
Question and Answer Day: March
27th, 2013

With <3 from SymfonyCasts

Chapter 1: Ask Questions!

ASK QUESTIONS!ASK QUESTIONS!¶¶

Hi guys! It’s time for KnpU Question and Answer day: your chance to submit your burning programming questions and our
chance to listen for a change! Here’s how it works:

1) Ask your questions about PHP, Symfony, Behat, dinosaurs, or anything else as as a comment on this page before the
closing time and we’ll pretend to know the answers.

Note

You have until the end of Tuesday, March 26th, 2013 to post questions!

(Psssst - the comments are over on the right side ===================>)

2. The next day, we’ll open this page up and start answering them! Follow us on Twitter and if you include your Twitter
handle with your question, we’ll give you a shout-out.

Note

Answer day is Wednesday, March 27th, 2013. Follow us on twitter @KnpUniversity

That’s it! We really want to hear what questions you’re having in your real projects. We can’t guarantee we’ll be able to
answer every question, but we’ll give it the old college try ;).

And remember any question or code gists you post are public. So, it may be a good idea to not tell the world what your
database password is :)

See ya then!

https://twitter.com/knpuniversity

Chapter 2: More on Routing And Dependency Injection
Parameters

MORE ON ROUTING AND DEPENDENCY INJECTION PARAMETERSMORE ON ROUTING AND DEPENDENCY INJECTION PARAMETERS¶¶

From Dimka Mo

How can I hide the pattern for a route - e.g. via parameter in parameters.yml ? My goal looks like: i have some line
in parameters.yml :

secret_url: /are/you/a/robot/

then in routing.yml something like this:

pattern: %secret_url%
defaults: { ... }

I need to hide my url pattern from public, how can i do this? Thanks!

Answer¶

I don’t think you were giving yourself enough credit with your question, because you already know the answer! ;).

As we mentioned in the Hostname Routing chapter of our What’s new in Symfony 2.2 tutorial, starting in Symfony 2.1, you
can use a dependency injection parameter anywhere in your routing.

First, let’s start with a normal route:

app/config/routing.yml
...

parameter_test:
 path: /are/you/a/robot
 defaults: { _controller: QADayBundle:Default:parameterTest }

The goal is to move the /are/you/a/robot part out of our code to somewhere that’s not committed. For many of you, that may be
a strange requirement, but the exercise here highlights a lot of nice things.

Tip

And remember, there’s nothing special about the parameters.yml file, except that we choose to put server-specific code in that file
because we don’t commit it to the repository (if this is new to you, see Getting Started in Symfony2).

First, add a new parameter to your parameters.yml file:

app/config/parameters.yml
...

my_hidden_url: /are/you/a/robot

To finish this off, simply reference it in your route:

https://twitter.com/dimka_mo
https://knpuniversity.com/screencast/new-symfony-2.2/host-routing
http://knpuniversity.com/screencast/getting-started-in-symfony2-2-1

app/config/routing.yml
...

parameter_test:
 path: "%my_hidden_url%"
 defaults: { _controller: QADayBundle:Default:parameterTest }

That’s it! But let’s see what else we can do!

Using a Parameter as part of the routing Path¶

You can also leverage parameters as just a part of your routing path. To show this off, create a new route to play with:

app/config/routing.yml
parameter_prefix:
 path: /admin/test
 defaults: { _controller: QADayBundle:Default:parameterTest }

If you had a lot of routes that began with the /admin prefix, you might not want to repeat yourself. One solution of course is to
import these routes from an external routing file and use the prefix key.

But you can also use parameters. This time, let’s add a new parameter directly to our config.yml file. I’m deciding to put it
here instead of inside parameters.yml because this value isn’t secret or server-specific:

app/config/config.yml
parameters:
 admin_prefix: /admin

We can now use this just like before, but now forming just a part of our routing path:

app/config/routing.yml
parameter_prefix:
 path: "%routing_prefix%/test"
 defaults: { _controller: QADayBundle:Default:parameterTest }

Extra Credit: Where does this Magic Happen?¶

Dependency injection parameters like %routing_prefix% are part of building Symfony’s service container: you define services
and parameters, and when the whole container is built, any strings surrounded by two % signs are replaced by that
parameter value.

But the engine that builds the service container is completely different from the engine that compiles your routes together. So
where do the two cross over?

The answer is in the Router class that’s used inside the Symfony Framework. Symfony’s Routing Component supplies a
Router class which handles matching and generating URLs. But when you use the Symfony Framework, the actual Router
object you’re using lives in the FrameworkBundle. In fact, this is really common, and you can see the class of these objects
by finding the service via the container:debug command:

php app/console container:debug | grep -i router

router container Symfony\Bundle\FrameworkBundle\Routing\Router

If you scan the list, the router service should jump at you. Indeed, the “router” used in the Symfony Framework is an instance
of Symfony\Bundle\FrameworkBundle\Routing\Router.

http://symfony.com/doc/current/book/routing.html#prefixing-imported-routes
http://symfony.com/doc/current/components/routing/introduction.html
https://github.com/symfony/symfony/blob/2.2/src/Symfony/Component/Routing/Router.php
https://github.com/symfony/symfony/blob/2.2/src/Symfony/Bundle/FrameworkBundle/Routing/Router.php

The routing parameter magic happens in getRouteCollection :

public function getRouteCollection()
{
 if (null === $this->collection) {
 $this->collection = $this->container
 ->get('routing.loader')
 ->load(
 $this->resource,
 $this->options['resource_type']
);
 $this->resolveParameters($this->collection);
 }

 return $this->collection;
}

This method is called early on when Symfony needs the full collection of routes to use. The key here is that before returning
the collection, the resolveParameters function is called, which iterates over every route in the collection and replaces
parameters in the defaults , path , requirements and host keys of the route.

Why isn’t this Slow?¶

If you’re wondering if iterating over every single route to replace this parameter is slow, the answer is YES! But in reality, not
at all :). In the Symfony2 Framework, the final collection of routes is dumped to a physical file that lives in your cache
directory. It means that this process happens once, then never again until your cache needs to be rebuilt.

Modifying Routes On-the-fly¶

You should never be in a hurry to extend Symfony and add a lot of magic to it, but this is a great example of a way that you
can do just that. Imagine that there was some modification that you needed to make to every single route in your system that
couldn’t be accomplished by leveraging a parameter. One way to accomplish this would be to sub-class the Router class,
override getRouteCollection , and make your own changes.

... but for now I’ll leave that as an exercise for you :).

https://github.com/symfony/symfony/blob/2.2/src/Symfony/Bundle/FrameworkBundle/Routing/Router.php#L85

Chapter 3: How to use Behat and Selenium on Travis CI

HOW TO USE BEHAT AND SELENIUM ON TRAVIS CIHOW TO USE BEHAT AND SELENIUM ON TRAVIS CI¶¶

From spolischook

How to connect Symfony2 project with Behat and Sahi to Travis Ci

Answer¶

Note

Special thanks to our very-own Roman on this answer!

GREAT question, and one we’ve struggled and dealt with quite a bit over the last few months. Fortunately, we have it
working now - it’s not always perfect, but this should get your started.

Our goal will actually be to configure our .travis.yml file to execute our Behat tests, some of which require Selenium. We like
Selenium over Sahi because it’s very well-supported and generally seems to run just a bit faster.

I’ll assume that you already have Behat installed with a few @javascript features you’d like to run and focus specifically on
the .travis.yml configuration. And if you’re looking to sharpen your Behat skills (or start using it!), check out BDD, Behat, Mink
and other Wonderful Things.

1) Installing a Web Server (e.g. Apache)¶

Your Travis server is an open canvas, upon which we computer-science artist may paint whatever software and configuration
we want. So... let’s start with a web server!

before_script:
 - sudo apt-get update > /dev/null
 - sudo apt-get install -y --force-yes apache2 libapache2-mod-php5 php5-curl php5-mysql php5-intl

Note

Don’t forget to install all other non-default extensions (i.e. php-ssl)

2) Give yourself a VirtualHost¶

Since we’ll be making real HTTP requests back to our application, we’ll need a VirtualHost setup. One easy way to do this is
to leverage Apache’s default VirtualHost, and use sed to stretch it to our needs:

before_script:
 # ...
 - sudo sed -i -e "s,/var/www,$(pwd)/web,g" /etc/apache2/sites-available/default
 - sudo /etc/init.d/apache2 restart

And if you want to use a specific domain, you can set that up too: just be sure to do it before the apache restart call:

before_script:
 # ...
 - sudo sed -i -e "/DocumentRoot/i\ServerName knpu_qa.l" /etc/apache2/sites-available/default
 - echo "127.0.0.1 knpu_qa.l" | sudo tee -a /etc/hosts
 - sudo /etc/init.d/apache2 restart

https://twitter.com/SPolischook
https://twitter.com/Inoryy
https://knpuniversity.com/screencast/behat

3) Composer! And all the other Stuff¶

Since Travis takes care of pulling your project into the server at the right version, we just need to download any
dependencies we have. We’re using Composer and if you’re not, you’ll just need to tweak these commands to download
your libraries dependencies, however that may be:

Tip

The composer executable is available on your Travis machine by default, but it may not be the latest version.

before_script:
 # ...

 # it may be useful to have the latest composer
 - composer self-update
 - composer install --dev --prefer-dist

The --prefer-dist part of Composer tells it to try to download zip archives, instead of cloning the repositories of your
dependencies. We’ve chosen to do this because it’s a lot faster. However, we’ve found if your packages are hosted on
GitHub, then you may see intermittent failures downloading the packages. There’s not much you can do here, but you may try
--prefer-source , which will be slower, but potentially more reliable.

4) App-specific Stuff¶

We now have a web server, a virtual host, our application and its dependencies all ready to go. Now it’s your turn to initialize
the database, set any file permissions, and anything else you may need to do before your application is fully functional.

For Symfony2, the following code should do the trick (or at least get you started):

before_script:
 # ...

 - app/console do:da:cr -e=test > /dev/null
 - app/console do:sc:cr -e=test > /dev/null
 - chmod -R 777 app/cache app/logs
 - app/console --env=test cache:warmup
 - chmod -R 777 app/cache app/logs

Note

Yes, the double - chmod -R 777 app/cache app/logs is on purpose. Because multiple users will touch the cache files, we’ve had the
most success warming all of the files and then once again making sure they’re all writable.

5) The Selenium Magic¶

And finally, the step you’ve been waiting for: how the heck do I run Selenium in this windowless machine? One solution that
we’ve had success with is by leverage a utility called xvfb , or “X virtual framebuffer”. It’s actually exactly what we want: it
does everything that X does... but without there actually being a window. Cool!

So let’s get it all installed:

before_script:
 # ...

 - "sh -e /etc/init.d/xvfb start"
 - "export DISPLAY=:99.0"
 - "wget http://selenium.googlecode.com/files/selenium-server-standalone-2.31.0.jar"
 - "java -jar selenium-server-standalone-2.31.0.jar > /dev/null &"
 - sleep 5

https://knpuniversity.com/screencast/composer

The reason we need sleep 5 at the end is because the selenium server takes just a bit of time to initialize. If it’s not ready
when Behat starts, then all related tests will fail for this build. Eek!

If you’re curious about any more of this, check out the GUI & Headless browser testing on travis-ci.org by the Travis folks.

Tip

You might want to use Chrome instead of the default (Firefox), since it’s a bit faster and more stable. If so, try this:

- "wget http://chromedriver.googlecode.com/files/chromedriver_linux32_23.0.1240.0.zip && unzip chromedriver_linux32_23.0.1240.0.zip &&

6) Running your tests¶

Ok, let’s do this! To run your tests... just run your tests! For example, suppose we have some PHPUnit tests along with our
Behat tests:

script:
 - phpunit path/to/tests
 - bin/behat

For Symfony2, this will look a bit different:

script:
 - phpunit -c app src/
 - bin/behat @KnpQABundle
 - bin/behat @KnpAnotherBundle

7) Other Issues and Improvements?¶

I’ll be honest, it’s tough to get this stuff right, especially since you can’t shell directly to the server and look around. Phantom
GitHub download failures may also cause some heartache.

Have you found some other tricks and secrets you want to share? Do it!

Here are a few other complications you may encounter:

GitHub API Rate Limit¶

If you have a lot of dependencies, you may eventually see this awesome error in your Travis output:

Could not fetch https://api.github.com/repos/Behat/MinkGoutteDriver/zipball/v1.0.7, enter your GitHub credentials
to go over the API rate limit

No worries! To fix this, you can use your own account to get a token that your Travis build can use to get around this. We
have this working here at KnpUniversity.com, and we stole the whole idea from this blog: Creating and Using a Github OAuth
Token With Travis And Composer.

The end-result is a .travis.composer.config.json file that looks like this:

{
 "config":{
 "github-oauth":{
 "github.com":"5675git-yer-own-key9854abc"
 }
 }
}

and a new entry in .travis.yml before updating your composer dependencies:

http://about.travis-ci.org/docs/user/gui-and-headless-browsers/
https://api.github.com/repos/Behat/MinkGoutteDriver/zipball/v1.0.7
http://blog.simplytestable.com/creating-and-using-a-github-oauth-token-with-travis-and-composer/

before_script:
 # ...

 - "mkdir -p ~/.composer"
 - cp .travis.composer.config.json ~/.composer/config.json

8) Celebrate!¶

That’s it! Crack open an ice-cold beer, spiced vanilla latte, cold water, goat’s milk, or whatever your preferred beverage and
watch as Travis does all the work for you.

But seriously, if you have any issues or improvements, post them for everyone! Travis is still somewhat new, so it’s a living
process.

Cheers!

Chapter 4: Creating your very own Composer Package

CREATING YOUR VERY OWN COMPOSER PACKAGECREATING YOUR VERY OWN COMPOSER PACKAGE¶¶

From: Marcin Grochulski

I wonder how to create your own bundle and then add it as an installation package for the Composer.

Answer¶

This is a great Composer question, and will let us walk through the lifecycle of a library and how it works with Composer. Be
sure to check out our free Wonderful World of Composer screencast first before diving in here.

Let’s suppose that we have a library or Symfony2 Bundle, and we’d like to release this open source and then include it in our
projects. You can do this at a number of different levels of sophistication. Let’s walk through it!

Step 1: Put your Library on GitHub¶

Before anything else, put your library on GitHub. Seriously, if you only did this, then people could already begin using your
library.

In fact, I’ve just created a wonderful new library that does... well, nothing honestly - but it’ll serve as our example:
https://github.com/weaverryan/derp-dangerzone.

The library is up on GitHub, and in real life would actually have some useful things. You’ll also see a composer.json file.
ignore it and pretend it isn’t there for now.

Now suppose that we want to include that library in one of our projects. If the new library were registered with Packagist
(we’ll add it eventually), then it would be as simple as adding one line to our require key in composer.json .

But since it’s not, we have to do the work ourself using a custom repositories key in the composer.json or our project:

"repositories": [
 {
 "type": "package",
 "package": {
 "name": "weaverryan/derp-dangerzone",
 "version": "dev-master",
 "source": {
 "url": "git://github.com/weaverryan/derp-dangerzone.git",
 "type": "git",
 "reference": "master"
 },
 "autoload": {
 "psr-0" : {
 "Weaverryan\\DangerZone" : "src"
 }
 }
 }
 }
],

Tip

The repositories key sits at the root of your composer.json file, as a sibling to (i.e. next to) the require key.

Wow, that was a lot of work! The problem is that the derp-dangerzone doesn’t have a composer.json file yet (well, we’re
pretending it doesn’t), so we have to manually define the package ourselves. There are a few interesting parts:

https://twitter.com/MGrochulski
http://knpuniversity.com/screencast/composer
https://github.com/weaverryan/derp-dangerzone
https://packagist.org/
http://getcomposer.org/doc/05-repositories.md

version : Our library doesn’t really have versions yet, so we create a single version that points to the master branch
(see the reference key). If we had a real version, we might define something like 2.0.0 here and update the reference
below to point at a branch or tag.
autoload : Most libraries follow the PSR-0 naming standard, including our new library. The only class in the library is in
the Weaverryan\DangerZone namespace and is called HalloThere . Accordingly, once you’re in the src/ directory, it lives
at Weaverryan/DangerZone/HalloThere.php . Under this key, we tell Composer that all of our classes will live in the
Weaverryan\Dangerzone namespace and to start looking for them in the src/ directory.

With this new entry, Composer now sees a fully valid package called weaverryan/derp-dangerzone with a single dev-master
version. In other words, just add it to your require key in the composer.json of your project:

"require": {
 "... other libraries": "... other version",

 "weaverryan/derp-dangerzone": "dev-master"
},

Update as you normally do:

php composer.phar update

Phew! That was a lot of work. But as we make our library more official, most of the work is behind us!

Step 2: Give your Library a composer.json File¶

If everyone that uses your library needs to do all that work, you can bet that you won’t be very popular. To fix this, we’ll need
to put a composer.json file in the library itself. Fortunately, this is really easy, and we can basically move the package we
already created into a new composer.json file at the root of our library. To make it easier, you can remove the version and
source keys - Composer will look at your branches and tags to get all of this.

In other words, create a composer.json file in your library:

{
 "name": "weaverryan/derp-dangerzone",
 "autoload": {
 "psr-0" : {
 "Weaverryan\\DangerZone" : "src"
 }
 }
}

And this is exactly what you see right now at weaverryan/derp-dangerzone. At this point, the Packagist repository doesn’t
know about our library, but our library does have a composer.json file. This is a huge step forward, because it lets us simplify
our project’s composer.json quite a bit. We still need a custom repositories key, but now it’s much simpler.

Update your projects’s composer.json to have the following:

"repositories": [
 {
 "type": "vcs",
 "url": "https://github.com/weaverryan/derp-dangerzone"
 }
],

Now, instead of a packages key, we have a simpler vcs key, which basically says: “go over to this repository and consume its
composer.json file”.

Step 3: Registering with Packagist¶

https://speakerdeck.com/weaverryan/the-wonderful-world-of-symfony-components?slide=31
https://github.com/weaverryan/derp-dangerzone
https://packagist.org/
http://getcomposer.org/doc/05-repositories.md#vcs

As we’ve seen, creating a composer.json file in your library is optional, but makes using it much much easier. The next and
last step to simplicity is to register it with Packagist. This is the easiest step yet and involves filling in a few forms at Packagist
and waiting for it to crawl your repository.

Once you’ve registered your library with Packagist (and it’s been crawled), your library can be used by adding a single entry
to the require key of a composer.json file: no extra repositories entry is needed:

"require": {
 "... other libraries": "... other version",

 "weaverryan/derp-dangerzone": "dev-master"
},

That’s it! The process is simple, but nice to walk through. Now start sharing your code!

https://packagist.org/

Chapter 5: Swiftmailer Spooling and Handling Failures

SWIFTMAILER SPOOLING AND HANDLING FAILURESSWIFTMAILER SPOOLING AND HANDLING FAILURES¶¶

From Philipp Rieber

Hi, I’m using swiftmailer’s file spooling and I’m flushing the queue every minute using a cron task:

app/console swiftmailer:spool:send --env=prod > /dev/null 2>>app/logs/error.log

Due to SMTP errors like “554 Message rejected: Address blacklisted” or “554 Message rejected: Email address is
not verified” some message files remain in the spool directory and swiftmailer tries to send them over and over
again following the “recovery-timeout” setting of the command (default = 15 minutes).

The problem is that a single exception during the sending process cancels the whole command. So if there are
more than 15 “xxx.message.sending” files in the spool directory after a while and the cron job runs every minute
with a recovery-timeout of 15 minutes, then the new messages won’t get sent any more. How can I handle that?
Do I need an additional command to remove old “xxx.message.sending” files, e.g by wrapping and extending the
swiftmailer:spool:send command?

Currently I remove the old files manually from time to time and according to Google I’m the only one having this
issue ;-)

Thank you!

Answer¶

Woh, tough question! So, let’s see what we can do. First, let’s me give everyone else a little background by building a test
project. Even if you’re not having this issue, we’re going to learn quite a bit about spooling and some lower-level parts of
Swift Mailer. Philipp, you can skip down to the answer, or suggested approach for this difficult problem ;).

First, configure Swift Mailer to send emails in some way, and tell it to use a “file” spool. If you haven’t seen this before, we
have a cookbook article on it at Symfony.com called, well, How to Spool Emails:

app/config/config.yml
swiftmailer:
 transport: %mailer_transport%
 host: %mailer_host%
 username: %mailer_user%
 password: %mailer_password%
 spool: { type: file }

By default, most of the swiftmailer configuration is stored in the app/config/parameters.yml file, so make sure you update your
settings there.

File spooling is really easy, and kinda neat. Whenever you tell Swiftmailer to send an email, it actually doesn’t. Instead it
stores it in a file and waits for you to run a Symfony task that actually sends the email. The obvious advantage is that the
experience for your end-user is much faster.

Let’s use a small script I’ve created that loads up a bunch of spooled messages for us. This bootstraps Symfony and lets me
write any Symfony code I want in it. It’s a quick and dirty way to create a spot where we can execute some code that needs
Symfony and is something we cover in our Starting in Symfony2 series:

https://twitter.com/bicpi
http://symfony.com/doc/current/cookbook/email/spool.html
http://knpuniversity.com/screencast/getting-started-in-symfony2-2-1

<?php
// load_emails.php
require __DIR__.'/vendor/autoload.php';

use Symfony\Component\HttpFoundation\Request;
$loader = require_once __DIR__.'/app/bootstrap.php.cache';
require_once __DIR__.'/app/AppKernel.php';
$kernel = new AppKernel('prod', true);
$request = Request::createFromGlobals();
$kernel->boot();
$container = $kernel->getContainer();
$container->enterScope('request');
$container->set('request', $request);
/* end bootstrap */

/** @var $mailer \Swift_Mailer */
$mailer = $container->get('mailer');

$message = \Swift_Message::newInstance()
 ->setSubject('Testing Spooling!')
 ->setFrom('hello@knpuniversity.com')
 ->setTo('ryan@knplabs.com')
 ->setBody('Hallo emails!')
;

for ($i = 0; $i < 10; $i++) {
 $mailer->send($message);
}

The script sends 10 email messages. Behind the scenes, I’ll also add a little bit of code to the core os Swift Mailer so that my
SMTP server appears to fail about every 5 sends. This will fake STMP sending errors:

// vendor/swiftmailer/swiftmailer/lib/classes/Swift/Transport/AbstractSmtpTransport.php
// ...

protected function _assertResponseCode($response, $wanted)
{
 list($code) = sscanf($response, '%3d');

 if (rand(1, 5) == 5 && in_array(250, $wanted)) {
 $code = 554;
 }

 // ... the rest of the function
}

How Emails are File Spooled¶

Run this script from the command line to queue the 10 messages:

php load_emails.php

Tip

The script runs in the prod environment to be more realistic (since your site typically runs in the prod environment). So, be sure to
clear your prod cache before trying any of this:

php app/console cache:clear --env=prod

You won’t see anything visually, and no emails were sent, but if you look in the cache directory, you should see a swiftmailer

directory with a single file for each spooled message:

ls -la app/cache/prod/swiftmailer/spool

0Mo4LSRwTj.message
30MJF9qOP7.message
BLxbfA_cKs.message
BaW2_ZzpAE.message
CgyPxTQ59E.message
Fw_Bux5LUh.message
GsDgqNHc89.message
IDbFa9CCtB.message
LEw9Xe.EZY.message
RKbbDMVKu9.message

This is how the file spool works: each message is given a random filename and its contents are a serialized version of the
Swift_Message .

To actually send these emails, use the swiftmailer:spool:send command.

php app/console swiftmailer:spool:send --env=prod --message-limit=10

Under normal conditions, this would find the first 10 files in the spool directory, unserialize each file’s contents and then send
it. In fact, behind the scenes, each file is suffixed with .sending the moment before it is sent, and then deleted afterwards if
everything went ok. If you watched your spool directory closely, you could see this while it’s sending:

0Mo4LSRwTj.message.sending
30MJF9qOP7.message
BLxbfA_cKs.message
BaW2_ZzpAE.message
CgyPxTQ59E.message
Fw_Bux5LUh.message
GsDgqNHc89.message
IDbFa9CCtB.message
LEw9Xe.EZY.message
RKbbDMVKu9.message

Normally you don’t really care about this... until your emails start to fail.

How Swift Mailer handles Failures¶

As Philipp mentioned, when you run the swiftmailer:spool:send command and one email fails, it will blow up! That’s actually
not that big of a problem initially: as soon as any email is sent successfully, its spool file is deleted, which avoids duplicate
sending, even if another email send blows up later. The email that failed remains in its “sending” state, meaning it has the
.sending suffix:

0Mo4LSRwTj.message.sending

When you re-run the command, that .sending file is skipped, and the other nine files in the spool are sent.

So then, what happens to the email that failed? Does Swift Mailer every try to send it again? In fact, it does! And this is where
the problems start. When you run the command, there is an optional --recover-timeout option, which defaults to 900, or 15
minutes. This option means that if a file has been in the .sending state for 15 minutes, the suffix should be removed and we
should try re-sending it. This is really smart, because it means that if your SMTP server has a temporary failure, the email will
just send later.

Failures, Failures Blocking Everything!¶

But sometimes, an email fails to send for a permanent reason, like 554 Message rejected: Address blacklisted . No matter how
many times you try to re-send that email, it will probably never work. It will fail, wait fifteen minutes, fail again, then repeat
endlessly. Even if these happen every now and then, after awhile you’ll get a spool/ directory that’s full of failures:

0Mo4LSRwTj.message.sending
30MJF9qOP7.message.sending
BLxbfA_cKs.message.sending
BaW2_ZzpAE.message.sending
CgyPxTQ59E.message.sending
Fw_Bux5LUh.message.sending
GsDgqNHc89.message.sending
IDbFa9CCtB.message.sending
LEw9Xe.EZY.message.sending
RKbbDMVKu9.message.sending

These are just annoying at first, since after fifteen minutes, each is re-tried, which causes your script to fail and no other
emails to be sent. If you’re running the script often enough, it’s no big deal.

So back to Philipp’s question:

So if there are more than 15 “xxx.message.sending” files in the spool directory after a while and the cron job runs
every minute with a recovery-timeout of 15 minutes, then the new messages won’t get sent any more. How can I
handle that?

Let’s walk through this: imagine you have 15 files that are failing. One-by-one, these become eligible to be re-tried. Our script,
which runs every minute, tries one, then fails. A minute later it tries another, then another, etc, etc. After fifteen minutes it
hasn’t actually sent any emails - it’s only failed to re-send these. To make matters worse, the first failed email is ready to be
re-tried again, so the cycle continues.

The Solution?¶

This is actually a really interesting, but challenging issue. At the core is the fact that Swift Mailer can’t tell the difference
between a mail that should be re-tried, and one that will fail forever. To make matters worse, there’s no possible way to
configure the file spool to stop trying after a few attempts and delete the mail. This seems like a shortcoming in the spool
itself, but for now, let’s work around it!

In my opinion, the best solution is create a separate task that handles these failures by trying them once more, then deleting
them finally. Let’s start with the skeleton for the command:

namespace KnpU\QADayBundle\Command;

use Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class ClearFailedSpoolCommand extends ContainerAwareCommand
{
 protected function configure()
 {
 $this
 ->setName('swiftmailer:spool:clear-failures')
 ->setDescription('Clears failures from the spool')
 ;
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 }
}

The goal of the command will be to find all .loading files, try them once again, then delete the spool file. This will use a few
parts of Swift Mailer and its integration with Symfony that are deep enough that you’ll need to be more careful when you
upgrade. For example, the fact that the failed spools are suffixed with .sending is really a detail that we’re not supposed to

care about, but we’ll take advantage of it.

To start, grab the real transport from the service container and make sure it’s started:

/** @var $transport \Swift_Transport */
$transport = $this->getContainer()->get('swiftmailer.transport.real');
if (!$transport->isStarted()) {
 $transport->start();
}

The “transport” used by the mailer service is the file spool, which means when you send through it, it actually just spools.
Symfony stores your real transport - whether that be SMTP or something else - as a service called swiftmailer.transport.real .

Next, let’s find all the spooled files. This takes advantage of the swiftmailer.spool.file.path parameter, which contains the
directory where the spool files live. This parameter is used when the Swift_FileSpool is instantiated. We’ll also use the
Finder component to really make this shine:

// ...
$spoolPath = $this->getContainer()->getParameter('swiftmailer.spool.file.path');
$finder = Finder::create()->in($spoolPath)->name('*.sending');

foreach ($finder as $failedFile) {
 // ...
}

Finally, fill in the loop:

// ...
foreach ($finder as $failedFile) {
 // rename the file, so no other process tries to find it
 $tmpFilename = $failedFile.'.finalretry';
 rename($failedFile, $tmpFilename);

 /** @var $message \Swift_Message */
 $message = unserialize(file_get_contents($tmpFilename));
 $output->writeln(sprintf(
 'Retrying <info>%s</info> to <info>%s</info>',
 $message->getSubject(),
 implode(', ', array_keys($message->getTo()))
));

 try {
 $transport->send($message);
 $output->writeln('Sent!');
 } catch (\Swift_TransportException $e) {
 $output->writeln('<error>Send failed - deleting spooled message</error>');
 }

 // delete the file, either because it sent, or because it failed
 unlink($tmpFilename);
}

Woh! Let’s walk through this using 4 friendly bullet points:

1) We rename the spool file to prevent any other process from sending this file while we try;

2) The contents of the spool file are a serialized \Swift_Message object, which we an unserialize to get it back;

3. We once again try to send the message.

4) Whether the message sends or fails, we delete the spool file to clean it out.

https://github.com/symfony/SwiftmailerBundle/blob/master/Resources/config/spool_file.xml#L12
http://symfony.com/doc/current/components/finder.html

And that’s it! Now, set the command to run on some interval. If these messages tend to start to be a problem after an hour, run
this hourly. If it’s an uncommon issue, run it daily:

php app/console swiftmailer:spool:clear-failures --env=prod

With a good mixture of failures and success, the output will look something like this:

Retrying Testing Spooling! to ryan@knplabs.com
Sent!
Retrying Testing Spooling! to ryan@knplabs.com
Send failed - deleting spooled message
Retrying Testing Spooling! to ryan@knplabs.com
Sent!
Retrying Testing Spooling! to ryan@knplabs.com
Send failed - deleting spooled message

There are countless other approaches you could take, but I prefer this one because it prevents you from needing to override
any core code. The point is that, one way or another, you’re on your own when you solve this. With some refactoring of
Swift_FileSpool , it should be possible to set a max retry limit per mail, but that’s not the case right now.

Still, file spooling is great. If you’re concerned about delivering emails to your users without slowing down their experience,
this is a very easy way to accomplish that.

Chapter 6: How to handle dynamic Subdomains in Symfony

HOW TO HANDLE DYNAMIC SUBDOMAINS IN SYMFONYHOW TO HANDLE DYNAMIC SUBDOMAINS IN SYMFONY¶¶

From Rafael:

Hi, Symfony 2.2 has released hostname pattern for urls, I would like to know how can I create a url pattern that
match domains loaded from a database? where should I put the code to load the domains and how should I pass
this to a routing config file?

And from zaherg:

How can I handle auto generated subdomains routing with symfony 2?

Answer¶

Symfony 2.2 comes with hostname handling out of the box, which lets you create two routes that have the same path, but
respond to two different sub-domains:

homepage:
 path: /
 defaults:
 _controller: QADayBundle:Default:index

homepage_admin:
 path: /
 defaults:
 _controller: QADayBundle:Admin:index
 host: admin.%base_host%

The base_host comes from a value in parameters.yml , which makes this all even more flexible.

But what if you’re creating a site that has dynamic sub-domains, where each subdomain is a row in a “site” database table?
In this case, the new host routing feature won’t help us: it’s really meant for handling a finite number of concrete subdomains.

So how could this be handled? Let’s find out together!

1) The VirtualHost¶

Before you go anywhere, make sure you have an Apache VirtualHost or Nginx site that sends all the subdomains of your
host to your application. Since we’re using lolnimals.l locally, we’ll want *.lolnimals.l to be handled by the VHost.

<VirtualHost *:80>
 ServerName qaday.l
 ServerAlias *.qaday.l

 DocumentRoot "/Users/leannapelham/Sites/qa/web"
 <Directory "/Users/leannapelham/Sites/qa/web">
 AllowOverride All
 Allow from All
 </Directory>
</VirtualHost>

Next, add a few entries to your /etc/hosts file for subdomains that we can play with:

https://twitter.com/dextervip
https://twitter.com/zaherg
https://knpuniversity.com/screencast/new-symfony-2.2/host-routing

/etc/hosts
127.0.0.1 lolnimals.l kittens.lolnimals.l alpacas.lolnimals.l dinos.lolnimals.l

Great! Restart or reload your web server and then at least check that you can hit your application from any of these sub-
domains. So far our application isn’t actually doing any logic with these subdomains, but we’ll get there!

2) Create the Site Entity¶

Next, let’s use Doctrine to generate a new Site entity, which will store all the information about each individual subdomain:

php app/console doctrine:generate:entity

Give the entity a name of QADayBundle:Site , which uses a QADayBundle that I already created. For fields, add one called
subdomain and two others called name and description , so we at least have some basic information about this site.

Note

Press tab to take advantage of the command autocompletion. This is the brand new 2.2 autocomplete feature in action.

Finish up the wizard then immediately create the database and schema. Be sure to customize your app/config/parameters.yml
file first:

php app/console doctrine:database:create
php app/console doctrine:schema:create

Finally, to make things interesting, I’ll bring in a little data file that will add two site records into the database:

// load_sites.php
require __DIR__.'/vendor/autoload.php';

use Symfony\Component\HttpFoundation\Request;
$loader = require_once __DIR__.'/app/bootstrap.php.cache';
require_once __DIR__.'/app/AppKernel.php';
$kernel = new AppKernel('dev', true);
$request = Request::createFromGlobals();
$kernel->boot();
$container = $kernel->getContainer();
$container->enterScope('request');
$container->set('request', $request);

// start loading things
use KnpU\QADayBundle\Entity\Site;

/** @var $em \Doctrine\ORM\EntityManager */
$em = $container->get('doctrine')->getManager();
$em->createQuery('DELETE FROM QADayBundle:Site')->execute();

$site1 = new Site();
$site1->setSubdomain('kittens');
$site1->setName('Cute Kittens');
$site1->setDescription('I\'m peerrrrfect!');

$site2 = new Site();
$site2->setSubdomain('alpacas');
$site2->setName('Funny Alpacas');
$site2->setDescription('Alpaca my bags!');

$em->persist($site1);
$em->persist($site2);
$em->flush();

http://knpuniversity.com/screencast/new-symfony-2.2/dialog-progress-autocomplete

A better way to do this is with some real fixture files, but this will work for now. This script bootstraps Symfony, but then lets us
write custom code beneath it. If you’re curious about this script or fixtures, check out our Starting in Symfony2 series where
we cover all this goodness and a ton more.

Execute the script from the command line.

php load_sites.php

I’ll use the built-in doctrine:query:sql command to double-check that things work.

php app/console doctrine:query:sql "SELECT * FROM Site"

Great, let’s get to the good stuff!

3) Finding the current Site the “Easy” Way¶

Because of our VirtualHost, our application already responds to every subdomain of lolnimals.l . The goal in our code is to be
able to determine, based on the host name, which Site record in the database is being used.

First, let’s use a homepage route and controller that I’ve already created. This will seem simple, but for now, let’s determine
which Site record is being used by querying directly here. I’ll add the $request as an argument to the method to get the
request object, then use getHost to grab the host name. Dump the value to see that it’s working:

// src/KnpU/QADayBundle/Controller/DefaultController.php

use Symfony\Component\HttpFoundation\Request;
// ...

public function indexAction(Request $request)
{
 $currentHost = $request->getHttpHost();
 var_dump($currentHost);die;

 return $this->render('QADayBundle:Default:index.html.twig');
}

The value stored in the database is actually only the subdomain part, not the whole host name. In other words, we need to
transform alpacas.lolnimals.l into simply alpacas before querying. Fortunately, I’ve already stored my base host as a
parameter in parameters.yml :

/app/config/parameters.yml
parameters:
 # ...
 base_host: qaday.l

By grabbing this value out of the container and doing some simple string manipulation, we can get the current subdomain
key:

http://knpuniversity.com/screencast/getting-started-in-symfony2-2-1

// src/KnpU/QADayBundle/Controller/DefaultController.php
// ...

public function indexAction(Request $request)
{
 $currentHost = $request->getHttpHost();
 $baseHost = $this->container->getParameter('base_host');

 $subdomain = str_replace('.'.$baseHost, '', $currentHost);
 var_dump($subdomain);die;

 return $this->render('QADayBundle:Default:index.html.twig');
}

Perfect! Now querying for the current Site is pretty easy. We’ll also assume that we need a valid subdomain - so let’s show a
404 page if we can’t find the Site:

// src/KnpU/QADayBundle/Controller/DefaultController.php
// ...

$site = $this->getDoctrine()
 ->getRepository('QADayBundle:Site')
 ->findOneBy(array('subdomain' => $subdomain))
;
if (!$site) {
 throw $this->createNotFoundException(sprintf(
 'No site for host "%s", subdomain "%s"',
 $baseHost,
 $subdomain
));
}

Finally, pass the $site into the template so we can prove we’re matching the right one:

// src/KnpU/QADayBundle/Controller/DefaultController.php
// ...

return $this->render('QADayBundle:Default:index.html.twig', array(
 'site' => $site,
));

Dump some basic information out in the template to celebrate:

{# src/KnpU/QADayBundle/Resources/views/Default/index.html.twig #}
{% extends '::base.html.twig' %}

{% block body %}
 <h1>Welcome to {{ site.name }}</h1>

 <p>{{ site.description }}</p>
{% endblock %}

Ok, try it out! The alpacas and kittens subdomains work perfectly, and the dinos subdomain causes a 404, since there’s no
entry in the database for it.

This is simple and functional, but let’s do better!

4) The Site Manager¶

We’ve met our requirements of dynamic sub-domains, but it’s not very pretty yet. We’ll probably need to know what the

current Site is all over the place in our code - in every controller and in other places like services. And we certainly don’t want
to repeat all of this code, that would be crazy!

Let’s fix this, step by step. First, create a new class called SiteManager , which will be responsible for always knowing what
the current Site is. The class is very simple - just a property with a get/set method:

// src/KnpU/QADayBundle/Site/SiteManager.php
namespace KnpU\QADayBundle\Site;

use KnpU\QADayBundle\Entity\Site;

class SiteManager
{
 private $currentSite;

 public function getCurrentSite()
 {
 return $this->currentSite;
 }

 public function setCurrentSite(Site $currentSite)
 {
 $this->currentSite = $currentSite;
 }
}

Next, register this as a service. If services are a newer concept for you, we cover them extensively in Episode 3 of our
Symfony2 Series. I’ll create a new services.yml file in my bundle. The actual service configuration couldn’t be simpler:

src/KnpU/QADayBundle/Resources/config/services.yml
services:
 site_manager:
 class: KnpU\QADayBundle\Site\SiteManager

This file is new, so make sure it’s imported. I’ll import it by adding a new imports entry to config.yml :

app/config/config.yml
imports:
 # ...
 - { resource: "@QADayBundle/Resources/config/services.yml" }

Sweet! Run container:debug to make sure things are working:

php app/console container:debug | grep site

site_manager container KnpU\QADayBundle\Site\SiteManager

Perfect! So.... how does this help us? First, let’s set the current site on the SiteManager from within our controller:

http://knpuniversity.com/screencast/starting-in-symfony2-episode-3-2-1

// src/KnpU/QADayBundle/Controller/DefaultController.php
// ...

/** @var $siteManager \KnpU\QADayBundle\Site\SiteManager */
$siteManager = $this->container->get('site_manager');
$siteManager->setCurrentSite($site);

return $this->render('QADayBundle:Default:index.html.twig', array(
 'site' => $siteManager->getCurrentSite(),
));

Don’t let this step confuse you, because it’s pretty underwhelming. This sets the current site on the SiteManager , which we
use immediately to pass to the template. If this looks kinda dumb to you, it is! Getting the current site from the SiteManager is
cool, but the problem is that we still need to set this manually.

In other words, the SiteManager is only one piece of the solution. Now, let’s add an event listener to fix the rest.

5) Determining the Site automatically with an Event Listener¶

Somehow, we need to be able to move the logic that determines the current Site out of our controller and to some central
location. To do this, we’ll leverage an event listener. Again, if this is new to you, we cover it in Episode 3 of our Symfony2
Series.

First, create the listener class, let’s call it CurrentSiteListener and set it to have the SiteManager and Doctrine’s EntityManager
injected as dependencies. Let’s also inject the base_host parameter, we’ll need it here as well:

// src/KnpU/QADayBundle/EventListener/CurrentSiteListener.php
namespace KnpU\QADayBundle\EventListener;

use KnpU\QADayBundle\Site\SiteManager;
use Doctrine\ORM\EntityManager;

class CurrentSiteListener
{
 private $siteManager;

 private $em;

 private $baseHost;

 public function __construct(SiteManager $siteManager, EntityManager $em, $baseHost)
 {
 $this->siteManager = $siteManager;
 $this->em = $em;
 $this->baseHost = $baseHost;
 }
}

The goal of this class is to determine and set the current site at the very beginning of every request, before your controller is
executed. Create a method called onKernelRequest with a single $event argument, which is an instance of
GetResponseEvent :

http://knpuniversity.com/screencast/starting-in-symfony2-episode-3-2-1

// src/KnpU/QADayBundle/EventListener/CurrentSiteListener.php

// ...
use Symfony\Component\HttpKernel\Event\GetResponseEvent;

class CurrentSiteListener
{
 // ...

 public function onKernelRequest(GetResponseEvent $event)
 {
 die('test!');
 }
}

Tip

The Symfony.com documentation has a full list of the events and event objects in the HttpKernel section.

Before we fill in the rest of this method, register the listener as a service and tag it so that it’s an event listener on the
kernel.request event:

services:
 # ...

 current_site_listener:
 class: KnpU\QADayBundle\EventListener\CurrentSiteListener
 arguments:
 - "@site_manager"
 - "@doctrine.orm.entity_manager"
 - "%base_host%"
 tags:
 -
 name: kernel.event_listener
 method: onKernelRequest
 event: kernel.request

And with that, let’s try it! When we refresh the page, we can see the message that proves that our new listener is being called
early in Symfony’s bootstrap.

With all that behind us, let’s fill in the final step! In the onKernelRequest method, our goal is to determine and set the current
site. Copy the logic out of our controller into this method, then tweak things to hook up:

http://symfony.com/doc/current/components/http_kernel/introduction.html#creating-an-event-listener

public function onKernelRequest(GetResponseEvent $event)
{
 $request = $event->getRequest();

 $currentHost = $request->getHttpHost();
 $subdomain = str_replace('.'.$this->baseHost, '', $currentHost);

 $site = $this->em
 ->getRepository('QADayBundle:Site')
 ->findOneBy(array('subdomain' => $subdomain))
 ;
 if (!$site) {
 throw new NotFoundHttpException(sprintf(
 'No site for host "%s", subdomain "%s"',
 $this->baseHost,
 $subdomain
));
 }

 $this->siteManager->setCurrentSite($site);
}

The differences here are a bit subtle. For example, the baseHost is now stored in a property and we can get Doctrine’s
repository through the $em property. We’ve also replaced the createNotFoundException call by instantiating a new
NotFoundHttpException instance. The createNotFoundException method lives in Symfony’s base controller. We don’t have
access to it here, but this is actually what it really does behind the scenes.

Since we’ve registered this as an event listener on the kernel.request event, this method will guarantee that the SiteManager
has a current site before our controller is ever executed. This means we can get rid of almost all of the code in our controller:

public function indexAction()
{
 /** @var $siteManager \KnpU\QADayBundle\Site\SiteManager */
 $siteManager = $this->container->get('site_manager');

 return $this->render('QADayBundle:Default:index.html.twig', array(
 'site' => $siteManager->getCurrentSite(),
));
}

Try it out! Sweet, it still works! We can now use the SiteManager from anywhere in our code to get the current Site object. For
example, if we needed to load all the blog posts for only this Site, we could grab the current Site then create a query that
returns only those items. Basically, from here, you can be dangerous!

Chapter 7: Symfony2: Make my Controllers Services?

SYMFONY2: MAKE MY CONTROLLERS SERVICES?SYMFONY2: MAKE MY CONTROLLERS SERVICES?¶¶

From Christian:

Hi,

I’d like to know what you think about the practice of building “controllers as a service” as suggested here:

http://pooteeweet.org/blog/1947

https://github.com/symfony/symfony-docs/issues/457

Thanks! And keep up the great work!

Answer¶

This is a big religious topic in the Symfony2 community, and if you scan the comments in the links above, you’ll see why. In
fact, it’s not something I usually talk about: it can be a hornet’s nest :). So here we go!

In a moment, we’re going to walk through an example and compare the approaches. But first, I’ll say that I don’t register my
controllers as services, and the reasons behind this are simple:

1) Registering a controller as a service is more work. That’s not the worst things ever, but since it takes longer, the rewards
need to outweigh this.

2) All of your logic should be pushed out into your service layer anyways. This is the age-old skinny controllers best-practice.

3) And now that your controllers are skinny, there’s no need to unit test them. Instead unit test the services being used by
your controllers.

4) Services used by your controller are loaded lazily. This is not the case if you’ve registered your controllers as a service
and inject only what you need. But in theory, as long as you keep your controllers focused, then what you’re injecting will
need to be used for any action anyways.

With that viewpoint, the slight increase in setup time probably doesn’t make registering your controllers as services worth it.
And when we’re teaching beginners, it would be yet another concept to need to know early-on.

But as you dive in deeper, the topic gets more complex and the advantages more fascinating, especially for seasoned
developers that can register a service very quickly.

A Case for Services¶

The advantages to registering your controllers as services are more subtle but compelling!

Let’s build two controllers so we can compare each in detail.

Injecting the Container - without the Base Controller¶

The routing for the first looks normal:

controller_container:
 path: /controller/container
 defaults:
 _controller: QADayBundle:Container:index

Next, let’s look at the controller class itself:

http://pooteeweet.org/blog/1947
https://github.com/symfony/symfony-docs/issues/457
http://knpuniversity.com/screencast/dependency-injection/container#skinny-controllers-and-service-oriented-architecture

// src/KnpU/QADayBundle/Controller/ContainerController.php
namespace KnpU\QADayBundle\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\RedirectResponse;
use Symfony\Component\DependencyInjection\ContainerInterface;
use Symfony\Component\DependencyInjection\ContainerAwareInterface;

class ContainerController implements ContainerAwareInterface
{
 private $container;

 public function setContainer(ContainerInterface $container = null)
 {
 $this->container = $container;
 }

 public function indexAction(Request $request)
 {
 if ($request->isMethod('POST')) {
 // .. do some things

 $url = $this->container->get('router')->generate('homepage');
 return new RedirectResponse($url);
 }

 return $this->container->get('templating')->renderResponse(
 'QADayBundle::controllerTest.html.twig',
 array('type' => 'Injecting the container!')
);
 }
}

In your Symfony2 projects, you’re probably used to inheriting Symfony2’s base Controller class. This gives you shortcut
methods and makes sure that Symfony’s container is set on a container property. To see what’s really happening, I’ve
chosen not to extend this class. Instead, by implementing ContainerAwareInterface , we can still make sure that Symfony calls
setContainer and passes it to us. After that, we grab services directly from the container and use them. This is all exactly what
happens behind-the-scenes in your controllers when you extend Symfony’s base Controller class.

Creating a Controller as a Service¶

Next, let’s create that same controller, except register it as a service and only inject what we need. First, the routing:

controller_service:
 path: /controller/service
 defaults:
 _controller: qa_day.controller.service:indexAction

Notice the _controller key looks different. We haven’t yet, but in a moment we’ll create a new service called
qa_day.controller.service . Notice that we do include the Action suffix with the method name: when you refer to a controller as
a service, none of the normal conventions are assumed (i.e. index => indexAction).

Next, the actual controller class:

https://github.com/symfony/symfony/blob/2.2/src/Symfony/Bundle/FrameworkBundle/Controller/Controller.php

namespace KnpU\QADayBundle\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\RedirectResponse;
use Symfony\Bundle\FrameworkBundle\Templating\EngineInterface;
use Symfony\Component\Routing\Generator\UrlGeneratorInterface;

class ServiceController
{
 private $templating;

 private $router;

 public function __construct(EngineInterface $templating, UrlGeneratorInterface $router)
 {
 $this->templating = $templating;
 $this->router = $router;
 }

 public function indexAction(Request $request)
 {
 if ($request->isMethod('POST')) {
 // .. do some things

 $url = $this->router->generate('homepage');
 return new RedirectResponse($url);
 }

 return $this->templating->renderResponse(
 'QADayBundle::controllerTest.html.twig',
 array('type' => 'Container as a service!')
);
 }
}

The class is perfectly straightforward: we need the templating and router services, so we inject them. For extra-credit, I’ve
type-hinted the interface for each of these. Now, instead of referencing the router through the container , we can just
reference it directly. You can’t see it here, but my IDE is also giving me auto-completion on the templating and router objects
- that’s one major advantage.

Tip

Knowing which interface to use for a specific service is not always easy. For example, how did I know to use EngineInterface for the
templating service? If you’re not sure what to use, just look for the service in container:debug and use the actual class name - not

interface - that is used for the service. To see if there’s an interface, open that class up and check for it. This isn’t a science, but it’s a
good path to learn more about the interfaces that are actually behind things.

Finally, we have to do the extra step: defining the controller as a service:

src/KnpU/QADayBundle/Resources/config/services.yml
services:
 qa_day.controller.service:
 class: KnpU\QADayBundle\Controller\ServiceController
 arguments: ["@templating", "@router"]

This is a totally normal and underwhelming service, but it completes the equation. The qa_day.controller.service:indexAction
value used for the _controller key of our route tells Symfony to grab this service and then execute indexAction .

Note

Make sure this services.yml file is being imported, either by using an imports key in app/config/config.yml or via a Dependency
Injection Extension class (see Episode 3 for more on this).

http://symfony.com/doc/current/book/service_container.html#importing-configuration-with-imports
http://symfony.com/doc/current/book/service_container.html#importing-configuration-via-container-extensions
http://knpuniversity.com/screencast/starting-in-symfony2-episode-3-2-1

Comparing the two approaches: A case for Services¶

Since we’ve already talked about why you might not register a controller as as service, let’s explore the advantages of using
services. Many of these are summarized from Lukas’ blog and comments:

1) Since you’re not injecting the whole container, this is an opportunity to document what your controller does and
doesn’t do. When the controller is a service, it’s obvious at a glance that it generates URLs and renders templates. We also
know that it doesn’t talk to the database, send emails, or do anything else.

To make this even cooler, Lukas points out that if you use the JMSDebugginBundle, then you can use the profiler tool to get
a clear vision of what parts of your code - including dependencies - make use of a particular service [screenshot]. That’s quite
powerful.

2) Injecting specific services gives you auto-completion and clarity on exactly what types of objects you have. When
you reference the services through the container, you don’t really know what type of object you’ll get out. I commonly work
around this by creating a private getter function which tells my IDE what to expect:

/**
 * @return \Symfony\Component\Routing\Generator\UrlGeneratorInterface
 */
private function getRouter()
{
 return $this->container->get('router');
}

Still, if we gain some time by not registering our controller as a service, it’s fair to say that we lose some time doing things like
this. It’s also technically possible that someone in our code changes the router to return something that does not implement
UrlGeneratorInterface . In the service controller, PHP would throw a very clear error if this ever happened. In the container
controller, the error would be less clear.

3) How much should your controller do? When you inject the entire container, you could potentially have controllers that
control many pages that do many different things. As Kris points out, this is much harder if your controller is a service, since
eventually you’ll be injecting 100 different dependencies. This is a natural way to make sure controllers stay focused.

To Service or not Service?¶

Since not taking a side is lame, I’ll pick my winner. But the true answer is that the best approach depends on who you are
and your project.

For most people, don’t register your controllers as services. It’s simpler, faster to develop, and avoids non-lazily-loaded
service concerns.

So who should register controllers as services? If your team is very comfortable with service-oriented-architecture and your
project is quite large, where it’s a challenge to keep track of what pieces affect other pieces, then it starts to make more
sense. Like with a lot of things in technology, by choosing this path you’re asking to handle more complexity but understand
that the advantageous for you outweigh that concern.

Phew, ok, have fun!

http://pooteeweet.org/blog/1947
http://pooteeweet.org/blog/1947/1962#m1962
http://jmsyst.com/bundles/JMSDebuggingBundle
http://screencast.com/t/J23luaL4Ii
http://pooteeweet.org/blog/1947/1948#m1948

Chapter 8: How to compile .less styles into .css (on any OS)

HOW TO COMPILE .LESS STYLES INTO .CSS (ON ANY OS)HOW TO COMPILE .LESS STYLES INTO .CSS (ON ANY OS)¶¶

From dextervip

Hi, Less language have been growing up a lot but How can I configure assetic manager to compile less css and
rewrite it properly in windows environment?

Answer¶

Note

Special thanks to our very-own Roman on this answer!

We use less in our projects and love it. However, we do have a mixture of operating systems and also had our own issues
getting less to compile properly.

Less is typically compiled by lessc , which is installed from npm (Node Package Manager), which is a part of Node.js. Phew!
Now, none of this is necessarily complicated, but if you’re not familiar with node and node modules, then it can be a blocker.
As the question suggested, this is sometimes even harder on Windows. In fact, Rafael - who asked this question - has his
own problems with exactly this.

So what’s the solution? Our advice: avoid the problem.

What we mean is to avoid the true less and instead use lessphp - a pure PHP implementation of the less compiler. Normally,
I’m a proponent of letting other languages do things they’re good at, but if you’re having issues with normal less, take
advantage of this tool. As an added bonus, lessphp has a built-in filter in Assetic, so using it is simple.

Note

While lessphp is very good, nothing is as good as the real thing and it’s possible that you’ll write valid less code that doesn’t compile
correctly. However, these seem to be edge-cases, so worry about that when it happens.

To install lessphp , just add it to your composer.json file under the require key:

"leafo/lessphp": "~0.3"

Tip

Curious about the ~0.3 version? It’s roughly equivalent to >=0.3,<1.0 and is awesome. See Package Versions for more details.

Next, configure the assetic key on config.yml to activate the filter:

app/config/config.yml
...

assetic:
 filters:
 lessphp:
 file: %kernel.root_dir%/../vendor/leafo/lessphp/lessc.inc.php
 apply_to: "\.less$"

Tip

Unlike most libraries we bring in via Composer, this one does not follow the PSR-0 standard, and actually just contains a single
(useful) file. The file key under assetic filters is built to handle this: the file is required before the filter is used.

https://twitter.com/dextervip
https://twitter.com/Inoryy
http://lesscss.org/
https://github.com/symfony/AsseticBundle/issues/155
http://leafo.net/lessphp/
http://getcomposer.org/doc/01-basic-usage.md#package-versions

Finally, setup the stylesheets in your base layout (or wherever):

{# app/Resources/view/base.html.twig #}
{# ... #}

{% stylesheets filter='lessphp' output='css/main.css'
 'bundles/qaday/less/main.less'
%}
 <link href="{{ asset_url }}" type="text/css" rel="stylesheet" media="all" />
{% endstylesheets %}

Tip

You only need either the apply_to in config.yml or the filter='lessphp' in your template, but not both! With the apply_to option, the
filter is automatically applied to all *.less files.

Woh! That’s it! Assuming you have the use_controller setting on in config_dev.yml , you can just access your page to see it
working. In the background, the main.less file is being processed and the end-CSS is being returned.

You can also dump your assets and see a shiny-new main.css file come out:

php app/console assetic:dump --env=prod

If you ever have any weird issues - especially when playing with your assetic configuration in config.yml , try clearing your
Symfony and browser cache. You don’t normally need to do this, but there are some edge cases in this area where you might
need to.

Tip

If your CSS files begin to load slowly in the dev environment, you may consider turning the use_controller setting to false and
dumping your assets manually with the --watch flag. See Starting in Symfony2 Episode 4

http://knpuniversity.com/screencast/starting-in-symfony2-episode-4-2-1

Chapter 9: Custom Validation, Callback and Constraints

CUSTOM VALIDATION, CALLBACK AND CONSTRAINTSCUSTOM VALIDATION, CALLBACK AND CONSTRAINTS¶¶

From Rafael:

Hi, I am coding one events calendar, It is adding events however how can I validate if the event I am placing does
not conflict time with another one event? I was thinking about entity validation callback but should it be in entity?
or repository? I don’t want to lose symfony validation that display errors on the forms

Answer¶

This is a great question because it touches on a few interesting and related concepts: custom validation, assigning errors,
and the best practices around all of this.

Let’s follow along with your example. Suppose we have an Event entity that looks like this (with some extras, like getter and
setter methods):

// src/KnpU/QADayBundle/Entity/Event.php
namespace KnpU\QADayBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity(repositoryClass="KnpU\QADayBundle\Entity\EventRepository")
 */
class Event
{
 /**
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /** @ORM\Column(name="name", type="string", length=255) */
 private $name;

 /** @ORM\Column(name="startDate", type="datetime") */
 private $startDate;

 /** @ORM\Column(name="endDate", type="datetime") */
 private $endDate;

 // ...
}

I also have a really basic route, controller and form setup which allows the user to create a new Event (check out the code
download to see this). Ok, let’s get to work!

The Callback Constraint¶

The goal is to throw a validation error if the event will conflict with the start and end times of some existing event. There are a
few ways to add custom validation, including the Callback constraint, which executes an arbitrary method in your
model/entity class and lets you apply any custom logic you want:

https://twitter.com/dextervip
http://symfony.com/doc/current/reference/constraints/Callback.html

// src/KnpU/QADayBundle/Entity/Event.php
// ...
use Symfony\Component\Validator\Constraints as Assert;
use Symfony\Component\Validator\ExecutionContextInterface;

/**
 * @Assert\Callback(methods={"checkCustomValidation"})
 */
class Event
{
 // ...

 public function checkCustomValidation(ExecutionContextInterface $context)
 {
 $context->addViolationAt('name', 'Pick a cooler name!');
 }
}

This is my favorite way to handle custom validation because it’s so easy. The problem is that the method lives in your entity.
This means that you don’t have access to the entity manager or any other services. In this case, there’s no way to query to
see if any other event has a conflicting date.

A bit Ugly, but Easy: Callback + constraints¶

Normally, we add validation constraints to our model class (i.e. Event). However, as of Symfony 2.1, additional constraints
can be added directly to the form key using a constraints option. Like with annotations, you can apply constraints to the whole
object, or individual properties.

For simplicity, I’ve built my form in the controller instead of using a form type class. Let’s re-use the Callback validator, but
now tell it to execute a method on my controller when called:

// src/KnpU/QADayBundle/Controller/EventController.php

use Symfony\Component\Validator\Constraints as Assert;
use Symfony\Component\Validator\ExecutionContextInterface;
use KnpU\QADayBundle\Entity\Event;
// ...

public function newAction(Request $request)
{
 $form = $this->createFormBuilder(null, array(
 'data_class' => 'KnpU\QADayBundle\Entity\Event',
 'constraints' => array(
 new Assert\Callback(array($this, 'validateEventDates'))
)
))
 ->add('name', 'text')
 ->add('startDate', 'datetime')
 ->add('endDate', 'datetime')
 ->getForm()
 ;

 // ...
}

And for now, I’ve just put some dummy code into the validateEventDates function, which lives right inside this same class:

// src/KnpU/QADayBundle/Entity/EventController.php
public function validateEventDates(Event $event, ExecutionContextInterface $context)
{
 $context->addViolationAt('startDate', 'There is already an event during this time!');
}

http://symfony.com/doc/current/book/forms.html#creating-form-classes

Phew! Let’s walk through this step-by-step:

1) We eventually want to validate our object based on multiple pieces of data (the startDate and endDate). So instead of
applying a validator to a single field, we apply it to the whole object. This means that when the validateEventDates is called,
the whole Event object is passed to it.

2) To attach validation constraints directly to the form, we use the constraints key and create a new instance of the constraint.
Whether you realized it or not, all those Callback , NotBlank , etc keys that you use every day for validation are each a real
class.

3) When the Callback constraint is executed, it detects that we’re no longer inside the Event class. To help us out, it now
passes our method two arguments: the Event object and the execution context.

Note

The Callback constraint - or any other constraint - can also be applied to just an individual field by adding a third argument to the
add function, which would be an array with a constraints key.

Tip

If your form lives in a form type class, simply add the constraints key to the setDefaulOptions method.

This solution is a bit ugly because it lives in our Controller, so we can’t re-use it or unit test it. We’ll improve that in a second,
but let’s get it working first!

Applying the Validation Logic¶

Now that the callback method lives in the controller, we can easily access the entity manager (or any other service) and run
the queries we need to. And since we are going to be executing some queries, the best place for that logic is in the
EventRepository class:

// src/KnpU/QADayBundle/Entity/EventRepository.php
namespace KnpU\QADayBundle\Entity;

use Doctrine\ORM\EntityRepository;

class EventRepository extends EntityRepository
{
 public function findOverlappingWithRange(\DateTime $startDate, \DateTime $endDate)
 {
 $qb = $this->createQueryBuilder('e');

 return $qb->andWhere('e.startDate < :endDate AND e.endDate > :startDate')
 ->setParameter('startDate', $startDate)
 ->setParameter('endDate', $endDate)
 ->getQuery()
 ->execute()
 ;
 }
}

Great! Now use this function in the callback method in the controller:

http://symfony.com/doc/current/book/forms.html#creating-form-classes

// src/KnpU/QADayBundle/Controller/EventController.php
public function validateEventDates(Event $event, ExecutionContextInterface $context)
{
 $conflicts = $this->getDoctrine()
 ->getRepository('QADayBundle:Event')
 ->findOverlappingWithRange($event->getStartDate(), $event->getEndDate())
 ;

 if (count($conflicts) > 0) {
 $context->addViolationAt(
 'startDate',
 'There is already an event during this time!'
);
 }
}

Tip

If this method lives in your form type class, then you don’t have the entity manager! One option is to pass it in as an option when
creating your form:

$form = $this->createForm(new EventType, null, array(
 'em' => $this->getDoctrine()->getManager()
))

The em option is then available in the buildForm method of the form type class:

public function buildForm(FormBuilderInterface $builder, array $options)
{
 $em = $options['em'];
}

For this to work, make sure to add em to the “defaults” in your form type’s setDefaultOptions method.

If you try it, it works! It’s a bit dirty, but at least our query logic lives in EventRepository . If you were also handling “edits”, you’d
also need to make sure that the result isn’t the exact object being saved. But I’ll leave that to you!

Creating a Proper Custom Validation Constraint¶

There’s nothing wrong with what we have so far, but for the sake of reusability, clean code and unit testing, it can be much
better.

The ultimate solution to custom validation is to create your own constraint. Fortunately, we’ve already done most of the work.
Start by creating a new UniqueEventDate class:

// src/KnpU/QADayBundle/Validator/UniqueEventDate.php
namespace KnpU\QADayBundle\Validator;

use Symfony\Component\Validator\Constraint;

/** @Annotation */
class UniqueEventDate extends Constraint
{
 public function validatedBy()
 {
 return 'unique_event_date';
 }

 public function getTargets()
 {
 return self::CLASS_CONSTRAINT;
 }
}

Yep, this class is so simple it’s silly. Each custom validation constraint is actually two classes: one “Constraint” (seen here)
that holds some options and another “Constraint Validator” (shown next) which does all the work. In fact, you can find these
for the built-in constraints, for example NotBlank and NotBlankValidator .

There are 3 interesting parts to this class:

1) The @Annotation will eventually allow us to reference this constraints in the Event class via, well, annotations.

2) The validatedBy tells Symfony about the “Constraint Validator” that will actually do the heavy lifting. The unique_event_date
string shouldn’t make sense yet - but it’ll be more obvious in a minute.

3) The getTargets method defines whether this constraint can be applied to an entire class, a property, or both. Again, since
we need multiple values on Event in order to make our validation decision, we will apply the constraint to the entire class.

Tip

This example doesn’t use any constraint options. If you do want to see what it looks like to have a constraint that has configurable
options, see the core Email and EmailValidator classes.

Next, create the “Constraint Validator” class:

// src/KnpU/QADayBundle/Validator/UniqueEventDateValidator.php
namespace KnpU\QADayBundle\Validator;

use Symfony\Component\Validator\ConstraintValidator;
use Doctrine\ORM\EntityManager;
use Symfony\Component\Validator\Constraint;

class UniqueEventDateValidator extends ConstraintValidator
{
 private $em;

 public function __construct(EntityManager $em)
 {
 $this->em = $em;
 }

 public function validate($object, Constraint $constraint)
 {
 die('hold on, we\'ll fill finish this in a second...');
 }
}

In a second, we’ll fill this class in and have it do all the validation work. But first, register it as a service and tag it with a
special validator.constraint_validator tag:

src/KnpU/QADayBundle/Resources/config/services.yml
services:
 unique_event_date_validator:
 class: KnpU\QADayBundle\Validator\UniqueEventDateValidator
 arguments:
 - "@doctrine.orm.entity_manager"
 tags:
 -
 name: validator.constraint_validator
 alias: unique_event_date

Note

Make sure this services.yml file is being imported, either by using an imports key in app/config/config.yml or via a Dependency
Injection Extension class (see Episode 3 for more on this).

Notice that the alias we use with the tag corresponds with the value that the Constraint class returns in validateBy . This is

https://github.com/symfony/symfony/blob/2.2/src/Symfony/Component/Validator/Constraints/Email.php
https://github.com/symfony/symfony/blob/2.2/src/Symfony/Component/Validator/Constraints/EmailValidator.php
http://symfony.com/doc/current/reference/dic_tags.html#validator-constraint-validator
http://symfony.com/doc/current/book/service_container.html#importing-configuration-with-imports
http://symfony.com/doc/current/book/service_container.html#importing-configuration-via-container-extensions
http://knpuniversity.com/screencast/starting-in-symfony2-episode-3-2-1

how Symfony knows that the UniqueEventDateValidator is the real muscle behind the UniqueEventDate constraint.

Ok! Before we fill in the logic in the validate method, let’s try this out! The new constraint isn’t magically activated - we
activate it like any other constraint, with annotations (or YAML, if you prefer):

// src/KnpU/QADayBundle/Entity/Event.php
// ...

use KnpU\QADayBundle\Validator\UniqueEventDate;

/**
 * @ORM\Entity(repositoryClass="KnpU\QADayBundle\Entity\EventRepository")
 * @UniqueEventDate()
 */
class Event
{
 // ...
}

When you submit the form, the UniqueEventDate constraint is triggered, and ultimately the UniqueEventDateValidator::validate
method is called. In other words, you’ll see our die statement print.

Ok, let’s finish this! Copy the logic from the controller validateEventDates method and remove it and the constraints option
while you’re there. Paste it into UniqueEventDateValidator::validate and adjust it accordingly:

// src/KnpU/QADayBundle/Validator/UniqueEventDateValidator.php
public function validate($object, Constraint $constraint)
{
 $conflicts = $this->em
 ->getRepository('QADayBundle:Event')
 ->findOverlappingWithRange($object->getStartDate(), $object->getEndDate())
 ;

 if (count($conflicts) > 0) {
 $this->context->addViolationAt('startDate', 'There is already an event during this time!');
 }
}

Let’s walk through the differences:

1) Since we’ve injected Doctrine’s Entity Manager, we can access it and get the EventRepository through $this->em .

2) Since we applied the UniqueEventDate constraint to the Event class, the entire Event object is passed as the first
argument to this method (i.e. $object).

3) The ExecutionContext is stored automatically on the $this->context property.

That’s it! When you re-submit the form, the UniqueEventDate constraint on Event activates this method, which does all the
work.

Through all of this, one nice thing is that we were always in complete control of which field our error was attached to. I chose
to attach the error to the startDate field, but you can use whatever makes sense to you. If you use the addViolation method
instead, the error will be attached to the whole form and displayed at the top:

$this->context->addViolation('There is already an event during this time!');

Ok, start validating!

Chapter 10: How to (dynamically) remove a Form Field

HOW TO (DYNAMICALLY) REMOVE A FORM FIELDHOW TO (DYNAMICALLY) REMOVE A FORM FIELD¶¶

From ThiagoKrug:

Hi, I am reusing one form but I have one specific controller action that I need remove one field form, How can I do
it without creating new form? Thanks!

Answer¶

Note

Special thanks to our very-own Roman on this answer!

Cool question! There are actually multiple ways to achieve this task, ranging from a very simple ->remove() method call to
setting up a form event listener.

Let’s review the two easiest and most common ways.

First, initialize a simple form type with two fields:

// src/KnpU/QADayBundle/Form/Type/RemoveFormFieldType.php
namespace KnpU\QADayBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class RemoveFormFieldType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('first', 'text')
 ->add('second', 'text')
 ;
 }

 public function getName()
 {
 return 'remove_form_field';
 }
}

Next, let’s build the two different controllers that will render this form to show off the two solutions:

https://twitter.com/Inoryy

// src/KnpU/QADayBundle/Controller/RemoveFormFieldController.php
namespace KnpU\QADayBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

use KnpU\QADayBundle\Form\Type\RemoveFormFieldType;

class RemoveFormFieldController extends Controller
{
 public function firstWayAction()
 {
 $form = $this->createForm(new RemoveFormFieldType());

 // form processing...

 return $this->render('QADayBundle:RemoveFormField:form.html.twig', array(
 'form' => $form->createView()
));
 }

 public function secondWayAction()
 {
 // same as firstWayAction() for now
 }
}

Awesome! Now, let’s solve this in 2 different ways.

Option 1: Using remove¶

The most straightforward way to achieve this is by removing the form field you want with the remove function:

public function firstWayAction()
{
 $form = $this->createForm(new RemoveFormFieldType());

 $form->remove('second');

 // form processing...

 return $this->render('QADayBundle:RemoveFormField:form.html.twig', array(
 'form' => $form->createView()
));
}

And that’s it! No changes to RemoveFormFieldType are required at all! And the best part is that this is a perfectly valid
solution, no need to over-think it :).

Option 2: Using Form Options¶

But if you want a more advanced solution with a bit more flexibility, there’s another way!

First, let’s tweak the form type a bit to rely on a custom option passed on initialization:

// src/KnpU/QADayBundle/Controller/RemoveFormFieldController.php
use Symfony\Component\OptionsResolver\OptionsResolverInterface;
// ...

public function buildForm(FormBuilderInterface $builder, array $options)
{
 $builder->add('first', 'text');

 if ($options['use_second']) {
 $builder->add('second', 'text');
 }
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'use_second' => true
));
}

Now, when you create the form, pass the option and you’re ready to go!

public function secondWayAction()
{
 // the "null" option is the form data - you might pass something here
 $form = $this->createForm(new RemoveFormFieldType(), null, array(
 'use_second' => false
));

 return $this->render('QADayBundle:RemoveFormField:form.html.twig', array(
 'form' => $form->createView()
));
}

That’s it! There is also an event dispatching/listening system in the Form component, which allows you to dynamically
add/remove/modify fields based on anything (e.g. user-submitted data). For more information, see How to Dynamically
Modify Forms Using Form Events.

Have fun!

http://symfony.com/doc/current/cookbook/form/dynamic_form_modification.html

Chapter 11: Symfony2: Setup, Configuration, Rad?

SYMFONY2: SETUP, CONFIGURATION, RAD?SYMFONY2: SETUP, CONFIGURATION, RAD?¶¶

From Andy:

As Symfony becomes more powerful and scalable, is that at the expense of being less useful for small rapid
developments - given the large number of dependencies and configuration required on each project? (Setting up
user login, media management, content repository, Gaufrette, admin generator, etc.).

Answer¶

Woh! This is a tough question, but one that certainly affects us every day.

There are probably a lot of ways to tell the story of RAD versus “enterprise”, but let’s look at Symfony. Symfony1 was
basically a port of early Ruby on Rails: convention over configuration, RAD, etc. The goal was to develop things faster, with
less repetition, and the results were revolutionary.

Fast forward 5 years to Symfony2. Short-cuts have been replaced with best-practices and convention replaced with
predictability and explicitness.

The end result is that developing a feature may be faster in symfony1 or something like it. Conversely, that feature is probably
cleaner and more maintainable inside Symfony2 due to better practices and less shortcuts (leading to less wtf moments).

This isn’t the end of the story (keep reading), but it does mean that you need to choose the right tool for the job. If you’re the
only developer on a small project, it might be better to choose Silex or something smaller. If you’re building something more
complex, Symfony2 becomes a more clear winner.

RAD Versus Quality? Both?¶

Symfony1 and other “RAD” PHP frameworks use a lot of bad practices and magic whereas Symfony2 fixes that but is less
RAD out-of-the-box.

So, can we have RAD and high-quality tools.

The answer is a resounding YES, though we’re not totally there yet.

The topic actually came up very recently in a blog post by Lukas Smith called Good design is no excuse for wasting time.
Going back to our history lesson, symfony1 may have been RAD, but its architecture was fundamentally flawed and coupled.
Fixing it meant re-building correctly form the ground-up. This doesn’t mean that we can’t also be RAD, it just means that RAD
tools need to be built on top of Symfony2.

And while it’s true that there’s a lot of integration still to worry about between user management, asset management,
Gaufrette, admin areas, etc, you do have some options, which Lukas points out:

1. KnpRadBundle

A lot of love at Knp has been put into this little project, which takes the Symfony2 framework experience and makes it
opinionated. Things are integrated more naturally and there are plenty of shortcuts. But, it’s still the Symfony2 framework, so
you’re not learning something new, just opting into RAD features.

2. Laravel

Laravel4 is being built on top of Symfony2, and while I haven’t tried it out yet, my impression is that it lowers the Symfony2
learning curve (and I’m assuming also adds some RAD). This is another great example of taking our new solid core and
making it quicker to develop things.

3. Silex

Silex is the micro-framework built on top of Symfony2, which lets you get an application going instantly. It’s not suitable for
everything, and eventually you’ll wish you had more tools, but you’ll get started fast.

http://pooteeweet.org/blog/2205
http://rad.knplabs.com/
http://four.laravel.com/
http://silex.sensiolabs.org/

There are several other things, which provide pieces to complete the puzzle (e.g. SonataAdminBundle, FOSRestBundle), but
more work certainly needs to be done to bring all of these great pieces together into one, harmonic - and more opinionated -
piece. It’s a work-in-progress, but it’s not a reason to not choose Symfony2. In my projects, I choose either the Symfony2
framework (usually with KnpRadBundle) or Silex, depending no the complexity of the app. Because they’re both built in the
same solid core, the learning curve between the two is basically non-existent.

Happy RAD’ing!

http://sonata-project.org/bundles/admin/master/doc/index.html
https://github.com/FriendsOfSymfony/FOSRestBundle

Chapter 12: Complex Symfony2 Examples: Users, Menus,
CMS Features

COMPLEX SYMFONY2 EXAMPLES: USERS, MENUS, CMS FEATURESCOMPLEX SYMFONY2 EXAMPLES: USERS, MENUS, CMS FEATURES¶¶

From pieter lelaona:

It’s been very difficult to find examples of applications and explanations actually implement symfony2 framework.
e.g.

1. how to create a complete multi-user management with an ACL that retrieves data from a database and
integrated with the menus link, filter data, and dynamic multi-role and permission

2. best project skeleton in symfony2 framework.
3. create a dynamic system such as the theme cms wordpress, drupal, joomla, etc

This is a small part of what many people, especially in my country (Indonesia) want to learn more about the
Symfony2 framework. what do you think??

Answer¶

Hi Pieter! As you know, Symfony2 isn’t a CMS but contains all the tools needed to create any system of any complexity that
you want. However, for complex systems like you’re describing, there are ultimately many pieces that need to be integrated
to get this all working.

This is a huge topic, but let’s go through your questions and clarify the best way to approach each.

1) Multi-user system with ACLs, Menus and Filtering¶

This is still a huge topic, so let’s break it down even further:

a. Multi-User systems
b. ACL’s
c. Menus
d. Filtering

Multi-User Systems¶

Creating multi-user systems that load user and permission information from the database is easy in Symfony2. Depending on
your preference, you will probably either use the popular FOSUserBundle or implement this yourself by following our How to
load Security Users from the Database cookbook entry.

In either case, creating a system with “groups” and “permissions” is very possible, where a user belongs to many groups and
each group has a sub-set of permissions. In Symfony’s point-of-view, each user ultimately has an array of “roles”, which are
returned by your User object’s getRoles function. You can use whatever logic you want to return these, including referencing
“groups” and “permissions” database relationships.

In fact, Groups Functionality is available in FOSUserBundle out-of-the-box. This works simply because their base User
object calculates its roles by aggregating all of the roles (or permissions) across all of the groups:

https://github.com/FriendsOfSymfony/FOSUserBundle
http://symfony.com/doc/current/cookbook/security/entity_provider.html
https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/Resources/doc/groups.rst

public function getRoles()
{
 $roles = $this->roles;

 foreach ($this->getGroups() as $group) {
 $roles = array_merge($roles, $group->getRoles());
 }

 // we need to make sure to have at least one role
 $roles[] = static::ROLE_DEFAULT;

 return array_unique($roles);
}

You can do the same thing - or whatever complex logic you want - to determine the roles that a user should have.

ACL’s¶

This is a very common question, and my answer might be surprising.

Symfony2 has built-in ACL functionality, which I never use. I’m sure it has its use-cases, but each time that I talk to someone
that wants to use Symfony’s ACL’s, what they really need is a voter.

What’s a voter? I’m glad you asked! First, let’s look at one way to enforce security from within a controller:

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...

public function indexAction()
{
 $securityContext = $this->container->get('security.context');
 if (!$securityContext->isGranted('ROLE_USER')) {
 throw new AccessDeniedException('Get outta here!');
 }
}

On the surface, isGranted simply checks to see if the current user has this role and returns true or false . But behind the
scenes, Symfony passes ROLE_USER (called an “attribute”) to a number of “voters” and asks each to “vote” on whether or not
the current user should be “granted” ROLE_USER .

And while it’s technically possible for two voters to vote on a single attribute and disagree with each other, life is much
simpler in reality. Symfony2 comes with 3 voters by default:

1) RoleVoter Votes only if the attribute starts with ROLE_ and checks to see if the current user has this exact attribute as a
role.

2) RoleHierarchyVoter Votes only if the attribute starts with ROLE_ and checks to see if the user has this role by using the
role hierarchy.

3) AuthenticatedVoter Votes only if the attribute is IS_AUTHENTICATED_FULLY , IS_AUTHENTICATED_REMEMBERED or
IS_AUTHENTICATED_ANONYMOUSLY .

So what happens if we invent a new type of attribute that none of these voters “votes” on?

http://symfony.com/doc/current/cookbook/security/acl.html
https://github.com/symfony/symfony/blob/2.2/src/Symfony/Component/Security/Core/Authorization/Voter/RoleVoter.php
https://github.com/symfony/symfony/blob/2.2/src/Symfony/Component/Security/Core/Authorization/Voter/RoleHierarchyVoter.php
http://symfony.com/doc/current/book/security.html#hierarchical-roles
https://github.com/symfony/symfony/blob/2.2/src/Symfony/Component/Security/Core/Authorization/Voter/AuthenticatedVoter.php

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...

public function indexAction()
{
 $securityContext = $this->container->get('security.context');
 if (!$securityContext->isGranted('CONTENT_EDIT')) {
 throw new AccessDeniedException('Get outta here!');
 }
}

In this case, none of the existing voters will vote on CONTENT_EDIT . You won’t get an error: isGranted will silently return
false (by default). This is significant - as we’ll see in a moment - because we can create our own voters that respond on
these new attributes.

One other commonly-unknown property of isGranted is that there’s a second argument, which is any type of “object”:

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...

public function showAction($slug)
{
 $post = // query for a Post object using the $slug

 $securityContext = $this->container->get('security.context');
 if (!$securityContext->isGranted('CONTENT_EDIT', $post)) {
 throw new AccessDeniedException('Get outta here!');
 }
}

When you do this, each “voter” is passed the object. This is very important because it means that your custom voter can make
its access decision based off of a specific piece of data. This is typically what you think of when you talk about ACL: the
ability to say that “this user” has access to “edit” some “object”. In Symfony2, you can leverage a custom voter to use
whatever complex business logic you have to determine this.

This is a somewhat shortened version of this topic, but there is a cookbook article on creating voters. However, you’ll do
several things differently in your implementation:

Invent your own attributes - like CONTENT_EDIT and CONTENT_DELETE and make your voter only respond to those.
Use the $object argument passed to your vote function. You may then need to determine what type of object it is (e.g.
is this a blog post? A user object?) and use any business rules you have (querying some database relationships) to
determine if access should be granted.
You will not need to change the “Access Decision Strategy”.

I hope this at least gives you some direction on using ACL’s without ACL’s in Symfony2! The big disadvantage to this
method is performance. But since the solution is so much more natural than ACL’s, you should worry about this later when
it’s an issue. You can always cache the decisions you’re making, which is very similar to what true ACL’s do in the database.

Menus¶

If you’re building complex menus in Symfony2, then you should be using KnpMenuBundle.

This bundle allows you to build your menus inside a PHP class. This is really important because it means that you can do
whatever you want when determining which menu items to show or not show for a user.

Let’s start with example that’s directly from the KnpMenuBundle Documentation:

http://symfony.com/doc/current/cookbook/security/voters.html
https://github.com/KnpLabs/KnpMenuBundle
https://github.com/KnpLabs/KnpMenuBundle/blob/master/Resources/doc/index.rst#create-your-first-menu

// src/Acme/DemoBundle/Menu/Builder.php
namespace Acme\DemoBundle\Menu;

use Knp\Menu\FactoryInterface;
use Symfony\Component\DependencyInjection\ContainerAware;

class Builder extends ContainerAware
{
 public function mainMenu(FactoryInterface $factory, array $options)
 {
 $menu = $factory->createItem('root');

 $menu->addChild('Home', array('route' => 'homepage'));
 $menu->addChild('About Me', array(
 'route' => 'page_show',
 'routeParameters' => array('id' => 42)
));
 // ... add more children

 return $menu;
 }
}

To conditionally show the About Me link, we can wrap it in a call to the isGranted function:

$securityContext = $this->container->get('security.context');
if (!$securityContext->isGranted('ROLE_ADMIN')) {
 $menu->addChild('About Me', array(
 'route' => 'page_show',
 'routeParameters' => array('id' => 42)
));
}

Remember also that you can use your own custom attributes here that hook up to your own custom voters. There are
certainly more complex things beyond this, but it will always mean using your voters to determine which entries should be
shown.

Filtering¶

The last piece of all of this is how we filter data based on the user’s permissions. Unfortunately, this works much differently
than voters where you start with an object and then determine if the user has some sort of permissions to operate on that
object.

One way or another, the solution is one that comes down to writing good repository methods that filter your data properly. For
example, suppose that you have a Post entity with a ManyToMany relationship to User that stores all of the users that have
access to edit this blog post:

// src/KnpU/QADayBundle/Entity/Post.php
// ...

/**
 * @ORM\ManyToMany(targetEntity="User")
 */
protected $admins;

In this case, a custom repository method should be added to PostRepository to fetch all of the blog posts that this user can
edit:

// src/KnpU/QADayBundle/Entity/PostRepository.php
// ...

public function findAllEditableByUser(User $user)
{
 // query for all Post objects that have a Post.admins join to this User
}

This can be used from within your controller and a related (more efficient) version could also be used inside your custom
voter to determine if a user has access to edit one specific blog post. These two repository functions can share most of their
logic to avoid any duplication.

In other words, there’s no magic to do all of this, but the solution is quite straightforward. By leveraging well-built repository
methods, we can re-use that logic in both our custom voters (when determining if a user has access to do something with an
object) and in a controller (to get a list of all the items a user has access to).

2) Best Project Skeleton for Symfony2¶

Symfony2 uses “distributions”, which are like pre-started projects using the Symfony2 framework. In theory, there could be a
lot of these, though in practice, there aren’t very many that I’m aware of. Your best option is to start with the Symfony
Standard Edition, which can be downloaded at Symfony.com.

If you’ve started a few projects with Symfony, and they always look the same, then you might even create your own
distribution. A distribution is nothing more than a Symfony2 “project” at some state. In other words, if you start with the
Symfony2 Standard Distribution, delete the AcmeDemoBundle, then install and configure a few bundles that you like, then
you’ve just created your very own project skeleton. This is a great option for people that start a lot of Symfony2 projects.

3) Dynamic systems and themes like a CMS¶

This is also a huge topic, but we can at least link to various resources related to this.

On the “CMS” side of things (particularly content storage), take a look at the Symfony CMF project. This is not meant to be a
CMS - if you need something like a CMS, I recommend using an actual CMS, like Drupal. Instead, it’s all about standardizing
how content is stored.

If you’re looking for “theming” functionality, that’s also very possible in Symfony2 due to its flexibility. One great bundle for this
- which may work for you or at least serve as an example - is LiipThemeBundle.

That’s a rushed explanation of a huge question, but hopefully it gives you some things to look into!

Cheers!

http://symfony.com/download
http://cmf.symfony.com/
https://github.com/liip/LiipThemeBundle

Chapter 13: Symfony2: Organizing your Business Logic into
Models

SYMFONY2: ORGANIZING YOUR BUSINESS LOGIC INTO MODELSSYMFONY2: ORGANIZING YOUR BUSINESS LOGIC INTO MODELS¶¶

From Audrius

As Symfony is Request/Response rather than MVC framework what is best (business/developer ratio) structure to
implement model layer into Symfony applications.

Lets say you have a lot of business logic inside your application, or porting normal MVC application to Symfony,
what is best way (in your opinion) to organize structure for applications? All business logic goes into services?
Fat controllers? Any other solutions?

Answer¶

As Audrius correctly points out, Symfony2 isn’t actually an MVC framework, nor does it want to be. Symfony2 is all about
converting a “request” into a “response”. Behind the scenes it uses a simple routing -> controller setup. Using templates, or
creating a rich service-oriented-architecture is totally optional and up to you. You can even create your own classic view
layer if you want to.

This means that you have a lot of flexibility on how to organize things. But in my opinion, the answer is simple: create a
service-oriented architecture where all your business logic lives in services. This means having “skinny” controllers and
a “fat” model. There will of course be edge-cases, but this is almost always the best way to organize things.

Tip

If any of this “skinny controllers” and “fat” models is new to you, check out our free Dependency Injection screencast.

But this isn’t a hard rule. Having a perfectly-organized service layer is something to strive towards, but not something that’s
always easy - or even good - in the real world. If you’re trying to quickly prototype something, for example, then creating
services is probably not as good as putting the logic directly in your controller. In fact, you might even argue that logic should
live in the controller unless you’re going to unit test it or until you need to re-use it.

In other words, the goal is to put your logic in services. Balance that with the real-world requirements of getting things done
quickly to compromise between developing quickly and having clean maintainable code. Adding a lot of logic to your
controller is a perfect example of Technical Debt, which is a natural part of the development process.

Cheers!

https://twitter.com/shivas80
http://knpuniversity.com/screencast/dependency-injection/container#skinny-controllers-and-service-oriented-architecture
http://symfony.com/doc/current/components/http_kernel/introduction.html#the-kernel-view-event
http://knpuniversity.com/screencast/dependency-injection
http://en.wikipedia.org/wiki/Technical_debt

Chapter 14: Conditionally Requiring a Form Field in Symfony2

CONDITIONALLY REQUIRING A FORM FIELD IN SYMFONY2CONDITIONALLY REQUIRING A FORM FIELD IN SYMFONY2¶¶

From David

Is there a sane way with the form layer and a custom form type to determine if a field is required based on the
actual content that is bound to it? I hacked up this gist which i hope shows the idea:

https://gist.github.com/dbu/5142035

Answer¶

If you don’t know David, he’s a fantastic developer who works at Liip and spends a lot of time working with the Symfony CMF
project. So, when I saw a question from him, I knew it would be tough! Depending on exactly what you’re trying to do, this
may or may not have a great solution, but we’ll learn a lot about building form fields, events and form configuration along the
way.

This question is all about being able to dynamically modify a form field after its already been built. Typically, this is done by
using a form event and looks something like this:

class AddressType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 // ...
 ->add('country', 'count', array(...))
 ;

 $builder->addEventListener(
 FormEvents::PRE_BIND,
 function(FormEvent $event) use($factory){
 $data = $event->getData();
 $form = $event->getForm();

 $country = $data['country'];
 $form->add('state', 'choice', array(
 'choices' => array() // build state choices from country
))
 }
);
 }
}

Note

This example is a little incomplete. See How to Dynamically Modify Forms Using Form Events.

In this case, the state field isn’t built initially: it waits until the form data is set and then is built based off of the value of the
country field.

David’s example is a little bit more difficult. In the above example, your “form” is modifying a child field. However in David’s
example, a field is modifying itself.

To see the problem - and talk about possible and impossible solutions - let’s start with a custom form type that extends the
built-in file type:

https://twitter.com/dbu
https://gist.github.com/dbu/5142035
http://cmf.symfony.com/
http://symfony.com/doc/current/cookbook/form/dynamic_form_modification.html
http://symfony.com/doc/current/cookbook/form/dynamic_form_modification.html

// src/KnpU/QADayBundle/Form/Type/ImageType.php
namespace KnpU\QADayBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class ImageType extends AbstractType
{
 public function getName()
 {
 return 'my_image';
 }

 public function getParent()
 {
 return 'file';
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'required' => true,
));
 }
}

This isn’t very interesting yet, and defines a new field type that looks and acts just like the normal file type. We’ve made it
always default to required , which is actually the default behavior.

Making a field conditionally-required¶

Right now, the field is always required. Our goal is to make it only required if the base object that it’s attached to is “unsaved”.
If you imagine we’re creating an Event that has an image, then the user should be required to upload the image when
creating the event, but then not required when editing later.

But first, what exactly does the required option do? In fact, it has nothing at all to do with server-side validation, which is
handled by an entirely different mechanism (and that would also need to be adjusted to meet our end-goal). The required
option is used in exactly two places by default:

1) It controls the required form view variable, which determines whether or not the HTML5 required attribute should be used
on the field.

2) It’s used in the default implementation of the empty_data option. When a form or field has no data, this option is used to
give it data. Typically the empty data is either an empty string or an empty array() . But if your field or form has a data_class
option, then something different happens. If required is true, the “empty data” is a new instance of the object specified in
data_class . If it’s false , then your empty data is simply null.

In this example, we don’t really care about the second usage (though it’s really interesting!): we simply want to prevent the
required attribute from printing.

The easiest way to do this is by overriding the buildView method in your custom field:

// src/KnpU/QADayBundle/Form/Type/ImageType.php
use Symfony\Component\Form\FormView;
use Symfony\Component\Form\FormInterface;
// ...

public function buildView(FormView $view, FormInterface $form, array $options)
{
 if ($form->getParent()->getData()->getId()) {
 // this is not new, so make it not required
 $view->vars['required'] = false;
 }
}

http://symfony.com/doc/2.1/reference/forms/twig_reference.html#twig-reference-form-variables
https://github.com/symfony/symfony-docs/pull/2415/files#diff-cd77711e4dce85be889ebba14db0ba41
http://symfony.com/doc/current/book/forms.html#book-forms-data-class

But before you run and put this in your project, let’s talk about several big assumptions that this makes:

1) This assumes that your field has been added to a form with a data_class option. The $form->getParent()->getData() would
then return that object.

2) This assumes that this parent object has a getId function, and that calling it is the correct way of checking whether or not
the field should be required.

These may vary in your project, and you might even choose to make them configurable in some way.

A solution that doesn’t work: Event Listeners¶

Let’s also talk about one solution that does not work in this case: form event listeners. Typically, an event listener is used
when you want to modify a form field based on some data - often the underlying data in the form itself. This actually sounds
like exactly what we want, so let’s try a simple example (which is basically taken from the gist mentioned in David’s
question):

use Symfony\Component\Form\FormEvents;
use Symfony\Component\Form\FormEvent;
// ...

class ImageType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->addEventListener(
 FormEvents::PRE_SET_DATA,
 array($this, 'determineRequired')
);
 }

 public function determineRequired(FormEvent $event)
 {
 $imageForm = $event->getForm();

 if (!$imageForm->getParent()->getData()->getId()) {
 /** @var $formConfig FormBuilderInterface */
 $formConfig = $imageForm->getConfig();

 $formConfig->setRequired(true);
 }
 }
}

Sadly, this does not actually work. As soon as you call setRequired , you’ll see the following error:

FormConfigBuilder methods cannot be accessed anymore once the builder is turned into a FormConfigInterface
instance.

That’s a bit technical, and relates to how we configure “form builders” and eventually those are used to create the true “Form”
object. In this case, it’s just too late to do this. The key difference between this and a normal “form events” example is that this
field is trying to modify itself, whereas usually an entire form will use an event to modify a child field. It turns out that in
practice, this seems to make a huge difference.

But this does at least show a few interesting things about the low-level life of a form. First, many of the options that you pass
when building a form field are ultimately available on the final Form object. Often, these are actually stored on a
FormConfigInterface object, accessible via $form->getConfig() :

$config = $form->getConfig();

But since this solution doesn’t actually work, your best method - unless there’s a solution hiding somewhere - is to find out
what behavior the required option causes, and change that behavior directly. Earlier, we did exactly that by modifying the
required form view variable which controls the HTML5 required attribute.

https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/FormConfigInterface.php

Happy forming!

Chapter 15: Symfony2 Security, Firewalls and Dinosaurs

SYMFONY2 SECURITY, FIREWALLS AND DINOSAURSSYMFONY2 SECURITY, FIREWALLS AND DINOSAURS¶¶

From Gerard Araujo:

What is a typical/ideal bundle and firewall structure for symfony 2 for a project with the following basic
requirements:

frontend [public]
frontend [for logged in]
backend [for admin]

... and a few entities that are owned by users like books, media, category...

1. assuming i use fosuserbundle, should i have at least 2 bundles (1 for fos extension) ? more than 2? or only 1?
what advantage/disadvantage to i get with each option?

2. is one firewall sufficient? what if i need different login routes?

3. how many dinosaurs does it take to replace a lightbulb?

Answer¶

Hi Gerard! Uh oh, a security question!

... ryan runs away...

Actually, this should be pretty painless. The security component in Symfony2 sometimes suffers from being so flexible that
it’s not clear how to configure it. Let’s try to clarify a bit.

1) FOSUserBundle and Number of Bundles in my Project¶

This has nothing to do with security, but is a common question: how many bundles should I have and how do I know when I
need to create a new bundle? In this case, Gerard is using FOSUserBundle and is wondering how to organize the bundles in
his project. In your project, you will need a bundle for “User” functionality like your User entity, templates that override
FOSUserBundle templates, etc etc.

As Gerard is eluding to, when you want to override pieces of a vendor bundle, there are typically two strategies:

1) Placing files in the app directory in a specific organization to override some files from a vendor bundle
(http://symfony.com/doc/current/book/templating.html#overriding-bundle-templates)

2. Using bundle inheritance.

In the second strategy, you would create a UserBundle (or AcmeUserBundle depending on your “vendor” namespace), set its
parent to FOSUserBundle , then begin overriding things.

But let’s step back for a second. On a philosophical level, how many bundles should our project have? 1? 5? 50? The
answer - like with anything - is up to you. However, don’t fool yourself by thinking that you can separate your features into
totally standalone, decoupled bundles. In reality, your bundles will be totally coupled to each other and often times it won’t be
clear exactly which bundle some piece of functionality should live in. And that’s ok! We’re building one application with one
codebase: not an open-source library.

The point is this: don’t create new bundles each time you have a new idea. Try to keep your total number of bundles low, and
create a new bundle only wen you feel that things are getting crowded.

In our example, I would create a UserBundle in my project, because I personally really like the “bundle inheritance” strategy
for overriding parts of a vendor bundle. And because I did this, I would put all my user stuff in here (I wouldn’t create yet
another bundle for user stuff that doesn’t relate to FOSUserBundle).

https://github.com/FriendsOfSymfony/FOSUserBundle
http://symfony.com/doc/current/book/templating.html#overriding-bundle-templates
http://symfony.com/doc/current/cookbook/bundles/inheritance.html

Beyond that, it’s up to you. You might choose to create only one other bundle and put everything into it or create several other
bundles. Just don’t go overboard.... trust me!

2) Number of Firewalls¶

One firewall is enough.

I can say this almost regardless of what your project looks like. We talk a lot about firewalls and organization in Starting in
Symfony2 Episode 2 and while there are good use-cases for multiple firewalls, they’re not very common. Legitimate reasons
include:

1) You only use security for one part of your site, that part of your site lives under a specific URL pattern (e.g. /admin), and
you’re very very worried about the small performance hit that loading the security system will cause on every page outside of
this section.

2) You have an API that authenticates in a completely different way than your frontend, user data is loaded from a different
source, and the API is also only accessible under a very specific URL pattern (e.g. /api).

Having multiple firewalls can cause a lot of extra work and confusion. If you have a “frontend” and an “admin” section, my
advice is to have only one firewall, load users all from the same source (e.g. from the same database table), then control
access to different users and areas of your sites via roles and access controls. This will make you much happier :).

3) How many dinosaurs does it take to replace a lightbulb?¶

I watched Jurassic Park last night to research this question, but no light bulbs! But I can say that it only takes one dinosaur to
open a door... and then bad things happen.

Cheers!

http://knpuniversity.com/screencast/starting-in-symfony2-episode-2-2-1

Chapter 16: Training: The Hardest Part

TRAINING: THE HARDEST PARTTRAINING: THE HARDEST PART¶¶

From our friend John Kary:

When conducting trainings, what is the biggest challenges new Symfony2 developers faced, and how have you
helped them overcome them?

Answer¶

One of the most interesting and rewarding parts of my job is traveling around and training developers in Symfony2 and
Behat. I’ve worked with developers from all sort of background - including people new to PHP and people that have used
symfony1 for years.

Usually a training lasts for 2-3 days where we build a real project in Symfony2. I walk around, ask leading - or misleading :) -
questions, then let the trainees use their own smartness to code, research, and make mistakes.

It’s always an awesome experience for everyone, except, for the first half of the first day. The biggest challenge that new
developers face is in the first 4 hours of being introduced to Symfony2. It’s also - paradoxically - the part where we do the
easiest things.

The reason is the sheer number of small things that you learn in those first 4 hours. None of them are hard, but it can be
overwhelming:

Namespaces?
Composer?
What is the standard distribution?
Bundles?
Remove Acme what? in AppKernel what?
Why am I editing these random config files? routing_dev.yml? routing.yml?
What’s a route? Why does it live here?
Why am I creating a DefaultController class?
The app directory? src directory? Bundle directory? Lots of directories!?
What is this ::base.html.twig file?
Wait, so MyBundle:Default:index is different than MyBundle:Default:index.html.twig ?

And for the first 4 hours, you learn these all at once. It’s also the time where you see the most “Symfony’isms”: things that are
perfectly specific to the Symfony framework. For example, while “routing” is a generic concept common to all frameworks, the
MyBundle:Default:index controller sytnax is totally form Symfony.

The good news is that by the end of the first day, this is all ancient history. By diving in and getting hands-on with the code,
we spend the rest of the training peeling the layers off of Symfony, discovering what’s really going on, how you can take
complete control, and more advanced features.

During the first 4 hours, you might be thinking: “I don’t know what’s going on, I’m just blindly following these directions”. And
while I wish this could be easier - learning something new isn’t always simple. But with patience and perseverance, we
always get through it and come running out the other side.

By the end of a few days, you’re bored with Symfony, because you’ve peeled back all its layers.

And that’s really exciting.

https://twitter.com/johnkary
http://knplabs.com/training/symfony2
http://knplabs.com/training/behat

	Question and Answer Day: March 27th, 2013
	With <3 from SymfonyCasts
	Chapter 1: Ask Questions!

	ASK QUESTIONS!¶
	Chapter 2: More on Routing And Dependency Injection Parameters

	MORE ON ROUTING AND DEPENDENCY INJECTION PARAMETERS¶
	Answer¶
	Using a Parameter as part of the routing Path¶
	Extra Credit: Where does this Magic Happen?¶
	Why isn’t this Slow?¶
	Modifying Routes On-the-fly¶

	Chapter 3: How to use Behat and Selenium on Travis CI

	HOW TO USE BEHAT AND SELENIUM ON TRAVIS CI¶
	Answer¶
	1) Installing a Web Server (e.g. Apache)¶
	2) Give yourself a VirtualHost¶
	3) Composer! And all the other Stuff¶

	4) App-specific Stuff¶
	5) The Selenium Magic¶

	6) Running your tests¶
	7) Other Issues and Improvements?¶
	GitHub API Rate Limit¶

	8) Celebrate!¶
	Chapter 4: Creating your very own Composer Package

	CREATING YOUR VERY OWN COMPOSER PACKAGE¶
	Answer¶
	Step 1: Put your Library on GitHub¶

	Step 2: Give your Library a composer.json File¶
	Step 3: Registering with Packagist¶
	Chapter 5: Swiftmailer Spooling and Handling Failures

	SWIFTMAILER SPOOLING AND HANDLING FAILURES¶
	Answer¶
	How Emails are File Spooled¶
	How Swift Mailer handles Failures¶
	Failures, Failures Blocking Everything!¶
	The Solution?¶
	Chapter 6: How to handle dynamic Subdomains in Symfony

	HOW TO HANDLE DYNAMIC SUBDOMAINS IN SYMFONY¶
	Answer¶
	1) The VirtualHost¶
	2) Create the Site Entity¶
	3) Finding the current Site the “Easy” Way¶
	4) The Site Manager¶
	5) Determining the Site automatically with an Event Listener¶
	Chapter 7: Symfony2: Make my Controllers Services?

	SYMFONY2: MAKE MY CONTROLLERS SERVICES?¶
	Answer¶
	A Case for Services¶
	Injecting the Container - without the Base Controller¶
	Creating a Controller as a Service¶

	Comparing the two approaches: A case for Services¶
	To Service or not Service?¶
	Chapter 8: How to compile .less styles into .css (on any OS)

	HOW TO COMPILE .LESS STYLES INTO .CSS (ON ANY OS)¶
	Answer¶
	Chapter 9: Custom Validation, Callback and Constraints

	CUSTOM VALIDATION, CALLBACK AND CONSTRAINTS¶
	Answer¶
	The Callback Constraint¶
	A bit Ugly, but Easy: Callback + constraints¶
	Applying the Validation Logic¶

	Creating a Proper Custom Validation Constraint¶
	Chapter 10: How to (dynamically) remove a Form Field

	HOW TO (DYNAMICALLY) REMOVE A FORM FIELD¶
	Answer¶
	Option 1: Using remove¶
	Option 2: Using Form Options¶
	Chapter 11: Symfony2: Setup, Configuration, Rad?

	SYMFONY2: SETUP, CONFIGURATION, RAD?¶
	Answer¶
	RAD Versus Quality? Both?¶
	Chapter 12: Complex Symfony2 Examples: Users, Menus, CMS Features

	COMPLEX SYMFONY2 EXAMPLES: USERS, MENUS, CMS FEATURES¶
	Answer¶
	1) Multi-user system with ACLs, Menus and Filtering¶
	Multi-User Systems¶
	ACL’s¶
	Menus¶
	Filtering¶

	2) Best Project Skeleton for Symfony2¶
	3) Dynamic systems and themes like a CMS¶

	Chapter 13: Symfony2: Organizing your Business Logic into Models

	SYMFONY2: ORGANIZING YOUR BUSINESS LOGIC INTO MODELS¶
	Answer¶
	Chapter 14: Conditionally Requiring a Form Field in Symfony2

	CONDITIONALLY REQUIRING A FORM FIELD IN SYMFONY2¶
	Answer¶
	Making a field conditionally-required¶
	A solution that doesn’t work: Event Listeners¶

	Chapter 15: Symfony2 Security, Firewalls and Dinosaurs

	SYMFONY2 SECURITY, FIREWALLS AND DINOSAURS¶
	Answer¶
	1) FOSUserBundle and Number of Bundles in my Project¶
	2) Number of Firewalls¶
	3) How many dinosaurs does it take to replace a lightbulb?¶

	Chapter 16: Training: The Hardest Part

	TRAINING: THE HARDEST PART¶
	Answer¶

