
Lean and Mean Dev with
PhpStorm (for Symfony)

Chapter 1: Setup

Hey guys! If you've watched even one video on KnpU - please tell me that you have - then

you've seen me using PHPStorm.

Now think about how much you use your editor. If you work 40 hours a week I bet you stare

deeply into your editor at least 20 of those hours. So over a year, that's... let's see here - carry

the one - over 1,000 hours!

So if you could learn something that saves you a few seconds now, that's going to mean you're

saving 10's of hours in the future.

Particularly in Symfony development, mastering PHPStorm is going to completely speed up the

way you develop and help you catch mistakes you may have missed otherwise.

If you've never used PHPStorm before it does have a free trial period that you can use to see if

it's going to work for you.

 Go Deeper!

For even deeper information about PhpStorm settings and shortcuts, you can also check out

Beginner's Guide to PhpStorm - Tips & Tricks.

UI Updates

I'm working with a fresh version of PHPStorm, this is not how I want my development

environment to look - all this white is stressing me out. So download your own copy and let's

customize this thing together.

If I open any of my files right now you'll see that they look pretty ugly. Let's clean that up first:

open up preferences and in Appearance under Appearance & Behavior you can select your

theme, change that to Darcula.

(insert Dracular slow laugh here)

http://www.ifdattic.com/beginners-guide-to-phpstorm-tips-tricks/

This is the theme of the UI which also goes and sets the scheme for the editor. And this is

already so much better. Staring into a white screen for 1,000+ hours a year is very similar to just

staring at a lightbulb -- not so great on the eyes.

Speaking of eyes, I'd like to see my font size a bit bigger here. Back to preferences, on a mac

its shortcut is ⌘ , so I'll start using that. On Windows and Linux, it's the longer Ctrl+Alt+S -

you can check out the key mappings under the keymap section, to see and simplify these.

Use this search to look for font. This pulls up a few things, general appearance, colors & fonts.

Let's pick font here and there's font size.

I can't immediately change the font size I've got because that would change the Darcula

scheme. So first let's click 'save as' so we can customize this, save it as 'darcula mine'. And now

I can change the font size to 14 and give it a line spacing of say 1.2. Ahh so much better.

Project Organization

Over here on the left, you can see the tuts and knpu directories. I use these to help me build

this tutorial - but when I'm coding, I don't want to see them. Any time you have a directory that

you don't want PHPStorm to look into, or that you just don't want to see, you can hide it. Right

click tuts , find 'mark directory as' and select 'excluded'. In a second that will hide this for me.

Let's also do this on the knpu directory.

And now we can change the view in the upper left from 'project' to 'project files'. Let's also

exclude this .idea directory. If you ever need to see those in the tree again you can just switch

back to 'project' and they'll reappear. Then you can even unmark them if you want to.

Plugins

Okay back to the 'project files' view. So PHPStorm is the best editor I've ever seen. But the real

power with Symfony comes from an amazing plugin. Back in preferences if you search for

Symfony it brings you to a plugin spot. Click 'Browse Repositories', here you see the community

plugins for Symfony and there's one called the 'Symfony2 Plugin'.

 Tip

The "Symfony2 Plugin" was renamed to "Symfony Support" - install this instead

To prove how great it is just look at its 1.2 million downloads. So press the 'Install Plugin' button

to get this added to our IDE.

The other plugin that you are definitely going to want to install is this called 'PHP Annotations'.

Find that one in the search and install it. Perfect.

Close out of this window, and then press ok and restart PHPStorm.

You only need to install the Symfony plugin once, but each time you start a new project you will

need to enable it. Back in preferences, search Symfony and check the 'Enable Plugin for this

Project' checkbox. Do that just one time per project - not bad!

The checkbox had a note that it requires a restart, that's mostly not true. But I am going to

restart one more time because there are a few small features that will not work until you do this.

Now we're really ready to go! I've already got my my site running on localhost:8000 and we've

got a nice looking 404 page since there isn't anything inside of here yet.

 Tip

To run the website, execute in your terminal:

php app/console server:run

And open the homepage at http://localhost:8000/

Just to prove that the Symfony Plugin is installed and running, in the bottom right of PHPStorm

you should see a little Symfony menu. Clicking it gives you a quick way to jump into the profiler

for any recent requests.

Now that our editor is all setup let's get down to work!

http://localhost:8000/

Chapter 2: Annotations

We've got a big project today, a site about movies. But only movies that have Samuel L.

Jackson.

 Tip

The "Controller" option when you create a new file is no longer available. However, you can

use php bin/console make:controller from MakerBundle as an even nicer option.

We'll start by creating a MovieController . We could right click on the Controller

directory, go to new, and select file from the menu. But we can be faster! For Mac users, use

⌘+N to get the "new" menu open. And because we have the Symfony Plugin, by typing

'controller' you'll find an option to create one directly. Let's keep things simple and obvious and

call it MovieController .

src/AppBundle/Controller/MovieController.php

1

2

3

4

5

6

7

8

9

10

11

12

13

Ah, and when you use Git, PHPStorm asks you whether you want to add new files to git. I prefer

to just do this myself so I'll click 'no'. Beautiful!

Auto-complete Annotations

<?php

namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class MovieController extends Controller

{

 public function indexAction($name)

 {

 return $this->render('', array('name' => $name));

 }

}

We'll need a route to this MovieController , so add some annotations above

indexAction() . Let's change these to @Route and let autocomplete do its thing. The one

we want is Sensio\Bundle\FrameworkExtraBundle\Configuration\Route , select

that option and hit tab and notice that it added a use statement on line 5:

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

12

13

 // ... lines 14 - 16

17

That's really important because when you use annotations you need to have a use statement

for them. Now instead of spending your time looking it up in the documentation, autocomplete

will take care of it for you. Robots FTW!

Let's have our path be /movies/new and change indexAction() to newAction()

because this controller will render a "new movie" form. And we'll fix up our render call in a

second:

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

 // ... lines 17 - 18

Head over to the browser and check if our new route is hitting our endpoint. Perfect! It can't find

the template but that's fine because, there isn't one :)

Annotation Options

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class MovieController extends Controller

{

 /**

 * @Route("/movies/new")

 */

 public function newAction()

}

 /**

 * @Route("/movies/new")

 */

 public function newAction()

 {

 return $this->render('', array());

 }

Annotations have a lot of options and one of them here is called name , which auto-completes

for us. Hey thanks. Fill that in with movies_new :

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 18

If you're the curious sort and are wondering what other options you have, just hold the control

key and hit the space bar: that will bring up all the options that you have in that spot. In fact,

"control+space" can be used pretty much anywhere to show you your auto-complete option -

really handy.

This autocomplete works for two reasons. First, an annotation represents a real class. Hold

command, or control if you're in windows, and click @Route to open up the class that fuels it.

vendor/sensio/framework-extra-bundle/Configuration/Route.php

 // ... lines 1 - 11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 43

44

If you hold command again and go into its base class, you'll see that all of those options are

represented as properties inside of that class:

 /**

 * @Route("/movies/new", name="movies_new")

 */

 public function newAction()

namespace Sensio\Bundle\FrameworkExtraBundle\Configuration;

class Route extends BaseRoute

{

}

vendor/symfony/symfony/src/Symfony/Component/Routing/Annotation/Route.php

 // ... lines 1 - 11

12

 // ... lines 13 - 21

22

23

24

25

26

27

28

29

30

31

32

 // ... lines 33 - 181

182

To take this further if you go back to MovieController you can hold command and click on

the name option and have it take you right to that property. You may not need this very often,

but sometimes it's useful to see how an annotation option is used to figure out what value you

want to set for it.

Now thanks to the annotations plugin, annotations act a lot more like normal code, with fancy

auto-completion and other goodies.

namespace Symfony\Component\Routing\Annotation;

class Route

{

 private $path;

 private $name;

 private $requirements = array();

 private $options = array();

 private $defaults = array();

 private $host;

 private $methods = array();

 private $schemes = array();

 private $condition;

}

Chapter 3: Twig

The Symfony Plugin has all kinds of awesome setup for Twig integration. So let's render a

template here, movie/new.html.twig :

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

 // ... lines 17 - 18

PHPStorm highlights this immediately because it's missing its template, how thoughtful!

Let's make that template, in app/Resources/views we'll create a directory called movie

and a file called new.html.twig . Like always, start by extending the base template, but

notice we get autocomplete on that extends tag which is fantastic! And we even get

autocomplete on the template name. Down here, we get more autocomplete on block and

endblock -- it's like Christmas morning!

app/Resources/views/movie/new.html.twig

1

2

3

4

5

For our h1 tag we'll say 'New Samuel L Jackson Movie'. And because the plugin gives us

intelligence on the Twig file names, you can hover over any template name, hold command, and

click it to go there. You can even do the same thing on a block: holding command and clicking

block body takes us to the block body in base.html.twig because it knows where

that's coming from.

 /**

 * @Route("/movies/new", name="movies_new")

 */

 public function newAction()

 {

 return $this->render('movie/new.html.twig', array());

 }

{% extends '::base.html.twig' %}

{% block body %}

 <h1>New Samuel L Jackson Movie</h1>

{% endblock %}

I'll close these two templates and go back to our controller. When we refresh we've got our

functional page. Now, to the left of newAction , we have a cute little icon that appeared. When

you click it, it shows you related files to this controller. So we see here we've got the controller

itself and the template, and this list will get longer as we start referencing more things like

repositories and services.

Like most templates, we're going to want to use some variables. Let's start with a quote variable

that we'll display in the form for inspiration. Eventually we'll have this generated randomly but for

now we'll just hardcode it in:

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 12

13

14

15

16

17

18

 // ... lines 19 - 20

"If my answers frighten you then you should cease asking scary questions". Oh Sam you're too

much!

I could just go to my tree and double click new.html.twig to open it again, but instead I'm

going to hold command and click the name in the controller to get us there. In the template we'll

use the normal `{{ }} ` inside a p tag, but watch this: we get autocomplete on our quote

variable. That is huge!

app/Resources/views/movie/new.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

8

9

In my experience, it doesn't work 100% of the time, but it does work most of the time. It will even

look inside your controller to see what kind of object it is and give you autocomplete on its

methods.

 public function newAction()

 {

 return $this->render('movie/new.html.twig', array(

 'quote' => 'If my answers frighten you then you should cease

asking scary questions. (Pulp Fiction)'

));

 }

{% block body %}

 <h3>

 {{ quote }}

 </h3>

{% endblock %}

And remember, anywhere that you get autocomplete, you can hit command+space to see all of

your options. Here it shows us the variable and all of the function names and filters that come

from everywhere inside of Symfony and Twig. For example, if you start using the upper filter,

you'll get that autocompleted. Same goes for the date filter, and as you're typing date you'll

see the arguments you'll need. The first is the value to the left and the second here - format -

is what we'll use on the filter itself: it's a nice reminder we need to pass something like Y-m-d .

To make this a bit clearer I'll add 'Today is:' before the date is actually rendered and we'll put our

quote in an h3 tag.

app/Resources/views/movie/new.html.twig

 // ... lines 1 - 2

3

 // ... line 4

5

 // ... lines 6 - 9

10

If you really can't remember how the date filter works, you can hold command now and click

into it. That's going to take you to whatever class provides that filter. In this case there's two. If

you ever see something like this: where one is in the cache directory, just ignore that and click

the other option.

The Twig environment is passed first and after that you have the date, the format and the

timezone and you can just see how things work. This is wonderful for debugging.

Eventually we're going to have a form so I'll go ahead and create a new template called

_form.html.twig and put my fake form tag stuff right there. Heck, go crazy and throw a

button in too:

app/Resources/views/movie/_form.html.twig

1

2

3

You're seeing another trick with PHPStorm, the mini-code generation comes from a feature

called live templates. I just type form , hit tab, and it builds the tag for me. The same works with

button then tab, textarea then tab and a lot of other things. We'll create our own live

templates in a bit.

Back in new.html.twig , you know how this works. We use the include function and not

only do you get autocomplete on that function name, but you also get it on the template name.

{% block body %}

 <p>Today: {{ 'now'|date('Y-m-d') }}</p>

{% endblock %}

<form action="" method="POST">

 <button type="submit" class="btn btn-primary">Save</button>

</form>

Don't worry about the "movie" part of the name, just start typing _form.html.twig and you're

all set. And there are two formats here: both valid, but I like the first one, it's cleaner.

app/Resources/views/movie/new.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

 // ... lines 8 - 11

12

Go back and refresh, beautiful! Everything looks awesome, except I guess my button is ugly. So

I'll throw in some twitter bootstrap classes to make this a bit prettier.

Ahh there we go! And that's some of what you can expect now with Twig!

{% block body %}

 {{ include('movie/_form.html.twig') }}

{% endblock %}

Chapter 4: Namespaces

Since we have this new movie form, we're going to want to save the data to the database. To do

this let's create a Movie entity. I'm not going to generate it, let's just do this by creating a good

ole fashioned PHP Class called Movie . But when I do this, notice the namespace box is empty.

I could type AppBundle\Entity here, but I'm trying to do as little work as possible people!

Let's make the robots do this for you. Go into preferences, search for 'directories' and here you

can see the three directories that we excluded earlier. Click on src and click the blue sources

button above. Now we can see this on the right and clicking the little 'p' allows us to edit the

properties. So, if we were using PSR-4 inside of this directory we could actually put our

namespace prefix in this box - like KnpU . But all we needed to do was mark it as a source

route, so we're done!

When we head back, oh look the Entity directory disappeared! Where did we misplace that

to? Well, sometimes PHPStorm does that to empty directories. Temporarily I'll switch back to

project view and now create a new PHP Class. Because of the sources change, it guesses the

namespace part perfect. Call the class Movie :

src/AppBundle/Entity/Movie.php

1

2

3

4

5

6

7

8

Okay switch back to Project Files and there it is. Excellent! In a second we'll set this up with

some annotations, but right now I want to use it inside of my MovieController . We'll add a

form here soon, and when we do, we'll need a new Movie object. So we'll say

$movie = new ... and I could end this with AppBundle\Entity\Movie -- but you really

don't want to do that. Always go directly to the last part: in our case Movie , and let that

autocomplete:

<?php

namespace AppBundle\Entity;

class Movie

{

}

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

 // ... lines 11 - 13

14

15

16

 // ... lines 17 - 20

21

22

Because, when you do that, it adds the use statement on line 5 which is HUGE. If you are not

using the autocomplete functionality for use statements, then you're doing it wrong.

Now, if something went wrong and you didn't autocomplete or you end up with Movie here but

no use statement, you can import it if you want. Just hit alt + enter . Alt enter is one of

the most important shortcut we are going to see. It's called the "actions" shortcut. Often when

you're inside some code. you can alt + enter and get a list of actions to do. I'll select

'import class' from this list and it will add that use statement for us.

To take this a bit further let's add a public function listAction() that will list those

movies from the database. I don't want to build this out now, I just want it to return a simple

Response that says "todo". So let's add return new Response and select the Response

we want, which is the one from HttpFoundation. Hit tab and the use statement politely puts

itself on top of our file. Finish with 'TODO'. Now let's add a route above this,

@Route("/movies", name="movies_list") :

use AppBundle\Entity\Movie;

class MovieController extends Controller

{

 public function newAction()

 {

 $movie = new Movie();

 }

}

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 7

8

 // ... line 9

10

11

 // ... lines 12 - 23

24

25

26

27

28

29

30

31

Oh and now that we have this second endpoint, back in new.html.twig , if we want to create

a link to this page, we can. And we can use another live template. Type a , hit tab, and use

{{ path() }} and - amazingly - we even get auto-complete on the route name. For the link

text, say "back to list':

app/Resources/views/movie/new.html.twig

 // ... lines 1 - 5

6

 // ... lines 7 - 16

Refresh that, and there's our link right back to our list. Awesome!

So, don't. write. use statements. ever.

use Symfony\Component\HttpFoundation\Response;

class MovieController extends Controller

{

 /**

 * @Route("/movies", name="movies_list")

 */

 public function listAction()

 {

 return new Response('TODO!');

 }

}

 Back to list

Chapter 5: Doctrine

We have a Movie class, but its missing all of its annotations! Yikes! I really don't feel like typing

all of that.

Let me introduce you to another really important shortcut: generate. You can get to it with

command+n . Or just click the code menu at the top, and select generate. Either way in this

class, go down to "Generate ORM Class": and just like all menus in PhpStorm, you can just

start typing to search for it.

Sweet - this automatically added all the Entity annotation stuff on top for us.

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

But it looks different: usually we'd just have the @ORM\Entity stuff on top, and it added it this

way because we don't have the use statement yet. There's a simple solution to that. Just copy

the full Entity annotation, say use , paste that and then delete the last part and instead stay

as ORM; :

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 4

5

 // ... lines 6 - 15

That's the standard use statement that you see at the top of all Doctrine entities.

Let's get rid of these lines here, then get back inside of the class because context] is important

with command+n . Hit command n and search for 'ORM' and select "Generate ORM Class":

/**

 * @Doctrine\ORM\Mapping\Entity

 * @Doctrine\ORM\Mapping\Table(name="movie")

 */

class Movie

{

}

use Doctrine\ORM\Mapping as ORM;

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

Perfect!

Let's add our properties, private $id; , private $title; for the movie title,

private $samsCharacterName for Sam's character, private $rating to give the movie

appearance a rating, private $isMainCharacter so we can see if Sam was the lead in

that movie, and lastly private $releasedAt which will tell us exactly when the movie came

out.

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Easy!

The warning here is that each of these is an unused private field, which is true so far. But good

to know, in the future that could just be extra code.

use Doctrine\ORM\Mapping as ORM;

/**

 * @ORM\Entity

 * @ORM\Table(name="movie")

 */

class Movie

{

}

class Movie

{

 private $id;

 private $title;

 private $samsCharacterName;

 private $rating;

 private $isMainCharacter;

 private $releasedAt;

}

Generate ORM Annotations

Now that we have these we can go back to command n, search ORM and select "Generate

ORM annotations". Select all of the fields that are in the menu and hit ok:

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Awesome! Each field has all its annotations! Even better than that, it recognizes that id is our

primary key so it set that up and it noticed that $isMainCharacter is probably a boolean,

because of the 'is' in the beginning. And it also saw that $releasedAt is a datetime . This

class Movie

{

 /**

 * @ORM\Id

 * @ORM\GeneratedValue(strategy="AUTO")

 * @ORM\Column(type="integer")

 */

 private $id;

 /**

 * @ORM\Column(type="string")

 */

 private $title;

 /**

 * @ORM\Column(type="string")

 */

 private $samsCharacterName;

 /**

 * @ORM\Column(type="string")

 */

 private $rating;

 /**

 * @ORM\Column(type="boolean")

 */

 private $isMainCharacter;

 /**

 * @ORM\Column(type="datetime")

 */

 private $releasedAt;

}

isn't perfect, I would prefer $releasedAt to just be a date, and rating up here is not a string,

but an integer:

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 29

30

31

32

33

 // ... lines 34 - 39

40

41

42

43

44

But I do love getting autocomplete on all of those different types. Pressing control+space

gives you a list of all the different types you have access to.

Ok, let's give $isMainCharacter a default value just in case it's ever not set. We'll make

$releasedAt optional since a movie might not be released yet: set nullable=true : more

autocomplete:

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 34

35

36

37

38

39

40

41

42

43

44

Up here for $samsCharacterName , well this probably won't be too long so we can give it a

length of 100 instead of the default 255:

class Movie

{

 /**

 * @ORM\Column(type="integer")

 */

 private $rating;

 /**

 * @ORM\Column(type="date", nullable=true)

 */

 private $releasedAt;

}

class Movie

{

 /**

 * @ORM\Column(type="boolean")

 */

 private $isMainCharacter = false;

 /**

 * @ORM\Column(type="date", nullable=true)

 */

 private $releasedAt;

}

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

27

28

 // ... lines 29 - 43

44

Alright, this is all looking really nice.

Generating Getters and Setters

At this point we just have private properties so we need our getters and setters. Back to

generate! Use our favorite shortcut, command+n, select getters and then $id :

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 47

48

49

50

51

52

Then back to generate and select getters and setters and select everything else. Before I finish

this I want to pause and say that you don't necessarily need a getter and setter for every field in

Doctrine. Sometimes you might want to wait to add the getters and setters until you actually

need them. Then when the need arises you have these awesome shortcuts available.

class Movie

{

 /**

 * @ORM\Column(type="string", length=100)

 */

 private $samsCharacterName;

}

class Movie

{

 public function getId()

 {

 return $this->id;

 }

}

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

 // ... lines 69 - 98

99

If I press command+, to get into preferences, you'll find that the templates that generate these

methods are editable. Search for "templates", and you'll see the area where you can modify the

getter and setter templates. I've already done this: usually they generate with some PHPDoc,

which to me is kind of meaningless, so I've already removed it for nice clean rendering.

Generating the Repository

One last thing here! This entity needs a repository. Back to the action shortcut, which is...

alt+enter ! This opens up a menu to add the doctrine repository, which as you may have

guessed, adds a repository class here:

class Movie

{

 public function getTitle()

 {

 return $this->title;

 }

 public function setTitle($title)

 {

 $this->title = $title;

 }

 public function getSamsCharacterName()

 {

 return $this->samsCharacterName;

 }

 public function setSamsCharacterName($samsCharacterName)

 {

 $this->samsCharacterName = $samsCharacterName;

 }

}

src/AppBundle/Entity/MovieRepository.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 12

13

14

15

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 6

7

8

 // ... line 9

10

11

12

 // ... lines 13 - 98

99

In my case I prefer to have these in a Repository directory. So that's nice that it helped me

create that, but I'll move it manually.

A quick copy and paste will do that, then update the namespace to end with Repository :

src/AppBundle/Repository/MovieRepository.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 12

13

14

15

Even though I had to move that manually, what's really cool is that it's highlighting and saying

"Yo! Your repository Class is messed up! You can't use the short class name because now it's in

a different namespace." I can delete what's there and type MovieRepository and I get

autocomplete on the entire name:

namespace AppBundle\Entity;

use Doctrine\ORM\EntityRepository;

class MovieRepository extends EntityRepository

{

}

/**

 * @ORM\Entity(repositoryClass="MovieRepository")

 */

class Movie

{

}

namespace AppBundle\Repository;

use Doctrine\ORM\EntityRepository;

class MovieRepository extends EntityRepository

{

}

src/AppBundle/Entity/Movie.php

 // ... lines 1 - 6

7

8

 // ... line 9

10

11

12

 // ... lines 13 - 98

99

And there's more autocompleting goodness I won't show here for when you're building

relationships and using the Query Builder.

/**

 * @ORM\Entity(repositoryClass="AppBundle\Repository\MovieRepository")

 */

class Movie

{

}

Chapter 6: Forms

 Tip

This screencast shows the old, 2.7 and earlier form syntax. But, the code blocks below have

been updated to show the new syntax!

Now that we've got our entity let's create a form! Click on AppBundle, press our handy shortcut

command+n , and if you search form you'll find that option in the menu! It's all coming together!

We'll call this MovieType :

src/AppBundle/Form/MovieType.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Notice it was actually smart enough to put that inside of a Form directory and build out the

whole structure that we'll need. All I need next is for it to pour me a cup of coffee.

<?php

namespace AppBundle\Form;

use Symfony\Component\Form\AbstractType;

use Symfony\Component\Form\FormBuilderInterface;

use Symfony\Component\OptionsResolver\OptionsResolver;

class MovieType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 }

 public function configureOptions(OptionsResolver $resolver)

 {

 }

}

The first thing we always do inside of here is call $resolver->setDefaults(array()) and

pass the data_class option so that it binds it to our Movie entity. Conveniently, this gives us

more autocomplete: we can just type Movie and it adds the rest:

src/AppBundle/Form/MovieType.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

17

18

19

20

21

22

Configuring Form Fields

This will even help us build our fields. If we type $builder->add('') here, because this is

bound to our Movie entity, it knows all the properties we have there. So let's plug in our

property of title which should be a text field, samsCharacterName which is probably a

text field as well and isMainCharacter which will be a checkbox. We'll want to make sure

that we prevent html5 validation on that. A third argument of 'required' => false will take

care of that for us and even that has autocomplete. It's madness!

class MovieType extends AbstractType

{

 public function configureOptions(OptionsResolver $resolver)

 {

 $resolver->setDefaults(array(

 'data_class' => 'AppBundle\Entity\Movie'

));

 }

}

src/AppBundle/Form/MovieType.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 33

34

Let's also include rating as an integer field and lastly, releasedAt which is a date field:

src/AppBundle/Form/MovieType.php

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 12

13

14

15

16

17

 // ... lines 18 - 21

22

23

 // ... line 24

25

26

 // ... lines 27 - 33

34

Digging into Options and Fields

use Symfony\Component\Form\Extension\Core\Type\CheckboxType;

use Symfony\Component\Form\Extension\Core\Type\TextType;

class MovieType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder->add('title', TextType::class)

 ->add('samsCharacterName', TextType::class)

 ->add('isMainCharacter', CheckboxType::class, array(

 'required' => false,

))

 }

}

use Symfony\Component\Form\Extension\Core\Type\DateType;

use Symfony\Component\Form\Extension\Core\Type\IntegerType;

use Symfony\Component\Form\Extension\Core\Type\TextType;

class MovieType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder->add('title', TextType::class)

 ->add('rating', IntegerType::class)

 ->add('releasedAt', DateType::class, array(

));

 }

}

We can control how this date field renders: by default with Symfony it would be 3 select boxes.

I'll set a widget option, except I don't remember what value to set that to. No worries, I'll just

hold the command key over the widget option and it will take me straight to where that is

setup inside of the core code:

vendor/symfony/symfony/src/Symfony/Component/Form/Extension/Core/Type/DateType

 // ... lines 1 - 11

12

 // ... lines 13 - 26

27

28

29

 // ... lines 30 - 167

168

169

 // ... lines 170 - 202

203

 // ... lines 204 - 206

207

 // ... lines 208 - 224

225

 // ... lines 226 - 235

236

237

238

239

240

 // ... lines 241 - 245

246

 // ... lines 247 - 321

322

Why is that awesome you ask? Because I can search for what I need inside of here and boom

setAllowedValues single_text , text and choice . So let's paste single_text back

into our file.

namespace Symfony\Component\Form\Extension\Core\Type;

class DateType extends AbstractType

{

 const DEFAULT_FORMAT = \IntlDateFormatter::MEDIUM;

 public function configureOptions(OptionsResolver $resolver)

 {

 $resolver->setDefaults(array(

 'widget' => 'choice',

));

 $resolver->setAllowedValues('widget', array(

 'single_text',

 'text',

 'choice',

));

 }

}

src/AppBundle/Form/MovieType.php

 // ... lines 1 - 6

7

 // ... line 8

9

 // ... lines 10 - 12

13

14

15

16

17

 // ... lines 18 - 22

23

24

25

26

 // ... lines 27 - 33

34

That trick of holding command and clicking works for the field types too: command+click

integer and suddenly you're inside the class that provides this!

use Symfony\Component\Form\Extension\Core\Type\DateType;

use Symfony\Component\Form\Extension\Core\Type\TextType;

class MovieType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder->add('title', TextType::class)

 ->add('releasedAt', DateType::class, array(

 'widget' => 'single_text'

));

 }

}

vendor/symfony/symfony/src/Symfony/Component/Form/Extension/Core/Type/IntegerTy

 // ... lines 1 - 11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 37

38

39

 // ... lines 40 - 47

48

49

50

51

52

53

54

55

56

57

 // ... lines 58 - 69

70

 // ... lines 71 - 78

79

It's like being teleported but, you know, without any risk to your atoms. You can even use this to

take you to the property inside of Movie for that specific field.

Form Rendering

Our form is setup so let's go ahead and create this inside of our controller,

$form = $this->createForm(new MovieType(), $movie); . Like always, we need to

pass our form back into our template with $form->createView() :

namespace Symfony\Component\Form\Extension\Core\Type;

class IntegerType extends AbstractType

{

 public function configureOptions(OptionsResolver $resolver)

 {

 $resolver->setDefaults(array(

 // deprecated as of Symfony 2.7, to be removed in Symfony 3.0.

 'precision' => null,

 // default scale is locale specific (usually around 3)

 'scale' => $scale,

 'grouping' => false,

 // Integer cast rounds towards 0, so do the same when

displaying fractions

 'rounding_mode' =>

IntegerToLocalizedStringTransformer::ROUND_DOWN,

 'compound' => false,

));

 }

}

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 10

11

12

 // ... lines 13 - 15

16

17

18

19

20

21

22

23

24

25

26

 // ... lines 27 - 34

35

Time to render this! Click into the new.html.twig template, ah that's right my form is actually

going to be over here in _form.html.twig . It shouldn't surprise you that you'll get

autocomplete here on things like form_start and form_end :

app/Resources/views/movie/_form.html.twig

1

 // ... lines 2 - 8

9

Want more autocomplete awesomeness you say? You're mad! But ok: type

{{ form_row(form) }} and it'll auto-complete the title field for you. So we'll plug in all of

our fields here:

app/Resources/views/movie/_form.html.twig

1

2

3

4

 // ... lines 5 - 8

9

And if I forget one of them, I can hit control+space to bring up all of my options. This will

also show you some other methods that exist on that FormView object. Ah ok so we still have

use AppBundle\Form\MovieType;

class MovieController extends Controller

{

 public function newAction()

 {

 $movie = new Movie();

 $form = $this->createForm(MovieType::class, $movie);

 return $this->render('movie/new.html.twig', array(

 'quote' => 'If my answers frighten you then you should cease

asking scary questions. (Pulp Fiction)',

 'form' => $form->createView()

));

 }

}

{{ form_start(form) }}

{{ form_end(form) }}

{{ form_start(form) }}

 {{ form_row(form.title) }}

 {{ form_row(form.samsCharacterName) }}

 {{ form_row(form.isMainCharacter) }}

{{ form_end(form) }}

rating and releasedAt to add here. Clean up a bit of indentation here and perfect!

app/Resources/views/movie/_form.html.twig

1

2

3

4

5

6

7

8

9

Time to try this out: back to our new movies page, refresh and there we go! It renders with no

problems other than the fact that this is a form only it's developer could love. And well, maybe

not even that: I'm going to make it prettier. In config.yml , down in the twig key add

form_themes :

app/config/config.yml

 // ... lines 1 - 34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 83

Now this should autocomplete, but for whatever reason this one key is not doing that. But for

the most part, you will see autocompletion inside of your configuration files.

Form Theming

Right here let's plug in the bootstrap form theme: and the plugin isn't perfect because we don't

get autocomplete on this either. But I do know that there is a file inside the project for bootstrap,

so I'll go to find, file and start typing in bootstrap. We want the one called

bootstrap_3_layout.html.twig . To cheat, I'll just copy that file name and paste that in

here:

{{ form_start(form) }}

 {{ form_row(form.title) }}

 {{ form_row(form.samsCharacterName) }}

 {{ form_row(form.isMainCharacter) }}

 {{ form_row(form.rating) }}

 {{ form_row(form.releasedAt) }}

 <button type="submit" class="btn btn-primary">Save</button>

{{ form_end(form) }}

twig:

 form_themes:

app/config/config.yml

 // ... lines 1 - 34

35

 // ... lines 36 - 37

38

39

 // ... lines 40 - 83

Refresh with our new form theme and Awesome!

twig:

 form_themes:

 - bootstrap_3_layout.html.twig

Chapter 7: Live Templates

Now that we have our form rendering, we want to be able to submit it! Crazy idea, I know but

let's see what we can do. We'll use our standard code for this

$form->handleRequest($request); . Now we don't have the $request object yet, so

let's put our type hint in for it. And like always, make sure you have the right one and let it

autocomplete to get the use statement for you. And real quick, plug request in here too:

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 9

10

 // ... line 11

12

13

 // ... lines 14 - 16

17

18

 // ... lines 19 - 35

36

 // ... lines 37 - 44

45

Below, let's add if ($form->isValid()) with a TODO to remind us to actually start saving

stuff. Next, there are two things we typically do here: first add a flash message, like "Sam would

be proud". And I truly think he would. And second, we redirect with

return $this->redirectToRoute() and let's send our users to the movies_list route,

which of course we get a nice autocomplete on:

use Symfony\Component\HttpFoundation\Request;

class MovieController extends Controller

{

 public function newAction(Request $request)

 {

 }

}

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

24

25

26

27

28

29

30

 // ... lines 31 - 35

36

 // ... lines 37 - 46

Creating a Live Template

That was pretty easy, but we'll be writing those 8 lines of code over and over and over again

inside of our project. There must be a better way! To fix that we are going to use something

called a "Live Template". That's what lets us just type a in a twig template, hit tab and get a full

a tag printed out. We want to do the same type of thing and have it generate all this form

handling boiler plate code for us.

To make this, first select all the code that you want included. Then click on the Tools dropdown

menu, and select "Save as Live Template". Let's give this a name, like formhandle with a

description of "Adds controller form handling code". Inside the template text tweak the

indentation but other than that, let's just leave this alone for now. Hit 'ok'.

Now that we have this, we can delete our hard work. Replace it by typing formhandle , hitting

tab, and then... boom!

 public function newAction(Request $request)

 {

 $form->handleRequest($request);

 if ($form->isValid()) {

 // todo do some work, like save ...

 $this->addFlash('success', 'Sam would be pleased');

 return $this->redirectToRoute('movies_list');

 }

 }

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

24

25

26

27

28

29

30

 // ... lines 31 - 35

36

 // ... lines 37 - 46

Enjoy that autocompletion.

Live Template Variables

Of course now we need to make parts of this dynamic. We'll need to edit our live template...how

do we do that? Well, it's probably in the preferences menu and if we search for it, it is!

We'll assume that the variable is always called $form because it usually is, but we do want to

change our success message here. Let's swap it out for '$SUCCESSMESSAGE$' with dollar

signs on both sides and surrounded in quotes. Let's do the same thing down here in the

redirect, we'll change that to '$ROUTENAME$' . In the event that the route has parameters add

in array next to it for convenience. Save this.

Get rid of the code and again type in formhandle and tab. Type in 'Sam would be proud', hit

tab, type movie_list for our redirect, then tab one more time. Now that is awesome and so

much faster than typing it all out again and again and again.

Another great spot to use Live Templates is inside of this form row stuff since we'll be typing this

all the time. Copy one of our rows, go to Tools and "Save as Live Template". We'll call this one

formrow with a description of "Renders form_row in Twig". Below, there's a note saying its

applicable for HTML, HTML text and HTML Twig files - so that's right. Let's update this line of

code to be form.$FIELD$. Click ok and now we can try this out.

 public function newAction(Request $request)

 {

 $form->handleRequest($request);

 if ($form->isValid()) {

 // todo do some work, like save ...

 $this->addFlash('success', 'Sam would be pleased');

 return $this->redirectToRoute('movies_list', array());

 }

 }

Type formrow , hit tab and now we can just start typing in the field property name and select it

from the list that pops up. Now, as great as formrow is, sometimes you can't use it. womp

womp. That's when you'll end up rendering a field manually, which will probably be a div and

the three parts: {{ form_label(form.releasedAt) }} . Copy that and update for

form_widget , and form_errors :

app/Resources/views/movie/_form.html.twig

1

 // ... lines 2 - 6

7

8

9

10

11

 // ... lines 12 - 13

14

Clearly this is also begging to be turned into a Live Template.

You know the drill! Select the full div, go to Tools, Save as Live Template. Let's name this one

formrowfull , and it "Renders widget/label/errors". What's cool here is that there's just one

variable that's duplicated 3 times. So we can just say $FIELD$ and repeat that each time. Just

a quick indentation fix there and click ok. Awesome!

Let's get rid of the div we had, type formrowfull , hit the tab key, and as we start typing the

property name we get the autocomplete and it's filling instantly on each of the three lines. I'll fix

the spacing here to wrap it up!

So, live templates: big win.

{{ form_start(form) }}

 <div class="form-group">

 {{ form_label(form.releasedAt) }}

 {{ form_widget(form.releasedAt) }}

 {{ form_errors(form.releasedAt) }}

 </div>

{{ form_end(form) }}

Chapter 8: Fast Navigating

I just hate seeing developers click manually into their directory tree to search for things. Most

projects are too big to be opening files like this. Really, you want to have your hands off your

mouse as often as possible.

Time to introduce you to some new best friend shortcuts for navigating! In fact, PHPStorm

thinks they're so important that they even have some of these listed front and center when you

don't have any files open.

Navigating to Class and File

Click the navigate menu at the top. The first option in the list is "Navigate to Class". Its shortcut

is command+O . Knowing that I want to get into the MovieType class, I'll hit command+O , start

typing the name and boom, I've got that open with just my keyboard.

Need to open a file, like config.yml? Well you're in luck, just use command+shift+O , start

typing the file name in the search box and there it is. We could even look up this

bootstrap_3_layout thing here. Use command+shift+O again, type the file name, and

we can see where it is in the project.

Great! In this case we can see how deep that structure is for this particular file, it's way down in

Symfony. If I saw you navigating here manually, I'd be tempted send Samuel L Jackson to your

office to tip over your chair. He'd arrive before you navigated there.

Navigating Deep Directories

And what's really cool - other than not being tipped over by Sam - is that we can use the

navigation tree on top to actually click and look around inside of these deep directories.If we

really wanted to, we could move the tree on the left all the way to that specific spot by double

clicking that directory name at the top. And now we're there and can look around and see what

other interesting stuff is hiding here.

Navigating to Function Names

The next shortcut on the list up there is "Symbol", which is command+alt+O . Symbol is

referring basically to function names. So here we can look for something like the buildForm

method from inside of my MovieType . And now it's showing me all of the instances in the

project where buildForm is used. I'll pick the top one and it takes me straight there.

Inside of my controller I call createForm . So back to command+alt+O , type createForm ,

and there is the one inside of the base Controller class we extend. This is the function I am

calling when I say $this->createForm() from inside MovieController .

Clicking into Functions

In this case, if I wanted to know exactly where this createForm() function lives, I would just

hold command and click into it -- so don't forget about that shortcut as well. We can do the

same thing here for handleRequest if we needed to know where that is. Clicking that will take

us right into this core Symfony spot and again we can look around inside of here and double

click the tree to move us here.

Recent Files

Most of the time, you might be interested in the shortcut command+E : this will pop up a list of

your recent files. Just start typing the name of the file you're looking for until it appears in the

results.

Navigating Tabs

Once you have some tabs open, you'll see me do this a lot: my cursor will stay in place while I

hold command+shift+[and command+shift+] to move around the open files. I use this

constantly to jump around from one file to the next.

Searching ALL THE THINGS!

Okay, the last shortcut I'm going to show you for finding things in your project is easy to

remember: shift+shift . Hitting shift twice will open up a feature called 'search everywhere'.

This is a bunch of searches put together, where you can start typing MovieController and

find that, or buildForm and it will find that for you. Or you can even find CSS tags. In one of

the core Symfony files, there's a CSS snippet called .block-exception . And there it is in our

list of results. And clicking on it takes you straight to that file deep inside of Symfony.

There are a lot of ways to move around your project, but the biggest ones to remember are

command+O and command+shift+O . Or put them together, with shift+shift .

Ya! We're working way faster.

Chapter 9: Refactoring

Ok back to work, let's finish up this MovieController . Command+O , MovieController ,

and now we've got that file open.

We need to save the POST'ed movie to the database. Start with getting our entity manager with

$em = $this->getDoctrine()->getManager(); . Then $em->persist($movie); ,

and $em->flush(); :

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 16

17

18

 // ... lines 19 - 23

24

25

26

27

 // ... lines 28 - 32

33

 // ... lines 34 - 38

39

 // ... lines 40 - 53

54

Nice and simple!

While we're here, I'll copy the getDoctrine() line and paste it into listAction() so we

can make that work. Here we'll query for the movies with $em ->getRepository() and the

first cool thing here is that... you guessed it! We get autocomplete on this. Type the entity name,

select the right one and hit tab:

class MovieController extends Controller

{

 public function newAction(Request $request)

 {

 if ($form->isValid()) {

 $em = $this->getDoctrine()->getManager();

 $em->persist($movie);

 $em->flush();

 }

 }

}

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 43

44

45

46

47

 // ... lines 48 - 52

53

54

The second cool thing is that it autocompletes the methods on the repository, and this includes

any custom methods you have inside of there. We'll use the normal findAll(); . Down below,

we'll return $this->render('movies/list.html.twig'); which doesn't exist yet,

with an array and we'll pass it movies:

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 43

44

45

46

47

48

49

50

51

52

53

54

Awesome!

Let's go create that file: list.html.twig . And to save some time, I'll just paste in some code

for this template: it's really straight forward:

class MovieController extends Controller

{

 public function listAction()

 {

 $em = $this->getDoctrine()->getManager();

 $movies = $em->getRepository('AppBundle:Movie')

 }

}

class MovieController extends Controller

{

 public function listAction()

 {

 $em = $this->getDoctrine()->getManager();

 $movies = $em->getRepository('AppBundle:Movie')

 ->findAll();

 return $this->render('movie/list.html.twig', array(

 'movies' => $movies,

));

 }

}

app/Resources/views/movie/list.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

The only interesting thing here is that you do get autocomplete on the different properties for

movie , Which really is pretty amazing. The reason that works is because PHPStorm knows

that the MovieRepository returns Movie objects, so that cascades all the way down into

Twig.

So as long as you have good PHPDoc that says what types of objects functions return, that

should connect down to how things auto-complete in Twig.

Let's try this whole thing out. But before we do that we need to setup our database. Head over

to parameters.yml by using our shortcut command+shift+O to open it up. Everything

seems to be in order here, so let's just change our database to be phpstorm .

And just when you thought I couldn't get any lazier with my shortcuts I'm going to use the built in

terminal from PHPStorm. This drops me right into the correct directory so I can run:

./app/console doctrine:database:create

./app/console doctrine:schema:create

Hide this little terminal, head back and refresh our browser. And we see... oops we have a small

rendering problem, which is probably in our form template.

{% extends 'base.html.twig' %}

{% block body %}

 <table class="table">

 <thead>

 <tr>

 <th>Movie name</th>

 <th>Character</th>

 </tr>

 </thead>

 <tbody>

 {% for movie in movies %}

 <tr>

 <td>{{ movie.title }}</td>

 <td>{{ movie.samsCharacterName }}</td>

 </tr>

 {% endfor %}

 </tbody>

 </table>

{% endblock %}

Back to PHPstorm, command+shift+O and search _form.html.twig . And yep there it is,

change form-control to form-group - that's the correct Bootstrap class. Refresh again.

That looks way better.

Now we can fill out the form. Let's see, which one of our favorite Samuel L Jackson movies

should we choose first - so many choices. Let's just go with the obvious best: "Snakes on a

Plane", with our character, Neville Flynn. Neville is the main character, and clearly this film was

a 10 out of 10. I mean come on, this is Sam at his best! And I think everyone remembers the

fateful day this film was released: August 18, 2006. Let's save this small piece of history.

Refactoring to a Method

Beautiful! Now for a little refactoring. First, we have

$em = $this->getDoctrine()->getManager(); in a couple of places. So I'm going to

refactor that: select that line and we'll see another important shortcut, control+t . This is the

refactor shortcut. If you ever forget it, just go to the Refactor menu at the top and select

"Refactor This" from the list.

We've got our line selected, press control+t . There's a lot of options in here, but we want the

one called method. In the "Extract Method" form, add getEm as the name, make sure that the

private radio button is selected and refactor!

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 43

44

45

46

 // ... lines 47 - 52

53

 // ... lines 54 - 57

58

59

60

61

62

63

class MovieController extends Controller

{

 public function listAction()

 {

 $em = $this->getEm();

 }

 private function getEm()

 {

 $em = $this->getDoctrine()->getManager();

 return $em;

 }

}

Boom! It puts this on the bottom and it changes the original code to $this->getEm(); . Copy

this line, pressing control+c will select the whole line and we'll paste it right up here:

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 16

17

18

 // ... lines 19 - 24

25

 // ... lines 26 - 38

39

 // ... lines 40 - 62

63

Refactoring to a BaseController

This shortcut is going to be useful in more than just this controller, so this is the perfect time to

create a BaseController for my whole project. Click the Controller directory at the top of

your IDE, and from there press command+n , select Controller from the menu and name it

BaseController . To start, remove that public function and add abstract before the class:

src/AppBundle/Controller/BaseController.php

1

2

3

4

5

6

7

8

9

This is now the spot for our own shortcuts. In MovieController update it to extend

BaseController . This use statement is showing up in a darker gray to indicate that it isn't

being used any more and the same for the Response use statement. Delete both of those:

class MovieController extends Controller

{

 public function newAction(Request $request)

 {

 $em = $this->getEm();

 }

}

<?php

namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BaseController extends Controller

{

}

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 61

62

 Tip

Or you can go "Code" -> "Optimize Imports" instead (Control + Alt + O on a Mac) to

remove unused imports, add missing imports, and organize import statements in the current

file.

With the BaseController in action, let's refactor getEm() into the BaseController .

Select the method, one cool way to do that is hit option+up which will select larger and larger

contexts. Now hit control+t . Select "Pull Members Up" from the menu, which will pull them

up to the parent class. It already recognizes that BaseController is the destination, and at

the bottom it's warning us that the access will be changed from private to protected, which is

awesome! Hit refactor and we can see it's gone from this file, because now it lives inside of

BaseController :

src/AppBundle/Controller/BaseController.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

That there is a really fast way to refactor things!

Refactoring to Rename a Method

class MovieController extends BaseController

{

}

class BaseController extends Controller

{

 /**

 * @return \Doctrine\Common\Persistence\ObjectManager|object

 */

 protected function getEm()

 {

 $em = $this->getDoctrine()->getManager();

 return $em;

 }

}

Now that I have this here I'm realizing that getEm() is not that great of a name choice. So

back to command+t , select rename from the menu and change it to getEntityManager to

make my code a little clearer. When we do that I get a summary down here of all the spots in

our project where PHPStorm sees getEm() . Click the "Do Refactor" button to rename this and

all the other spots in the code that need updating:

src/AppBundle/Controller/BaseController.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 23

24

 // ... lines 25 - 37

38

 // ... lines 39 - 42

43

44

45

 // ... lines 46 - 51

52

53

Sah-weet!

There are a lot of other things you can do with the refactor feature in PHPStorm. For example,

we can extract this out to a variable. This could add a level of clarity to what things are.

class BaseController extends Controller

{

 /**

 * @return \Doctrine\Common\Persistence\ObjectManager|object

 */

 protected function getEntityManager()

 {

 $em = $this->getDoctrine()->getManager();

 return $em;

 }

}

class MovieController extends BaseController

{

 public function newAction(Request $request)

 {

 $em = $this->getEntityManager();

 }

 public function listAction()

 {

 $em = $this->getEntityManager();

 }

}

Or, say you get into a spot where you messed up your formatting in some terrible way. Oof that

looks just awful. Make it stop! At any point, you can go up to the code menu at the top and

select reformat code, which is also command+option+L and it will tidy that back up for you.

So let's hit command+A to select all the code I want to reformat, then command+option+L

and now everything is back into place based on our coding standards, which you can of course

control.

Chapter 10: Services

Alright, remember this hardcoded quote? Let's create a new class that can replace this with a

random Samuel L Jackson quote instead.

In AppBundle I'll create a new directory called Service . Inside of our new Service

directory let's add a php class called QuoteGenerator , and look how nicely it added that

namespace for us!

src/AppBundle/Service/QuoteGenerator.php

1

2

3

4

5

6

 // ... lines 7 - 20

21

Let's get to work by adding public function getRandomQuote() . I'll paste in some

quotes, then we can use $key = array_rand($quotes); to get one of those quotes and

return it:

<?php

namespace AppBundle\Service;

class QuoteGenerator

{

}

src/AppBundle/Service/QuoteGenerator.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Registering a Service

Next, I want to register this as a service and use it inside of my controller. So hit

Shift+Command+O , search for services.yml , delete the comments under the services

key, and put our service name there instead. I'll give it a nickname of quote_generator :

app/config/services.yml

 // ... lines 1 - 5

6

7

 // ... lines 8 - 10

 Tip

If you're using Symfony 3.3, your app/config/services.yml contains some extra code

that may break things when following this tutorial! To keep things working - and learn about

what this code does - see https://knpuniversity.com/symfony-3.3-changes

class QuoteGenerator

{

 public function getRandomQuote()

 {

 $quotes = array(

 'If my answers frighten you then you should cease asking scary

questions. (Pulp Fiction)',

 'Now that we know who you are, I know who I am.

(Unbreakable)',

 'Enough is enough! I have had it with these m*****f*****g

snakes on this m*****f*****g plane! (Snakes on a Plane)',

 'Say "what" again. SAY "WHAT" AGAIN! I dare you, I double dare

you (Pulp Fiction)',

);

 $key = array_rand($quotes);

 $quote = $quotes[$key];

 return $quote;

 }

}

services:

 quote_generator:

https://knpuniversity.com/symfony-3.3-changes

Notice that PHPStorm is autocompleting my tabs wrong, I want to hit tab and have it give me

four spaces. So let's fix that real quick in preferences by first hitting command+, , then

searching for "tab". In the left tree find yml under "Code Style" and update the indent from 2 to

4. Click apply, then ok and that should do it!

Yep, that looks perfect. As I was saying: we'll call the service, quote_generator , but this

name really doesn't matter. And of course we need the class key, and we have autocomplete

here too. If you hit Control+Space you'll get a list of all the different keys you can use to

determine how a service is created, which is pretty incredible.

So we'll do class , but don't type the whole long name! Like everywhere else, just type the last

part of the class: here Quote and hit tab to get the full line. Now add an empty arguments

line: we don't have any of those yet:

app/config/services.yml

 // ... lines 1 - 5

6

7

8

9

This is now ready to be used in MovieController .

Use Command+Shift+] to move over to that tab. And here instead of this quote, we'll say

$this->get('') and the plugin is already smart enough to know that the

quote_generator service is there. And it even knows that there is a method on it called

getRandomQuote() :

services:

 quote_generator:

 class: AppBundle\Service\QuoteGenerator

 arguments: []

src/AppBundle/Controller/MovieController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 33

34

35

 // ... line 36

37

38

 // ... lines 39 - 52

53

This is one my favorite features of the Symfony plugin.

Save that, head back to the form, refresh and now we see a new random quote at the bottom of

the page.

Generating the Constructor

Now in QuoteGenerator , let's pretend like we need access to some service - like maybe we

want to log something inside of here. The normal way of doing that is with dependency injection,

where we pass the logger through via the constructor . So let's do exactly that, but with as

little work as possible.

I could type public function __construct , but instead I'm going to use the generate

command. Hit Command+N and pick the "Constructor" option from the menu here. I don't think

this constructor comment is all that helpful, so go back into preferences with Command+, ,

search for "templates", and under "file and code templates", we have one called "PHP

Constructors". I'll just go in here and delete the comment from the template.

Ok, let's try adding the constructor again. Much cleaner:

class MovieController extends BaseController

{

 public function newAction(Request $request)

 {

 return $this->render('movie/new.html.twig', array(

 'quote' => $this->get('quote_generator')->getRandomQuote(),

));

 }

}

src/AppBundle/Service/QuoteGenerator.php

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 25

26

Generating Constructor Properties

At this point we need the logger, so add the argument LoggerInterface $logger :

src/AppBundle/Service/QuoteGenerator.php

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 14

15

16

17

18

 // ... lines 19 - 34

35

This is the point where we would normally create the private $logger property above, and

set it down in the constructor with $this->logger = $logger; . This is a really common

task, so if we can find a faster way to do this that would be awesome.

Time to go back to the actions shortcut, Option+Enter , select "Initialize fields", then choose

logger , and it adds all that code for you:

class QuoteGenerator

{

 public function __construct()

 {

 }

}

use Psr\Log\LoggerInterface;

class QuoteGenerator

{

 public function __construct(LoggerInterface $logger)

 {

 $this->logger = $logger;

 }

}

src/AppBundle/Service/QuoteGenerator.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 34

35

We don't even have to feed it!

Farther down, it's really easy to use,

$this->logger->info('Selected quote: '.$quote); :

src/AppBundle/Service/QuoteGenerator.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 19

20

21

 // ... lines 22 - 29

30

31

 // ... lines 32 - 33

34

35

We've added the argument here, so now we need to go to services.yml , which I'll move

over to. And notice it's highlighting quote_generator with a missing argument message

because it knows that this service has one argument. So we can say @logger , or even

Command+O and then use autocomplete to help us:

class QuoteGenerator

{

 /**

 * @var LoggerInterface

 */

 private $logger;

 public function __construct(LoggerInterface $logger)

 {

 $this->logger = $logger;

 }

}

class QuoteGenerator

{

 public function getRandomQuote()

 {

 $quote = $quotes[$key];

 $this->logger->info('Selected quote: '.$quote);

 }

}

app/config/services.yml

 // ... lines 1 - 5

6

7

8

9

Head back, refresh, it still works and I could go down here to click into my profiler to check out

the logs. Or, in PhpStorm, we can go to the bottom right Symfony menu, click it and use the

shortcut to get into the Profiler. Click that, go to logs, and there's our quote right there.

The autocompletion of the services and the ability to generate your properties is probably one of

the most important features that you need to master with PHPStorm because it's going to help

you fly when you develop in Symfony.

services:

 quote_generator:

 class: AppBundle\Service\QuoteGenerator

 arguments: ['@logger']

With <3 from SymfonyCasts

