different Block types - even the Grid Block type. I'll add one down here temporarily. It has a
View type that allows you to switch between List and Grid. Yup, the List and Grid blocks are
actually both the same Block type internally: they just have a different View type, meaning each

is rendered by a different template. Go ahead and delete that.

Anyway, every Block type can have one or more View types. And | actually want to dive a little

deeper into this concept of "views". Find your terminal and run:

php ./bin/console debug:config netgen_layouts view

I'm debugging the configuration that could live under the view key below the netgen_layouts

key:
config/packages/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12
13 view:
T // ... lines 14 - 36

When you run this, you see a ton of config. Notice that there are several root keys, like
parameter_view, layout_view, and a few others. But there are actually only two that we care

about: block_view, which we'll talk about now, and item_view, which controls how the items

in a List or Grid render. We actually saw this one earlier when we customized how our Recipe

"item" rendered inside a List or Grid. We'll talk even more about those soon.

The Block View Config

Anyways, to zoom in on the block views, run that same command, but add .block_view

php ./bin/console debug:config netgen_layouts view.block_view

Block views, very simply, control how entire block types are rendered. For example, we can see

how the "Title block" renders... or the "Text block", or how the "List block" renders.

This block_view config can have several keys below it, like default, app, and ajax. And we
know what those mean. default means these are used on the frontend, app means they're
used in the admin section and ajax, which is not as common, is used on the frontend for AJAX
calls. So to override the frontend template for a block, we really mean that we want to override

its block "view" under the default key.

Let's... zoom in one more time by adding .default:

php ./bin/console debug:config netgen_layouts view.block view.default

The "match" config

These are all the block views that will be used on the frontend. The trickiest thing about these

are the match part.

When you define a "block view", it's pretty common to define the template that should be used
when two things match. Search for "list\grid": this is a great example. This has two match items:
block\definition is setto list because, technically the "Block type" for both the List and

Grid blocks is called 1ist. The second match condition is block\view_type setto grid.

Together these mean that if a block is being rendered whose block\definition is 1list and

whose block\view_type is grid, use this.

By the way, both of these things can be seen very clearly from the web debug toolbar. Go to the
homepage, click on the Layouts web debug toolbar, and go to "Rendered blocks". Down here...
look at this! You can see "Block definition: List", "View type: grid"! And then it points to the

template that was rendered. In this case, it's referring to this Grid right here.

So then... why is the Title block rendered by title.html.twig? We can see that in the config.
Search for "title"... here we go. This says: if the block\definition is title and the
block\view_type is title, use this template. This is an example of a Block type that only has

one View type. So, in practice, this is the view that's used for all title blocks.

Find & Overriding_the Contentful Field Assets View

Ok, let's remember our original goal: to override the template that renders this image. We know
that this is a "Contentful entry field" and it has a View type of "Referenced assets". So... we can

find that in here!

Search for "assets" and... there it is! So if block\definition is contentful entry field
and the block\view_type is assets, this is the template! This means that if we want to
override just the assets View type of the Contentful entry, that's the template we need to

override.

And yes, we could have very easily found this by going to the web debug toolbar and finding the
template there. But now we understand a bit more about how blocks are rendered and how
each block can have multiple views so that we can choose how they're rendered. Later, we'll

add an extra "view type" to an existing block.

Okay, so let's get to work. The path starts with the normal nglayouts/themes/standard/,
then we need block/, followed by this path. So inside of our block/ directory, create a new
sub-directory called contentful_entry_ field/.And inside of that, a new

assets.html.twig. For now, I'll just say ASSET:

templates/nglayouts/themes/standard/block/contentful_entry field/assets.html.twig

1 ASSET

Ok! Spin over to the frontend and... yes! It instantly sees it! We're now in control!

Making_the Template Fancier

Like before, we probably don't want to override the entire template. Instead, open the core

template - assets.html.twig - so we can steal, um borrow from it. Temporarily, copy the

whole thing, paste:

templates/nglayouts/themes/standard/block/contentful_entry field/assets.html.twig

O 00 N O U1 »h W N B

=
[

=
=

12

13
14
15

16
17

18
19
20
21

22
23
24
25

And...

{% extends '@nglayouts/block/block.html.twig"' %}

{% block content %}
{% set field identifier = block.parameter('field_identifier').value %}
{% set field = block.dynamicParameter('field') %}

{{ dump() }}

{% block contentful entry field %}
{% if field is not empty %}
{% if field.type is constant('TYPE_OBJECT', field) or field.type is
constant('TYPE_ASSET', field) %}
<div class="field field-{{ field.type }} field-{{
field identifier }}">
<img src="{{ field.value.file.url }}?h={{
block.parameter('height').value }}&w={{ block.parameter('width').value }}"
width="{{ block.parameter('width').value }}" height="{{
block.parameter('height').value }}" />
</div>
{% elseif field.type is constant('TYPE_ASSETS', field) %}
<div class="field field-{{ field.type }} field-{{
field identifier }}">
{% for asset in field.value %}
<img src="{{ asset.file.url }}?h={{
block.parameter('height').value }}&w={{ block.parameter('width').value }}"
width="{{ block.parameter('width').value }}" height="{{
block.parameter('height').value }}" />
{% endfor %}
</div>
{% else %}
{{ 'contentful.field not_compatible'|trans({'%field identifier%':
field _identifier}, 'contentful') }}
{% endif %}
{% endif %}
{% endblock %}
{% endblock %}

yep! That works.

Contentful is fairly advanced... and you can see that this supports fields that hold a single image
as well as multiple images. You can keep this as flexible as you want, but you can also make it
your own. I'm going to drastically simplify this template... and replace it with a very simple

image. For the src, I'll paste in some code:

templates/nglayouts/themes/standard/block/contentful entry field/assets.html.twig

1 {% extends '@nglayouts/block/block.html.twig"' %}

3 {% block content %}

4 {% set field = block.dynamicParameter('field') %}
5

6

{{ dump() }}
<img src="{{ field.value.file.url }}?h={{ block.parameter('height"').value

}Y&w={{ block.parameter('width').value }}" />
7 {% endblock %}

All of the fancy Twig parts of this code were in the template before. This also shows off a
Contentful superpower where you can control the image size. Calling block.parameter()
allows us to read the options from the layouts admin, where we earlier configured this block to
have a width and height of 200.

Let's see what it looks like! Refresh. Yeah! It looks like it worked!

Choosing_to Render or Not Render Complex Options

But | do want to want give one small warning about customize templates: make sure you don't
lose flexibility that you need. For example, we know that we can add extra CSS classes to any

block via the admin.

If we did that right now, it would not work because... we're simply not rendering those classes!
And, that might be fine. But if you do want to support that, you'll need to make sure to add it. In
this case we can say class="{{ css_class }}", which is one of the variables we saw earlier.

And while we're here, let's also add an alt attribute setto field.value.title:

templates/nglayouts/themes/standard/block/contentful_entry field/assets.html.twig

T // ... lines 1 - 2

3 {% block content %}

$ // ... line 4

5 <img class="{{ css_class }}" src="{{ field.value.file.url }}?h={{

block.parameter('height').value }}&w={{ block.parameter('width').value }}" alt="
{{ field.value.title }}" />
6 {% endblock %}

When we try this... | love it! There's the alt attribute and there's our class, including some core

classes that Layouts always adds to that variable.

Okay, we just talked about block views: how templates are configured for entire blocks. Next,
let's talk about item views: how we customize the template that's used when rendering an item

inside of a Grid or List. We'll use this to style our skill items.

Chapter 21: Deep Dive into Item Views

When it comes to customization, you can do a /ot of damage by looking at which templates are
rendering and using the theme system to override them. But there are a few cases where you'll

need to get even more specific.

For example, suppose we want to modify the "item" template for how the skills grid renders on
the homepage. If you check the web debug toolbar here and scroll down... I'll actually search for
"contentful"... ah, there we go. You can see grid.html.twig... which renders
item/contentful_entry.html.twig. To customize the item, we could override that template.

Easy peasy.

The problem is that, in Contentful, we have multiple content types: we have Skills and
Advertisements. So if we override this template, that will override it for both Skills and

Advertisements... and we probably want those to look different. So, how can we solve this?

Diving_into the item_view Config

Earlier, we ran debug:config netgen_layouts view and talked about the two main sections

under here - block_view (which controls how blocks render) and item_view.

php ./bin/console debug:config netgen_layouts view.item_view

As I've said a few times, some blocks, like Grid and List, render individual items. This
item_view config is where we define those templates. And you'll see some familiar root keys:
default for the frontend, ajax for AJAX calls, and app for the admin. Once again, this uses
the match config and... hey! We see our entry in here! Remember recipes_default? We
configured this inside of our config file, and it's one of the two real item templates we have right

now:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

24 # this key is not important

25 recipes_default:

26 template: 'nglayouts/frontend/recipe_item.html.twig'
27 match:

28 item\value_type: 'doctrine_recipe’
$ // ... lines 29 - 36

There's one for recipes, and then Contentful has one for all of the Contentful items.

So again, we could just override this template via the themeing system and be done. But our
goal is to override this template only when the item is a skill, like this one. So how do we do

that? By adding our own item_view to this list that matches that single content type. Let's do it!

Adding_ a Custom item_view

Over here... we're under item_view, default for the frontend and we have the one entry from
earlier: recipes_default. Let's add another. Call it contentful_entry/skill, though this
particular key doesn't make any difference. Below that, set template to

@nglayouts/item/contentful_entry, followed by skill.html.twig:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

T /... lines 2 - 12

13 view:

14 item view:

T // ... lines 15 - 21

22 # default = frontend

23 default:

$ // ... lines 24 - 28

29 contentful_entry/skill:

30 template: '@nglayouts/item/contentful_entry/skill.html.twig'

$ // ... lines 31 - 41

Before, we were using nglayouts without the @... just because | told you that nglayouts/
was a nice directory for organizing things. Internally, Layouts uses @nglayouts in its template
paths. What's the difference? By adding the @, we're hooking into the themeing system. So
because we have a templates/nglayouts/ directory with themes/standard/ inside, it will
use our template. Feel free to use @nglayouts or just nglayouts. | just wanted you to

understand the difference because you'll see the @nglayouts syntax all over the place.

Matching just One Content Type

The really important key here is match. We want to match only when we're working with a

contentful_entry. Ok, copy match from the config... and paste.

But we need to be more specific. We also need to match only when the type of the content is a
skill. But how do we do that? What matchers are even available? There is a core list... but did

Contentful add any additional matchers that we could leverage?

Here's a little trick to see the frue list of match items. It's a little technical, but works beautifully.

Run:

php ./bin/console debug:container --tag=netgen_layouts.view_matcher

What is this doing? Well, anyone can create a custom matcher - like foo\bar. To do that, you
create a class and give it this tag. By looking for all services with that tag, we can find all of the

existing matchers in the system.

And... look at that list! Oh, here's an interesting one: contentful\content_type. | bet we can

use that. Try it: contentful\content_type setto skill:

config/packages/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

T // ... lines 15 - 21

22 # default = frontend

23 default:

T // ... lines 24 - 28

29 contentful_entry/skill:

30 template: '@nglayouts/item/contentful_entry/skill.html.twig'
31 match:

32 item\value_type: 'contentful_entry'
33 contentful\content_type: 'skill'

$ // ... lines 34 - 41

Okay, let's go create the template. Inside themes/standard/, instead of block/, this time,
create a directory called item/ ... then contentful_entry/, and then skill.html.twig. Just

put some dummy text for now:

templates/nglayouts/themes/standard/item/contentful entry/skill.html.twig

1 CONTENTFUL SKILL!

Ok, if this is working, when we refresh, these items - which are Contentful skills - should re-
render using our new template. But when we try it... absolutely nothing changes. What

happened?

Wrong_Config_Order!

Go back to your terminal and run

php ./bin/console debug:config netgen_layouts view.item_view

again. This all looks good... except for the order. This one from Contentful is on the top of the
list... and our new ones are at the bottom. And guess what? When Layouts tries to figure out
which template to render, it reads the list from top to bottom and finds the first one that matches:

exactly how Symfony's routing system works.

So, it first looks at contentful_entry, sees that the value_type is contentful_entry...

then uses it. It never makes it to the contentful_entry/skill at the bottom.

To fix this, we're going to use a fancy prepend configuration trick. Let's do that next.

Chapter 22: Prepending Config

I'm pretty sure that our new item_view is configured correctly. We have
item\value_type: contentful_entry, which | know is correct... and then we're using

contentful\content_type setto skill so that this only affects skills:

config/packages/netgen_ layouts.yaml

1 netgen layouts:

T // ... lines 2 - 12

13 view:

14 item view:

T // ... lines 15 - 21

22 # default = frontend

23 default:

$ // ... lines 24 - 28

29 contentful _entry/skill:

30 template: '@nglayouts/item/contentful_entry/skill.html.twig'
31 match:

32 item\value_type: 'contentful_entry'
33 contentful\content type: 'skill'

T // ... lines 34 - 41

But... it doesn't seem to be working on the frontend. Earlier, when we ran debug:config, we
saw that the problem lies with the order of the config. Layouts reads from top to bottom when
deciding which "view" to use. So it looks at this one first, sees that the value_type is

contentful_entry... and just stops. To fix this, we need to reverse our config.

Ok, so... why is it in this order to begin with? Why does our config show up at the bottom? This
is due to how Symfony loads config: it loads bundle config first - like from the Contentful
package or Layouts - and then loads our configuration files. And, that's usually the order we

want! It allows us to override configuration that's set in bundles.

But in this case, we want the opposite. How do we accomplish that? By asking Symfony to

prepend our configuration.

Setting_up the Prepend

In the config/ directory, create a new directory called prepends/ and move the Netgen
Layouts configuration into it. This will stop Symfony from loading that file in the normal way:

we're going to load it manually.

The next step is a bit technical. In src/, create an "extension" class called, how about,

AppExtension. I'm going to paste in the code: you can grab this from the code block on this

page:

src/AppExtension.php

T // ... lines 1 - 2

3 namespace App;

4

use Symfony\Component\Config\Resource\FileResource;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Extension\Extension;

use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;

O 00 N O U

use Symfony\Component\Yaml\Yaml;

10

11 class AppExtension extends Extension implements PrependExtensionInterface
12 {

13 public function load(array $configs, ContainerBuilder $container)
14 {
15 }
16
17 public function prepend(ContainerBuilder $container)
18 {
19 $configFile = _ DIR__ . '/../config/prepends/netgen_layouts.yaml';
20 $config = Yaml::parse((string) file_get contents($configFile));
21 $container->prependExtensionConfig('netgen_layouts"',
$config['netgen_layouts']);
22 $container->addResource(new FileResource($configFile));
23 }
24}

This loads our config file like normal... except that it will be prepended.

Final step. To get this method to be called, open up the Kernel class. After

use MicroKernelTrait, add configureContainer as baseConfigureContainer:

src/Kernel.php

0
11
12
13

0

21

// ... Llines 1 - 10
class Kernel extends BaseKernel
{

use MicroKernelTrait { configureContainer as baseConfigureContainer; }
// ... lines 14 - 20

}

This adds the configureContainer method from MicroKernelTrait info this class like a trait

normally would... except that it renames it to baseConfigureContainer. We're doing this so

that we can define our own configureContainer() method. Copy the

configureContainer() signature from the trait, paste, hit "OK" to add the use statements

and then call $this->baseConfigureContainer() passing $container, $loader, and
$builder:

src/Kernel.php

0

6
7
8

0

11
12

0

15

16
17

0
20
21

// ... Llines 1 - 5
use Symfony\Component\Config\Loader\LoaderInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use
Symfony\Component\DependencyInjection\Loader\Configurator\ContainerConfigurator;
// ... Llines 9 - 10
class Kernel extends BaseKernel
{
// ... lines 13 - 14

private function configureContainer(ContainerConfigurator $container,
LoaderInterface $loader, ContainerBuilder $builder): void

{

$this->baseConfigureContainer($container, $loader, $builder);

// ... lines 18 - 19

The configureContainer() method in the trait is responsible for loading services.yaml as

well as all of files inside config/packages/. That's all good stuff that we want to keep doing.

But after doing that, add one more thing:

$builder->registerExtension(new AppExtension()):

src/Kernel.php

T // ... lines 1 - 10

11 class Kernel extends BaseKernel

12 {

T // ... lines 13 - 14

15 private function configureContainer(ContainerConfigurator $container,
LoaderInterface $loader, ContainerBuilder $builder): void

16 {

17 $this->baseConfigureContainer($container, $loader, $builder);

18

19 $builder->registerExtension(new AppExtension());

20 }

21 }

Again, yes, this is annoyingly technical. But thanks to these two pieces, our

netgen_layouts.yaml config will be prepended.

Check it out! Re-run the debug:config command again:

php ./bin/console debug:config netgen_layouts view.item_view

Scroll up and... yes! Our configuration is now on top! And when we refresh... woohoo! We see

the text!

Next: let's make this template render exactly like the hardcoded skills. Then we'll create a

second item template to customize how the Contentful "Advertisement" content type renders.

Chapter 23: Contentful Item Template

Our "item" template for skills is now being used! So, let's finish it!

We already know what we want the skills to look like... so let's go steal that from
templates/main/homepage.html.twig. Find the featured_skills block, copy what one of
those skills looks like, and paste that into skill.html.twig. Let's also add

dump(item.object) atthe top:

templates/nglayouts/themes/standard/item/contentful_entry/skill.html.twig

1 {{ dump(item.object) }}

2

3 <h3>Folding in Cheese</h3>

4 <div class="p-3 mt-3 skill-img">

5 <img src="{{ asset('images/pup-cup.png') }}" width="auto" height="80"
alt="grater skill image">

6 </div>

7

We've created an item template before, so we know item.object should give us the

underlying "object" that represents this Contentful entry.

If we head over and refresh... awesome! This dumps a ContentfulEntry object. And, though
you can't see it from here, this class has a get() method we can use to read any of the

underlying data from Contentful.

For skills, if we dig a little... we have fields like title and shortDescription. Let's use those!

For example, in the <h3>, say {{ item.object.get('title') }}:

templates/nglayouts/themes/standard/item/contentful_entry/skill.html.twig

1 {{ dump(item.object) }}

2
3 <h3>{{ item.object.get('title') }}</h3>

$ // ... lines 4 - 6

7

And... yup! That worked!

For the , replace the asset() stuff with item.object.get('image"), followed
by .file.url, which is specific to Contentful. Also fill in the alt attribute with

item.object.get('title'):

templates/nglayouts/themes/standard/item/contentful_entry/skill.html.twig

1 <a href="{{ path('cmf_routing object', {' _route object': item.object}) }}"
class="text-center skill-item-container p-3">

2 <h3>{{ item.object.get('title') }}</h3>

3 <div class="p-3 mt-3 skill-img">

4 <img src="{{ item.object.get('image').file.url }}" width="auto"
height="80" alt="{{ item.object.get('title')}} skill image">

5 </div>

6

The last thing we need to update is the URL. But, hmm. If we had created a "skill show" page in
Symfony, we could use the Twig path() function to link to that route! However, each skill page
is actually created via a dynamic route thanks to the Contentful bundle. And, to create those

routes, it uses something called the CMF routing system.

So, to link, we need to use that system. Say path('cmf_routing object') and pass

_route_object setto item.object:

templates/nglayouts/themes/standard/item/contentful_entry/skill.html.twig

1 <a href="{{ path('cmf_routing object', {'_route_object': item.object}) }}"
class="text-center skill-item-container p-3">

T // ... lines 2 - 5

6

If you were using Sylius or Ibexa CMS, you would use some function from their system to create

the link: this is specific to the CMF routing system.

Head over and try that. Yes! And if we click the link... double yes!

Let's celebrate by removing the dump() . We can also delete this featured_skills block from
our homepage template: We won't need that at all anymore. But let's remake this <h2> inside of
the layouts admin first. To do that, add a Title block called "Featured Skills", make that "H2"...

and give it those same CSS classes: text-center mb-4.

The Grid is already in a container... but we want all of this in a container. So add a Column,
wrap that in a Container, move the Grid and Title blocks inside of it... then we won't need a
Container on the Grid anymore. Delete the "Features Skills" block... then finally hit "Publish and

continue editing". While we're waiting, delete that block also from the Twig template.

And now... yes! It looks perfect!

The Advertisement ltem View

Okay, while we're talking about item views, let's customize the item template for our other
content type inside of Contentful: Advertisement. We're only rendering that in one place, on the

individual skill page... right over here. Let's go check that out.

Publish this layout... then edit the individual skill layout. Earlier, we used the Contentful Entry
Field block to render the advertisement field, which is a "referenced entity". Yup, if you modify
a skill in Contentful, down on the bottom, the "Advertisement" field allows you to choose from

the Advertisements in our system.

Click on the Twig icon of the web debug toolbar... search for "item", and scroll down.. No
surprise: it's using the standard Contentful "item" template. And, good news, we already know

how to override that!

Head over to our configuration, copy the contentful_entry/skill section, and paste it
below. Replace skill with ad for the section name and template... and update the
content_type to advertisement... because that's the internal name of that type in

Contentful:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 view:

14 item_view:

$ // ... lines 15 - 21

22 # default = frontend

23 default:

$ // ... lines 24 - 33

34 contentful_entry/ad:

35 template: '@nglayouts/item/contentful_entry/ad.html.twig'
36 match:

37 item\value_type: 'contentful_entry’

38 contentful\content_type: 'advertisement'
$ // ... lines 39 - 46

Ok! Let's go add that template. In contentful_entry, create a new file called

ad.html.twig... and then just print some text: Advertisement:

templates/nglayouts/themes/standard/item/contentful_entry/ad.html.twig

1 Advertisement
Moment of truth. Head back over and refresh. We got it! That was easy!

For the real template contents, I'll just paste them in. Once again, we use item.object.get()

to read the url field. There's also an image field and a shortText field:

templates/nglayouts/themes/standard/item/contentful _entry/ad.html.twig

1 <a href="{{ item.object.get('url') }}" class="p-3 text-center ad-item-container"
target="_blank">

2 <h3>Sponsored Product</h3>

3 <img src="{{ item.object.get('image').file.url }}" width="auto" height="200"
alt="Ad image">

4 <p class="pt-3">{{ item.object.get('shortText"') }}</p>

5

And now... we've got it!

Next: What if we wanted to create a Grid of items... but make that one Grid look different than

every other Grid on the site? We can do that by creating an extra "block view" for an existing
block.

Chapter 24: Block Views & Block Definitions

Let's create a layout for our "individual recipe" page so that we can customize this a bit more. |

love that we can create new layouts on the fly, whenever a page needs to be tweaked.

Adding_and Mapping_a New Layout

Add a new layout, choose our favorite Layout 2 and call it "Individual Recipe Layout". And y'all

know the drill at this point. Start by linking the Header zone... then the Footer zone.

Cool! And then because we're going to be applying this to a normal page that already exists in

Twig, add a "Full View" block, which will render the body block from our template.

Solid start. Hit "Publish"... so we can map this. Add a new mapping, link it to the "Individual
Recipe Layout"... then hit "Details". This time, let's link via the route name. To get that name,
open src/Controller/RecipeController.php. Here itis: app_recipes_show. Paste that,

hit "Save Changes" and... let's try this!
We shouldn't see any difference yet and... we don't. But we can see that it's using our layout!

Let's spice this page up a bit! Go back to the layouts admin and edit the "Individual Recipe
Layout". Add a new Grid and change it to a "Dynamic collection"... that uses "Contentful

search". Load Skills, show the newest first and limit to 3.

Ok, if we "Publish and continue editing"... then refresh... whoal! It's cool that we can just put

those anywhere now. Though, let's wrap that in a container. And... much better.

So far, this is all easy! Ready for the complication? | want to customize how this grid looks: |
want to have one big recipe on the left and then two smaller recipes on the right. But | do not
want to change how the grid looks on other parts of our site, like on the homepage. So the

question is: how can we change how this grid renders on just this page?

The Grid/List View Types

Click on the Grid and go to design tab. It turns out that a Grid is really just a "List" block. And the

"List" block has two "view types": list and grid.

Head over to your terminal and run:

php ./bin/console debug:config netgen_layouts view.block_view

Oh, but spell netgen correctly. This displays the configuration for how blocks are rendered.
Find the default section... then scroll down a bit. Here: we see the two view types for list and
grid. As | mentioned, it turns out that these are actually both part of the same block type called
list. They're just two different view types: one called 1ist and one called grid. When you
switch the "view type" in the layouts admin, you're effectively switching which template is used

to render that block.

Block Definitions

Run that same command, but instead of view.block_views, check block_definitions:

php bin/console debug:config netgen_layouts block_definitions

Block definitions is where you define what the blocks actually are. So every root key under this
config represents a different block that we can use inside the admin area. Find the one called
list: here it is. This defines things like what form fields are rendered in the admin area for this
block and what "view types" it has. This has two: list and grid. Layouts reads this config to
render the "View Type" select field in the admin. Then, once we select the view type, it uses

the block _views config we looked at before to know which template to render.

Ok, enough deep config and theory. Let's give ourselves a new way to render lists by creating a

new view type. That's next.

Chapter 25: Custom Block View

So here's the plan. We're going to add a new "view type" to the list block definition. Then we're

going to map that to a femplate via block_views.

Updating_the "Block Definition"

For step 1, open our netgen_layouts.yaml file and, really anywhere, add

block _definitions. This config can be used to create totally new blocks or change options
on existing blocks, which is what we want. To do that, we need to repeat the config here: list
& view_types. So, list view_types and then add the new one. Let's call it one_by two -

that key can be anything - and give it a name: 1x2 Featured Grid:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 12

13 block_definitions:

14 list:

15 view_types:

16 one_by two:

17 name: 1x2 Featured Grid
T // ... lines 18 - 52

Just by doing that, if we go over and refresh the admin area... and click down on the grid, we
have a new view type! If we change to it... nothing renders in the admin area. And if we hit

"Publish and continue editing"... over on the frontend... also nothing renders. Yay!

Click the Layouts link in the web toolbar and... near the bottom, ah. It's rendering
invalid_block.html.twig. The block definition is 1ist and the view type is
1x2 Featured Grid. The problem is that we haven't, yet, defined a "block view" for that

combination. So, it falls back to "invalid block".

Adding_the Admin Block View

Ok, under view, we've already created several "item views". Now add block_view so we can
create our first of those. We're going to register both an admin view as well as a frontend view.
Because... in the admin area, it currently renders nothing. Add app for the admin and the next
key doesn't matter. For the template, because the admin view isn't too important, let's re-use the
core admin "grid" template, which you could find via the debug:config command. It's

@NetgenLayoutsStandard/app/block/list/grid.html.twig.

Now add match. We want to use this template if block\definition is 1list and
block\view_type is one_by two... making sure that this matches the key we used earlier

under the block definition:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

T /7 ... lines 2 - 18

19 view:

T // ... lines 20 - 52

53 block_view:

54 app:

55 list/one_by_two:

56 template:
'@NetgenLayoutsStandard/app/block/list/grid.html.twig"’

57 match:

58 block\definition: list

59 block\view_type: one_by two

$ // ... lines 60 - 67

How did | know to use block\definition and block\view_type? By using our favorite

debug:config command! That's always a good guide to follow.

Anyways, that should fix the admin area. And... it does!

Frontend Block View

For the frontend view, duplicate that entire section... but use default. This key is fine, it doesn't
matter, and change the template to, how about,
@nglayouts/block/list/one_by two_list.html.twig. The match section is perfect

already:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 18

19 view:

T // ... lines 20 - 52

53 block_view:

$ // ... Lines 54 - 60

61 default:

62 list/one_by_two:

63 template: '@nglayouts/block/list/one_by two_list.html.twig'
64 match:

65 block\definition: list

66 block\view_type: one_by two

Ok, let's go make that template! We already have
templates/nglayouts/themes/standard/block/ ... so, create the new list subdirectory

then the file: one_by_two_list.html.twig. Start by saying 1x2:

templates/nglayouts/themes/standard/block/list/one_by two list.html.twig

1 1x2

Let's check it! Over on the frontend, refresh and... there's our tiny 1x2!

Customizing_the Frontend Template

Let's bring this to life! Because this renders a "list" block, our template probably has access to
some variable that represents the "items". To cheat, which is always a good choice for

developers, let's peek at the core grid template: grid.html.twig from the themes/ directory.

Wow! Like many core templates, there's a lot of stuff in here! You can choose what you want to
keep or get rid of. The most important thing is this collection_html variable: they loop over
collections[collection_identifier]... where collection_identifier is actually just
the word default. So it loops over collections.default. Then it includes a template. That
templateName variable will be set to something like grid/ the number of columns
.html.twig. For example, if the grid is configured to use 3 columns, it would use

3 _columns.html.twig. That template adds the div needed for each column in a 3 column

setup... and then calls nglayouts_render_result() . That renders the "item".

Anyways, if you zoom out, the template basically loops over the collections variable and

calls nglayouts_render_result() on each one.

Back in our template, I'm going to paste in some code that does something similar:

templates/nglayouts/themes/standard/block/list/one_by two_list.html.twig

1 {% extends '@nglayouts/block/block.html.twig' %}

2

3 {% block content %}

4 <div class="row">

5 {% for result in collections.default %}

6 <div class="col-sm-6 col-md-6 col-1g-4">

7 {{ nglayouts_render_result(result, null, block.itemViewType) }}
8 </div>

9 {% endfor %}

10 </div>
11 {% endblock %}

Yup, we extend block.html.twig, just like the core template does, then loop over
collections.default, add a div and render each item. So this is effectively a simpler

version of what a grid does.

And what does it look like? Refresh and... yup! It looks like a grid!

But remember the goal: one big skill on the left with two smaller skills on the right. To make that
happen, I'll paste in version 2 of my template. Nothing special here. Instead of looping, this

renders the 0 key, then the 1 and 2 keys:

templates/nglayouts/themes/standard/block/list/one_by two_list.html.twig

1 {% extends '@nglayouts/block/block.html.twig"' %}

2
3 {% block content %}
4 <div class="row">
5 <div class="col-6">
6 {{ nglayouts_render_result(collections.default[@], null,
block.itemViewType) }}
7 </div>
<div class="col-6">
10 <div class="row">
11 <div class="col-6">
12 {{ nglayouts_render_result(collections.default[1], null,
block.itemViewType) }}
13 </div>
14 <div class="col-6">
15 {{ nglayouts render_result(collections.default[2], null,
block.itemViewType) }}
16 </div>
17 </div>
18 </div>
19 </div>

20 {% endblock %}
And now... yes! That's exactly what | wanted!

Though, I'll give you the same warning | gave earlier when we were overriding core "item"
templates. We are not including all of the custom stuff that lives in the core template. If you need

to support a custom option, make sure to include that code.

Hiding_Block Options for a Block View Type

And actually, one thing in here - the number of columns - is not something we need. This is
something that we can configure for the block... but it's not relevant at all when using our new

view type.

Could we... hide that option when using our view type? Yep! Head back to your terminal and

debug the block _definitions config again:

php ./bin/console debug:config netgen_layouts block definitions

Search for one_by_two. We could configure this valid_parameters key to remove an option

from the block. The list view type does exactly that. | won't do it, but that's how it's done.

Ok, head back to the site and go to the "All Skills" page. Yea... things still don't look right. On
this layout, we're using a grid to render the items. And, that grid looks ok on other pages but not
here, where the skills are meant to be the main content on the page. Next, let's learn how we

can customize how these items render for just this grid.

Chapter 26: Custom Item View Type

The Grid of skills on the /skills page looks terrible. Let's go find the layout for that: Skills List
Layout. Ok, so this is a normal Grid... and it renders like any other Grid on the site. | want to
customize this, but | don't want the Grid block itself to render differently: having them tiled like
this is great. What | really want is to change how each item inside the grid is rendered... but just

in this one situation. How can we do that?

Hello "ltem View Types"

Head over to your terminal and run our favorite debug:config command, this time looking at

block_definitions:

php ./bin/console debug:config netgen_layouts block_definitions

This is, as we learned, the config for all of the blocks in our system. And check this out! One
piece of config we haven't talked about yet is item_view_types. For each "block view type",
like one_by two, list, or grid, there's also item_view_types. So far, all of these currently

have a single one called standard.

It's not super common, but for a given view type - like one_by_two or 1list - you can specify
multiple ways to render the items inside of that view type. Those are called item_view_types.

Standard is the default, and it means the items will render in the "normal" way.

So here's our goal: for the existing grid view type, we're going to add a new "item view type".
On a high level, this will allow us, while configuring a grid, to choose a different way to render

the items.

To start, over in our configuration, find block_definitions. We currently have list,
view_types, and one_by two. Now add grid so we can override that existing view type. Add
item_view_types with a new one called, how about, skill big view. You'll see how we use

that key in a second. Also give this a human-readable name:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

T // ... lines 2 - 12

13 block _definitions:

14 list:

15 view_types:

$ // ... lines 16 - 17

18 grid:

19 item_view_types:

20 skill big view:

21 name: Skills Big View
T // ... lines 22 - 77

What did that do? Refresh the admin area... click down on the Grid... and make sure you're on
the "Design" tab. Hey! We have a new "ltem view type" select! It shows "Standard", which is the

default, then our new "Skills Big View"!

Select it and hit "Publish and continue editing". What will this change on the frontend when we

refresh? Absolutely nothing! That's because we now need a new "item view" that will match this.

Adding_the "ltem View" for the new "ltem View Type".

Back in our config, scroll down to item_views. Below default, copy the

contentful _entry/skill section and paste it above.

We're putting it above because order is important: we need this new item view to be able to
match before the other one. Watch. Call this contentful_entry/skill big view and change
the template to @nglayouts/item/contentful_entry/skill big view.html.twig. We still
want to match when item\value_type is contentful_entry and
contentful\content_type is skill... but only if the matcher called item\view_type equals

the key we created earlier skill big view:

config/prepends/netgen_layouts.yaml

1 netgen_layouts:

$ // ... lines 2 - 22

23 view:

24 item_view:

T // ... lines 25 - 31

32 # default = frontend

33 default:

$ // ... lines 34 - 38

39 contentful_entry/skill big view:

40 template:
'@nglayouts/item/contentful_entry/skill _big view.html.twig'

41 match:

42 item\value_type: 'contentful_entry'

43 contentful\content type: 'skill'

44 item\view_type: 'skill_big view'

T // ... lines 45 - 77

Thanks to this, if the user selects this as their "ltem View Type" for a grid of skills, then all three
of these will match. But if the user chooses the default Standard item view type, it would not

match this... but it still would match the one below.

Let's go add the template. Inside item/contentful_entry/, create the new file:
skill big view.html.twig. Inside, say BIG VIEW:

templates/nglayouts/themes/standard/item/contentful entry/skill big view.html.twig

1 BIG VIEW

Let's try it! Make sure the layout is published... then on the frontend... we got it! The rest is easy!
Because we've already created several item view templates... I'll just paste in the rest. There's

nothing new here.

But now... yea! That is the look we're going for.

Changing_the "ltem View" on an ltem by Item Basis

By the way, now that our "Grid" block view has multiple "item view types" - that's our
configuration up here - we have the power, on an item-by-item basis, to control that. See this

"Override slot view type"? This basically says;

“Yo Layouts! | want to change whatever the first item in this list is to use the "Standard" view

type.”

I'll hit "Publish and continue editing" and now... you can see that just the first item uses the
Standard view type! That's... obviously not what we want on our site, so I'll go back and use "No

overrides". But that is a very powerful concept.

And... woh! Just one chapter leftl One common problem with Layouts is working with vertical
spacing: just making sure the spacing is correct between all of our components. We could
control that by adding CSS classes to individual blocks. But wouldn't it be nice if every block in
the system had a nice drop down where we could select the top and bottom margins
automatically? How can we make a modification to an existing block, or even all blocks in our

app? That's the job of a block plugin, and that's next.

Chapter 27: Block Plugins

Well look at us! We've made it to the /ast topic of the tutorial. We've already transformed our
static site into one where we can reorder the layout for each page, mix it with custom code from
Twig templates and add dynamic content. That's... kind of awesome. Of course, we haven't

covered everything you can do with Layouts, but you're now truly dangerous.

Creating_a Custom Block?

One topic that we haven't covered is how to create a totally new block, but this is documented
and, at this point, | think it wouldn't be too hard. Why would you build a custom block? Suppose
you have something super custom like our "Hero" area or this "subscribe to newsletter" area,
which is actually powered by Symfony's UX Live Component package, which gives it the fancy

Ajax behavior.

Anyways, if you want something like this on your page, the simplest way to add it is... how / did
in this project: put the logic in Symfony, render inside a Twig block, then include that Twig block

inside of Layouts.

But what if we want the admin user to be able to add this to multiple pages whenever they
want? That is when creating a custom block would be useful. Custom blocks can also have

options, so you could even let them customize this in some way.

Hello Block Plugins

Anyways, let's do one last challenge related to blocks: create a block plugin. Go to a skill show
page. Hmm, we could probably use a bit more margin between these blocks. And that's a pretty
common need. We could handle this by adding a CSS class that sets the margin. But | want to

make it even easier.

Go to the Layouts admin, then edit the Individual Skill Layout. Ok, suppose we want to add

some margin right here. To do that, | want the admin user to be able to click on any block in the

system - for example, this column block - and over on the design tab, select the top or bottom

margin they need from a new form field.

This is a pretty wild goal... because, to accomplish it, we need to be able to modify every block
in the system! Fortunately, that is exactly the point of a block plugin: to extend one - or every -
block.

Creating_the Block Plugin

Let's get to work. In the src/Layouts/ directory, create a new PHP class called, how about,
VerticalWhitespacePlugin. This needs to implement a PluginInterface. But in practice,
we extend a Plugin class that implements that interface for us. Go to "Code"->"Generate", or

Command+N on a Mac, and implement the one method we need: getExtendedHandlers():

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 - 2

3 namespace App\Layouts;

4

5 use Netgen\Layouts\Block\BlockDefinition\Handler\Plugin;
6

7 class VerticalWhitespacePlugin extends Plugin

8 {

9 public static function getExtendedHandlers(): iterable
10 {
11 // TODO: Implement getExtendedHandlers() method.
12 }
13 }

Ok, each block in the system - so every item over here on the left menu - has a class behind it
called a block handler. Our job in getExtendedHandlers() is to return an iterable of all the
"handlers" that we want to extend. For example, if you wanted to only extend the title block, you
could yield TitleHandler::class. How did | know to use that class? Well, most of the time
you can guess: the title block has a TitleHandler. But if you want to look deeper, you can see

all the handlers in the system by running:

php bin/console debug:container --tag=netgen_layouts.block_definition_handler

Anyways, in our case, we want to override every block. So we can
yield BlockHandlerDefinitionInterface::class, because every block handler must

implement that interface:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 - 4

5 use Netgen\Layouts\Block\BlockDefinition\BlockDefinitionHandlerInterface;
$ // ... lines 6 - 7

8 class VerticallWhitespacePlugin extends Plugin

9 {
10 public static function getExtendedHandlers(): iterable
11 {
12 yield BlockDefinitionHandlerInterface::class;
13 }
14 }

And yes, | totally just forgot the word Definition. Whoops! I'll fix this bad interface in a minute.

Adding_a Custom Block Parameter/Field

To see what to do next, go back to the "Code"->"Generate" menu, select "Override methods"

and choose buildParameters(). We don't need to call the parent method because it's empty:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 - 6

7 use Netgen\Layouts\Parameters\ParameterBuilderInterface;
T // ... Lines 8 - 9

10 class VerticalWhitespacePlugin extends Plugin

11 {

$ // ... lines 12 - 16
17 public function buildParameters(ParameterBuilderInterface $builder): void
18 {

$ // ... lines 19 - 27
28 }
29 }

Parameter is the word that Layouts uses for the form options that you can customize on the
right side of the screen for every block. Thanks to our getExtendedHandlers() method, when

Layouts builds those options for any block, it will now call this method and we can add new

parameters.

I'll paste in the first... and we also need a use statement for this ParameterType namespace:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 - 7

8 use Netgen\Layouts\Parameters\ParameterType;

9

10 class VerticallWhitespacePlugin extends Plugin

11 {

$ // ... lines 12 - 16

17 public function buildParameters(ParameterBuilderInterface $builder): void
18 {

19 $builder->add(

20 ‘vertical whitespace:enabled’,

21 ParameterType\Compound\BooleanType::class,

22 [

23 "default_value' => false,

24 'label' => 'Enable Vertical Whitespace?',
25 "groups' => [self::GROUP_DESIGN],

26 1

27);

28 }

29 }

Cool! As you can see, Layouts comes with a bunch of built-in "field types" - like BooleanField,
which will render as a checkbox. It defaults to false and has a label. Oh, and this group?
Remember how there are two tabs - "Design" and "Content"? This is where you determine

which your parameter should live inside.

And the first key - vertical_whitespace:enabled is the internal name of this field. You'll see

how we use that in a minute.

Before we try this, future Ryan has just informed me that... | messed up! Typical. Scroll up. I'm

yielding the wrong class! Yield BlockDefinitionHandlerInterface::class:

src/Layouts/VerticalWhitespacePlugin.php

$ // ... lines 1 - 4

5 use Netgen\Layouts\Block\BlockDefinition\BlockDefinitionHandlerInterface;
T // ... lines 6 - 9
10 class VerticallWhitespacePlugin extends Plugin

11 {

12 public static function getExtendedHandlers(): iterable
13 {

14 yield BlockDefinitionHandlerInterface::class;

15 }

$ // ... lines 16 - 28

29 }

That's better.

Now let's try it. Refresh... click on any block... let me find my Title block... and... there it is! On

any block we see the new field!

Adding "Child" Parameters/Fields

But, the real idea is that, if the user enables this, we show them two more fields where they can

select the top or bottom margin.

To do that, after the first field, I'll paste in two more parameters:

src/Layouts/VerticalWhitespacePlugin.php

T // ... lines 1 -9

10 class VerticallWhitespacePlugin extends Plugin

11 {

T // ... lines 12 - 16

17 public function buildParameters(ParameterBuilderInterface $builder): void
18 {

19 $builder->add(

20 'vertical_whitespace:enabled’,

$ // ... lines 21 - 26

27)5

28

29 $builder->get('vertical_whitespace:enabled')->add(
30 ‘vertical_whitespace:top’,

31 ParameterType\ChoiceType::class,

32 [

33 "default_value' => 'medium’,

34 "label’ => 'Top Spacing',

35 'options' => [

36 "None' => 'none’,

37 'Small’ => 'small’,

38 '"Medium' => 'medium’,

39 'Large' => 'large',

40 1,

41 ‘groups’ => [self::GROUP_DESIGN],
42 1,

43)

44

45 $builder->get('vertical_whitespace:enabled')->add(
46 ‘vertical_whitespace:bottom’,

47 ParameterType\ChoiceType::class,

48 [

49 "default_value' => 'medium’,

50 ‘label’ => 'Bottom Spacing’,

51 'options' => [

52 "None' => 'none’,

53 'Small’ => 'small’,

54 '"Medium' => 'medium’,

55 'Large' => 'large',

56 1

57 "groups' => [self::GROUP_DESIGN],
58 1,

59)5

60 }

61 }

These are basically like the first. The big difference is that, up here, we said $builder->add().
But now we have $builder->get('vertical whitespace:enabled') and then ->add().

This makes these child fields under the first.

This is pretty cool. Refresh and... let's find the Column block. Click to "Enable Vertical
Whitespace". Woh! The other two fields showed up! Let's do "Medium" top spacing and "No"

bottom spacing. Publish that.

Using_the Parameters in the Block Template

It shouldn't be too surprising, however, that when we refresh the page... absolutely nothing
happens! We added those options... but we're not using them anywhere yet. We need to

override a template to do that.

Let's think: we want this top and bottom margin to apply to every block in the system. And,
fortunately, every block in the system eventually extends block.html.twig: this one here in

the nglayouts/themes/ directory.

Copy this. Then override it via the theming system. If we follow the path... standard/block...

standard/block... the new file should live here: block.html.twig. Paste the contents inside.

To make sure this is working, put a little TEST:

templates/nglayouts/themes/standard/block/block.html.twig

O 00 N O U1 »h W N

10
11
12

13
14
15
16
17
18
19
20

Ok! Refresh the frontend. Yikes! Yep, that's definitely working. Go... take that out.

classes. And hey! It calls block.parameter('css_class')! Yup, that's what reads the "CSS

Then, ituses |join(' ') to combine all of these into a string.

I'm going to remove that join() ... then rename this variable to css_classes:

templates/nglayouts/themes/standard/block/block.html.twig

1

0

block_content, recreate that css_class variable set to css_classes|join("'

{% set css_class
~ block.viewType, css_class|default(block.parameter('css _class').value)]|join("
') %}

set css_id = css_id|default(block.parameter('css_id').value) %}

%
%

{% endif %}

At the top of the template, we have a variable called css_class, which is set to some core

class" field from the block options!

{% set css _classes

A Ga

We're setting things up so that we can easily modify that variable. Down here, right before

['ngl-block', 'ngl-' ~ block.definition.identifier,

set set_container = block.parameter('set_container').value %}

if show_empty wrapper is not defined %}

{% set show_empty wrapper

set block_content = (block('content') is defined ? block('content') : '')|trim

if block_content is not empty or show_empty_wrapper %}
<div class="{{ css_class }}" {% if css_id is not empty %} id="{{ css_id }}"
endif %}>

{% if set container %}<div class="container">{% endif %}

{{ block_content|raw }}

{% if set _container %}</div>{% endif %}

['ngl-block', 'ngl-' ~ block.definition.identifier,
~ block.viewType, css_class|default(block.parameter('css_class').value)] %}

lines 2 - 21

templates/nglayouts/themes/standard/block/block.html.twig

$ // ... lines 1 - 8

9 {% set css_class = css_classes|join(' ') %}

10 {% set block content = (block('content') is defined ? block('content') : '')|trim
%}

$ // ... lines 11 - 21

This variable is used in a bunch of different places and in child templates. So we need to make

sure it's still set.

Anyways, up here, we now have a css_classes array. Let's use that! I'll paste in three

variables, each set to the value of our three parameters:

templates/nglayouts/themes/standard/block/block.html.twig

T s/ ... lines 1 - 2

3 {% set set_container = block.parameter('set container').value %}

4

5 {% set use_whitespace = block.parameter('vertical_whitespace:enabled').value is

same as(true) %}

{% set whitespace_top = block.parameter('vertical whitespace:top').value %}

{% set whitespace_bottom = block.parameter('vertical whitespace:bottom').value %}
T // ... lines 8 - 29

This is where the parameter name we used in the class comes in handy.

Now, very simply, if use_whitespace, then add some margin classes. I'll paste that code in too:

templates/nglayouts/themes/standard/block/block.html.twig

$ // ... lines 1 - 4
5 {% set use_whitespace
same as(true) %}

block.parameter('vertical_whitespace:enabled').value is

{% set whitespace top = block.parameter('vertical whitespace:top').value %}
{% set whitespace_bottom = block.parameter('vertical whitespace:bottom').value %}
{% if use_whitespace %}

O 00 N O

{% set css_classes

css_classes|merge(['whitespace-top-' ~ whitespace_top])
%}

10 {% set css_classes = css_classes|merge(['whitespace-bottom-' ~
whitespace bottom]) %}

11 {% endif %}

T // ... lines 12 - 29

So, for the top margin, we're adding a new whitespace-top- followed by none, small,

medium or large. And same for the bottom.

These new classes are totally invented: they're not part of Bootstrap CSS or anything else, but
you could make this smarter to reuse those. But for us, if you open assets/styles/app.css...

near the top, here we go!

assets/styles/app.css

T /... lines 1 - 12
13 .whitespace-top-small {

14 padding-top: 2rem;

15 }

16 .whitespace-top-medium {
17 padding-top: 4rem;

18 }

19 .whitespace-top-large {

20 padding-top: 8rem;

21 }

22 .whitespace-bottom-small {
23 padding-bottom: 2rem;
24}

25 .whitespace-bottom-medium {
26 padding-bottom: 4rem;
27 }

28 .whitespace-bottom-large {
29 padding-bottom: 8rem;
30}

T // ... lines 31 - 108

Before the tutorial, | already prepared those classes.

So... it should work! Move over and refresh. Got it! Our block has a little extra top whitespace...

which comes from our new class.

And... done!, Woo! Great job team! You're now a Layouts champion! Let us know what cool
things you're building with it. And if you have any questions, as always, we're here for you down

in the comments section.

Alright, thank you and seeya next time.

With <3 from SymfonyCasts

