
Cosmic Coding with Symfony 7

Chapter 1: Setting up our Symfony App

Welcome to the first Symfony 7 tutorial! My name is Ryan - I live here in the fantasy world of

Symfonycasts and... I am beyond excited to be your guide through this series all about Symfony,

web development... bad jokes... space animations, and most importantly, building real things we

can be proud of. For me, it feels like I'm the lucky person that gets to give you a personal tour of

the Enterprise... or whatever nerdy thing gets you most excited.

And that's because, I love this stuff. Bootstrapping databases, building beautiful user interfaces,

writing high-quality code... it gets me out of bed in the morning. And Symfony is the best tool to

do all of this... and become a better developer along the way.

And that's really my goal: I want you to enjoy all of this as much as I do ... and to feel

empowered to build all the amazing things you have floating around in your mind.

What Makes Symfony Special

Now, one of my favorite things about teaching Symfony is that our project is going to start tiny.

That makes it easy to learn. But then, it'll scale up automatically as we need more tools via a

unique recipe system. Symfony is actually a collection of over 200 small PHP libraries. So that's

a ton of tools... but we get to choose what we need.

Because, you might be building a pure API... or a full web app, which is what we'll focus on in

this tutorial. Though, if you are building an API, follow the first few tutorials in this series, then

pop over to our API Platform tutorials. API Platform is a mind-blowingly fun & powerful system

for making APIs, built right on top of Symfony.

Symfony is also blazingly fast, has long-term support versions and works a lot on creating a

delightful developer experience while keeping to programming best-practices. This means we

get to write high-quality code and still get our work done quickly.

Ok, enough of me gushing about Symfony. Ready to get to work? Then beam aboard.

Installing the Symfony Binary

And head over to https://symfony.com/download. This page has instructions on how to

download a standalone binary called symfony . Now this is not Symfony itself... it's just a little

tool that'll help us do things, like start new Symfony projects, run a local web server or even

deploy our app to production.

Once you've downloaded and installed it, open a terminal and move into any directory. Check

that the symfony binary is ready to go by running:

symfony --help

It's got a bunch of commands, but we'll just need a few. Before we start a project, also run

symfony check:req

which stands for check requirements. This makes sure that we have everything on our system

needed to run Symfony, like PHP at the correct version and some PHP extensions.

Once this is happy, we can start a new project! Do it with symfony new and then a directory

name. I'll call mine starshop . More on that later.

symfony new starshop

This will give us a tiny project with only the base things installed. Then, we'll add more stuff little-

by-little along the way. It's gonna be great! But later, when you feel comfortable with Symfony, if

you want to get started more quickly, you can run the same command, but with --webapp to get

a project with much more stuff pre-installed.

Anyway, move into the directory - cd starshop - then I'll type ls to check things out. Cool!

We'll get to know these files in the next chapter, but this is our project... and it's already working!

Starting the symfony Web Server

https://symfony.com/download

To see it working in a browser, we need to start a web server. You can use any web server you

want - Apache, Nginx, Caddy, whatever. But for local development, I highly recommend using

the symfony binary we just installed. Run:

symfony serve

The first time you do this, it might ask you to run another command to set up an SSL certificate,

which is nice because then the server supports https.

And... bam! We have a new web server for our project running at https://127.0.0.1:8000. Copy

that, spin over to your most favorite browser, paste and... welcome to Symfony 7! That's what I

was going to say!

Next, let's sit down, order some Earl Grey tea, and become friends with every file in our new

app... which isn't very many.

https://127.0.0.1:8000/

Chapter 2: Getting to Know our Tiny Project

Sprint back to your command center (aka terminal). This first tab is running the web server. If

you need to stop it, press Ctrl-C... then restart it with:

symfony serve

 Tip

You can use symfony serve -d to run the command in the "background" so that you can

continue using this terminal tab.

We'll leave that alone and let it do its thing.

Our Project's 15 Files

Open a second terminal tab in the same directory. When we ran the symfony new command, it

downloaded a tiny project and initialized a Git repository with an initial commit. That was super

nice! To see our files, I'm going to open this directory in my favorite editor: PhpStorm. More on

this editor in a few minutes.

Right now, I want you to notice just how small our project is! To see the full list of committed

files, back at your terminal, run:

git ls-files

Yea, that's it. Only about 15 files committed to git!

Where's Symfony?

So then... where the heck is Symfony? One of our 15 files is especially important:

composer.json .

composer.json

1
 // ... lines 2 - 5
6
7
8
9

10
11
12
13
14
15
16
 // ... lines 17 - 70
71

Composer is the package manager for PHP. Its job is simple: read the package names under

this require key and download them. When we ran the symfony new command, it

downloaded these 15 files and also ran composer install . That downloaded all of these

packages into the vendor/ directory.

So where is Symfony? It's in vendor/symfony/ ... and we're already using about 20 of its

packages!

Running Composer

The vendor/ directory is not committed to git. It's ignored thanks to another file we started with:

.gitignore .

{

 "require": {
 "php": ">=8.2",
 "ext-ctype": "*",
 "ext-iconv": "*",
 "symfony/console": "7.0.*",
 "symfony/dotenv": "7.0.*",
 "symfony/flex": "^2",
 "symfony/framework-bundle": "7.0.*",
 "symfony/runtime": "7.0.*",
 "symfony/yaml": "7.0.*"
 },

}

.gitignore

1
2
3
4
5
6
7
8
9

10

This means that if a teammate clones our project, they will not have this directory. And that's

okay! We can always repopulate it by running composer install .

Watch: I'll right-click and delete the entire vendor/ directory. Gasp!

If we try our app now, it's busted. Bad feels! To fix it & save the day, at your terminal, run:

composer install

And... presto! The directory is back.... and over here, the site works again.

The 2 Directories you Care About

Looking back at our files, there are only two directories that we even need to think about. The

first is config/ : this holds... configuration! We'll learn about what these files do along the way.

The second is src/ . This is where all your PHP code will live.

And that's really it! 99% of the time you're either configuring something or writing PHP code.

That happens in config/ & src/ .

What about the other 4 directories? bin/ holds a single console executable file that we'll try

out soon. But we're never going to look at or modify that file. The public/ directory is known as

your document root. Anything you put here - like an image - will be publicly accessible. More

about that stuff later. It also holds index.php .

###> symfony/framework-bundle ###
/.env.local
/.env.local.php
/.env.*.local
/config/secrets/prod/prod.decrypt.private.php
/public/bundles/
/var/
/vendor/
###< symfony/framework-bundle ###

public/index.php

1
2
3
4
5
6
7
8
9

This is known as your "front controller": it's the main PHP file that your web server executes at

the start of every request. And while it is super important... you'll never edit or even think about

this file.

Up next is var/ . This is also ignored from git: it's where Symfony stores log files and cache files

that it needs internally. So very important... but not something we need to think about. And we

already talked about vendor/ . That's everything!

Prepping PhpStorm

Now before we get coding, I mentioned that I use PhpStorm. You're free to use whatever editor

you want. However, PhpStorm is incredible. And one big reason is the unmatched Symfony

plugin. If you go to PhpStorm -> Settings and search for "Symfony", down here under Plugins

and then Marketplace, you can find it. Download & install the plugin if you don't already have it.

After installation, restart PhpStorm. Then there's one more step. Go back into settings and

search for Symfony again. This time you'll have a Symfony section. Be sure to enable the plugin

for each Symfony project you work on... otherwise you won't see all the same magic I have.

Ok! Let's start coding and build our first page in Symfony next.

<?php

use App\Kernel;

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

return function (array $context) {
 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);
};

Chapter 3: Routes, Controllers & Responses

Ok, here's the scoop. Wesley Crusher - everyone's favorite ensign from Star Trek - has retired

from Starfleet and is working with us to start a new business: Wesley's Star Shop. Someone's

gotta break the Ferengi monopoly on the galaxy's starship repair business, and he's hired us to

build the site to do that. We're about to give the Ferengi a run for their latinum!

Creating the Controller

And it starts with building our first page. The idea behind every page is always the same. Step

one, give it a cool URL. That's called the route. Step two, write a PHP function that generates

the page. That's known as the controller. And that page could be HTML, JSON, ASCII art,

anything.

In Symfony, the controller is always a method inside a PHP class. So, we need to create our first

PHP code! Where does PHP code live in our app? That's right, the src/ directory.

Inside this src/Controller/ directory, create a new file. I would normally select new "PHP

class", but for this first time, create an empty file. We'll do each part by hand. Call it

MainController.php , but you can name this whatever you want.

Inside, add the open PHP tag, and then say class MainController . Above this, add a

namespace of App\Controller .

src/Controller/MainController.php

 // ... lines 1 - 2
3
4
5
6
7

Namespaces & Directories

namespace App\Controller;

class MainController
{
}

Okay, a few things about this. First, the fact that I put this class inside a directory called

Controller is optional. That's just a convention. You could rename this to whatever the

Klingon word for Controller is and everything would the same... and probably be more

interesting!

However, there are a few rules about PHP classes in general. The first is that every class must

have a namespace and that namespace needs to match your directory structure. It's always

going to be App\ then whatever directory you're inside. Without going into too much detail,

that's a rule you'll find in every PHP project.

The second rule is that your class name must match your filename .php . If you mess either of

these up, you'll get an error from PHP that it can't find your class. The Ferengi never make this

mistake.

Creating the Controller Method & Route

Anyway, our goal is to create a controller, which is a method in a class that builds the page. Add

a new public function and call it homepage . But, again, the name doesn't matter. And... yea! It's

not done yet, but this is our controller!

src/Controller/MainController.php

 // ... lines 1 - 4
5
6
7
8
9

10
11

But remember, a page is the combination of a controller and a route, which defines the page's

URL. Where do we put the route? Right above the controller method using a feature of PHP

called an attribute. Write #[] then start typing Route with a capital R . Check out that auto-

completion!

Either option will work, but use the one from Attribute - which is newer - then hit tab. When I

did that, something super important happened: my editor added a use statement at the top of

the class. Anytime you use a PHP attribute, you must have a corresponding use statement for it

in the same file.

class MainController
{
 public function homepage()
 {

 }
}

These attributes work almost like PHP functions: you can pass a bunch of arguments. The first

one is the path. Set this to / .

src/Controller/MainController.php

 // ... lines 1 - 4
5
6
7
8
9

10
11
12
13
14

Thanks to this, when someone goes to the homepage - / - Symfony will call this controller

method to build the page!

Controllers & Responses

What... should our method return? Just the HTML we want, right? Or the JSON if we're building

an API?

Almost. The web works on a well-known system. First, a user requests a page. They say:

“Hey, I want to see /products ... or I want to see /users.json .”

What we return back to them, yes, contains HTML or JSON. But it's more than that. We also

communicate back a status code - which says whether the response was okay or had an error -

as well as these things called headers, which communicate a bit more info, like the format of

what we're returning.

This whole beautiful package is called the response. So yeah, most of the time, we'll just be

thinking about returning HTML or JSON. But what we're truly sending is this bigger, nerdier thing

called a response.

And so our entire job as web developers - no matter what language we're programming in - is to

understand the request from the user, then create and return the response.

use Symfony\Component\Routing\Attribute\Route;

class MainController
{
 #[Route('/')]
 public function homepage()
 {

 }
}

And this brings us back to something I love about Symfony. What does our controller return? A

new Response object from Symfony! And again, PhpStorm wants to auto-complete this,

suggesting a few different Response classes. We want the one from the Symfony

HttpFoundation component. That's the Symfony library that contains everything related to

requests & responses.

Hit tab. Once again, when we did that, PhpStorm added a use statement at the top of the file.

I'm going to use this trick constantly. Anytime you reference a class name, you must have a

corresponding use statement, else PHP will give you an error that it can't find the Response

class.

Inside this, the first argument is the content that we want to return. Start with a hardcoded string.

src/Controller/MainController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 7
8
9

10
11
12
13

14
15

Route, check! Controller that returns a Response, check! Let's try this. Back at the browser, this

page was just a demo that shows before we have a real homepage. Now that we do, when we

refresh... there it is!

I know it's not much yet, but we just learned the first fundamental part of Symfony: that every

page is a route & controller... and that every controller returns a response.

Oh, and it's optional, but because our controller always returns a Response , we can add a

Response return type. That doesn't change how our code works, but it makes it more

descriptive to read. And if we ever did something silly and returned something other than a

response, PHP would give us a clear reminder.

use Symfony\Component\HttpFoundation\Response;

class MainController
{
 #[Route('/')]
 public function homepage()
 {
 return new Response('Starshop: your monopoly-busting
option for Starship parts!');
 }
}

src/Controller/MainController.php

 // ... lines 1 - 7
8
9

10
11
12
13

14
15

Next up: to supercharge our development, let's install our first third-party package and learn

about Symfony's amazing recipe system.

class MainController
{
 #[Route('/')]
 public function homepage(): Response
 {
 return new Response('Starshop: your monopoly-busting
option for Starship parts!');
 }
}

Chapter 4: Magical Flex Recipes

I have a secret. When our project was created, it wasn't 15 files. It was... one file. If you peeked

inside the code for the symfony new command, you'd discover that it's a shortcut for just two

things. First, it clones a repository called symfony/skeleton ... which is just one file if you

ignore the license. And second, it runs composer install .

That's it! But hold on, if that's the case, where in the world did all these other files come from?

Like, the stuff in bin/ , config/ and src/? The answer starts with a special package inside

our composer.json file called symfony/flex . Flex is a Composer plugin that adds two

superpowers to Composer: aliases and recipes.

composer.json

1
 // ... lines 2 - 5
6
 // ... lines 7 - 11
12
 // ... lines 13 - 15
16
 // ... lines 17 - 70
71

Flex Aliases

Aliases are simple. To add a new package to your app - which we'll do in a minute - you run

composer require then the name of the package like symfony/http-client . Flex gives the

most important packages in the Symfony ecosystem a shorter name, called an alias. For

example, symfony/http-client has an alias called http-client . Yup, we could run

composer require http-client and Flex would translate that to the final package name. It's

just a shortcut when adding packages.

If you want to see all the available aliases, go to a repository called symfony/recipes... then click

the link to RECIPES.md . On the right, there they are!

{

 "require": {

 "symfony/flex": "^2",

 },

}

https://github.com/symfony/recipes

The Recipes System

The second superpower that Symfony Flex adds to Composer is recipes. These are fascinating.

When you add a new package, it may have a recipe, which is basically a set of files that will be

added to your project. And it turns out that every file that we started with - in bin/ , config/ ,

public/ - these all came from the recipes of the packages that were originally installed.

For example, symfony/framework-bundle is the "core" package of the Symfony Framework.

You can check out its recipe by going to the symfony/recipes repository and navigating to

symfony , framework-bundle , then the latest version. Boom! Check out config/packages/ :

most of the stuff we started with came from this recipe!

Another way to see the recipes is at your command line. Run:

composer recipes

Apparently the recipes of four different packages were installed. And we could get info about

any of these by adding its name to the end of the command.

Anyway, recipes are amazing because we can install a package and instantly get any files we

need. Instead of fussing around with configuration, we get right to work.

Installing PHP CS Fixer

Let's try this out: let's add a new package called PHP-CS-Fixer that will give us an executable

file to fix the styling of our code. For example, in src/Controller/MainController.php , if

you follow PHP coding standards, the curly brace should live on the next line after a function. If

we did something like this, our file now violates those standards. That wouldn't hurt anything,

but you know, we want to keep our code looking clean. And PHP-CS-Fixer can help us do that.

To install it, run:

composer require cs-fixer-shim

And yes, this is an alias. On top, the true package is php-cs-fixer/shim .

Did this package come with a recipe? It did! The Configuring php-cs-fixer/shim tells us

that. But, we can also see it by running:

git status

The fact that composer.json and composer.lock are modified is 100% normal Composer

behavior. You can see that composer.json has the new library under the require key.

composer.json

1
 // ... lines 2 - 5
6
 // ... lines 7 - 9
10
 // ... lines 11 - 16
17
 // ... lines 18 - 69
70

But every other modified or new file is thanks to the package's recipe.

Investigating the Recipe

Let's investigate these! Open up .gitignore . Cool! At the bottom, it added two new entries for

two common files that you want to ignore when you use PHP CS fixer.

.gitignore

 // ... lines 1 - 11
12
13
14
15

The recipe also added a new .php-cs-fixer.dist.php file. This is CS Fixer's configuration

file. And check it out!

{

 "require": {

 "php-cs-fixer/shim": "^3.46",

 },

}

###> php-cs-fixer/shim ###
/.php-cs-fixer.php
/.php-cs-fixer.cache
###< php-cs-fixer/shim ###

.php-cs-fixer.dist.php

1
2
3
4
5
6
7
8
9

10
11
12
13

It's pre-built to work for our Symfony app. It tells it to fix all files in the current directory, but

ignore the var/ directory because that's where Symfony stores its cache files. It also tells it to

use a ruleset called Symfony. That means that we want our code style to match Symfony's style.

The point is: instead of us wasting time hunting down this default config... we just get it!

The last modified file is symfony.lock . This keeps track of which recipes we have installed and

at what version. And yes, we are going to commit all these files to our repository.

Using PHP-CS-Fixer

Now that we've installed the package, let's use it. Do that by running:

./vendor/bin/php-cs-fixer

That'll show all the available commands. The one we want is called fix. Try it:

./vendor/bin/php-cs-fixer fix

And... yes! It found the violation in MainController.php ! When we go to that file... yea! It

moved my curly brace from the end of the line back down to the next line. That's awesome.

<?php

$finder = (new PhpCsFixer\Finder())
 ->in(__DIR__)
 ->exclude('var')
;

return (new PhpCsFixer\Config())
 ->setRules([
 '@Symfony' => true,
])
 ->setFinder($finder)
;

Next up, let's meet and install one of my favorite libraries in all of PHP: the Twig templating

engine.

Chapter 5: Twig & Templates

I want to return HTML for this page. We could put that HTML right inside the controller... but

that's going to get ugly fast. Fortunately, there's a better way: by using a templating library called

Twig.

Installing Twig

At your terminal, make sure you've committed your changes, because I want to see what this

new package's recipe adds to our project. I've already done that. Install it with:

composer require twig

Composer "Packs"

You probably recognize that twig is an alias... this time to a package called

symfony/twig-pack . And the word "pack" is important in Symfony. A pack is... kind of a fake

package that helps install multiple packages at once.

Watch: open up composer.json . Instead of one new package in here called

symfony/twig-pack , we have three new packages... and twig-pack isn't even one of them!

composer.json

1
 // ... lines 2 - 5
6
 // ... lines 7 - 15
16
 // ... line 17
18
19
20
 // ... lines 21 - 72
73

The three packages give us everything we need for a full, robust Twig setup. So when you see

the word "pack", it's not a huge deal: just a shortcut to install multiple packages at once.

Symfony Bundles

Ok, let's see what the recipe did! Run:

git status

We see the usual composer.json , composer.lock and symfony.lock . But for the first time,

we also see a modification to config/bundles.php . A bundle is a PHP package that integrates

with Symfony... it's basically a Symfony plugin. Whenever you install a bundle, you need to

activate it in this bundles.php file. But honestly, the recipe system will always do that for us...

so it's a good thing to notice, but we'll never edit this file by hand.

config/bundles.php

1
2
3
4
5
6
7

The Twig Recipe

{

 "require": {

 "symfony/twig-bundle": "7.0.*",

 "twig/extra-bundle": "^2.12|^3.0",
 "twig/twig": "^2.12|^3.0"
 },

}

<?php

return [
 Symfony\Bundle\FrameworkBundle\FrameworkBundle::class => ['all' => true],
 Symfony\Bundle\TwigBundle\TwigBundle::class => ['all' => true],
 Twig\Extra\TwigExtraBundle\TwigExtraBundle::class => ['all' => true],
];

The second thing the recipe did was create a config/packages/twig.yaml file. The purpose

of each file in config/packages/ is to configure a bundle.

config/packages/twig.yaml

1
2
3
4
5
6

For example, twig.yaml controls the behavior of TwigBundle. This line here tells Twig:

“Hey! All my template files will end in .twig .”

There's a lot more that we could configure, but we don't need to. And we'll dive deeper into

these config files in the next tutorial.

The final thing the recipe did was add a templates/ directory, which.... you guessed it! Is

where our template files will live! It even started us with a base.html.twig file that we'll talk

about in a few minutes.

Rendering a Template

So let's render our first template! To do that, make your controller extend a base class called

AbstractController . Be sure to hit tab so that it adds the use statement on top. Extending

this base class is optional, but it gives us a bunch of shortcut methods.

src/Controller/MainController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 8
9

10
 // ... lines 11 - 15
16

For example, copy the string and then, to render a template type return $this->render()

and pass a filename to a template. Use: main/homepage.html.twig .

twig:
 default_path: '%kernel.project_dir%/templates'

when@test:
 twig:
 strict_variables: true

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class MainController extends AbstractController
{

}

src/Controller/MainController.php

 // ... lines 1 - 8
9

10
11
12
13
14
15
16

Your template filename can be whatever you want, but the standard is to have a directory that

matches your controller name and a filename that matches your method name.

Let's go create that! In templates/ , add a new directory called main . And inside that, a file

called homepage.html.twig . I'll paste... then add an h1 and put it around everything.

templates/main/homepage.html.twig

1
2
3

Let's do this! Refresh. Got it!

And by the way, what is our controller returning? It's still a Response object! I know because we

have a Response return type... and our code isn't exploding. render() is just a shortcut to

render this template, grab that string of HTML and put it into a Response object. So even

though we're rendering a template, it still goes back to the idea that a controller returns a

response.

Passing Data to a Template

What about passing data to the template? Maybe we query the database and pass in the total

number of starships. We don't have a database in our app yet, so let's fake it by saying

$starshipCount equals... I don't know... 457. That seems like a believable fake number.

class MainController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {
 return $this->render('main/homepage.html.twig');
 }
}

<h1>
 Starshop: your monopoly-busting option for Starship parts!
</h1>

src/Controller/MainController.php

 // ... lines 1 - 8
9

10
11
12
13
14
 // ... lines 15 - 18
19
20

To pass variables to the template, add a second argument to render() : an array. Pass

numberOfStarships set to $starshipCount . The key will become the name of the variable

inside the Twig template.

src/Controller/MainController.php

 // ... lines 1 - 8
9

10
11
12
13
14
15
16
17
18
19
20

Rendering Variables

In the template, I'll add a div, and some text. To print the number, write {{ , the variable name,

close }} .

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
7

Ok! Move over and try it. Got it! And we just saw our first Twig code!

class MainController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {
 $starshipCount = 457;

 }
}

class MainController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {
 $starshipCount = 457;

 return $this->render('main/homepage.html.twig', [
 'numberOfStarships' => $starshipCount,
]);
 }
}

<div>
 Browse through {{ numberOfStarships }} starships!
</div>

Twig is its own language, but it's super friendly. It has just three different syntaxes. The first is

{{ and I call this the "say something" syntax. If you're printing something, you'll use {{ . Inside

the curlies, we're writing Twig, which is very similar to JavaScript.

Twig Tags & the "do something" Syntax

For example, we could print the string 'numberOfStarships' ... or the variable

numberOfStarships ... or even numberOfStarships times 10.

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
7

The second syntax of the three starts with {% . I call this the "do something" syntax. This doesn't

print anything. Instead, it's used for language constructs like if statements, for loops or setting

a variable.

To do an if statement say if numberOfStarships > 400 , then close this with {% endif %} .

Inside, I'll add a comment.

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
7
8
9

10
11
12
13

Try it out! That works too!

Twig is its own library, but it's maintained by Symfony... so its docs live at

https://twig.symfony.com. Click the "Docs" link then scroll down. See the "tags"? It turns out that

there are a finite number of things you can use with the do something syntax: it's these tags.

Like, you can't say {% applesauce ... it just won't work. You can only use {% then one of these

tags. The list is pretty short... and I probably only use 5 of these on a daily basis.

<div>
 Browse through {{ numberOfStarships * 10 }} starships!
</div>

<div>
 Browse through {{ numberOfStarships * 10 }} starships!

 {% if numberOfStarships > 400 %}
 <p>
 That's a shiploads of ships!
 </p>
 {% endif %}
</div>

https://twig.symfony.com/

The third and final syntax of Twig isn't even a syntax at all: it's for comments. {# to write a

comment.

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
7
8
9

10
11
12
13
14

Rendering an Associative Array

So we're passing a simple number to Twig and printing it. But Twig can handle whatever

complex data you throw at it. For example, in the controller, create a new $myShip variable, set

to an associative array. Then pass that into the template as a new variable: myShip .

src/Controller/MainController.php

 // ... lines 1 - 8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

<div>
 Browse through {{ numberOfStarships * 10 }} starships!

 {% if numberOfStarships > 400 %}
 <p>
 {# Do you think "shiploads" will pass the legal team? #}
 That's a shiploads of ships!
 </p>
 {% endif %}
</div>

class MainController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {
 $starshipCount = 457;
 $myShip = [
 'name' => 'USS LeafyCruiser (NCC-0001)',
 'class' => 'Garden',
 'captain' => 'Jean-Luc Pickles',
 'status' => 'under construction',
];

 return $this->render('main/homepage.html.twig', [
 'numberOfStarships' => $starshipCount,
 'myShip' => $myShip,
]);
 }
}

In the template, add another div ... some text and a table to print the data. In the <td> , we

can't just print myShip ... because printing an associative array doesn't make sense in PHP...

and so it doesn't make sense in Twig. You get the famous error about array to string conversion.

What we want is to print the name key on that array. The way we do that looks exactly like

JavaScript: myShip.name .

That's it! And... it works. I'll paste in the rest of our template, which prints the other keys from the

array. Looking good.

templates/main/homepage.html.twig

 // ... lines 1 - 15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Twig Functions & Filters

Twig does have a few other tricks up its sleeve, but nothing complex. It has functions... which

work like functions in any language. It also has something called tests, which are a bit unique to

Twig, but simple enough to understand. My favorite concept is probably filters, which are

basically functions with a cooler, more hipster syntax.

<div>
 <h2>My Ship</h2>

 <table>
 <tr>
 <th>Name</th>
 <td>{{ myShip.name }}</td>
 </tr>
 <tr>
 <th>Class</th>
 <td>{{ myShip.class }}</td>
 </tr>
 <tr>
 <th>Captain</th>
 <td>{{ myShip.captain }}</td>
 </tr>
 <tr>
 <th>Status</th>
 <td>{{ myShip.status }}</td>
 </tr>
 </table>
</div>

For example, there's a filter called upper to send a string to uppercase. To use a filter, find the

string that you want to turn into uppercase then add a | and upper .

templates/main/homepage.html.twig

 // ... lines 1 - 15
16
17
18
19
 // ... lines 20 - 27
28
29
30
31
 // ... lines 32 - 35
36
37

The value on the left gets passed through the filter, a lot like using a pipe at the command line. It

works beautifully.... and you can go crazy with filters: piping to upper , then lower then to

title case just to confuse your teammates.

templates/main/homepage.html.twig

 // ... lines 1 - 15
16
17
18
19
 // ... lines 20 - 27
28
29
30
31
 // ... lines 32 - 35
36
37

Okay, we pretty much just learned all of Twig in one session except for one thing: template

inheritance. That's next.

<div>
 <h2>My Ship</h2>

 <table>

 <tr>
 <th>Captain</th>
 <td>{{ myShip.captain|upper }}</td>
 </tr>

 </table>
</div>

<div>
 <h2>My Ship</h2>

 <table>

 <tr>
 <th>Captain</th>
 <td>{{ myShip.captain|upper|lower|title }}</td>
 </tr>

 </table>
</div>

Chapter 6: Twig Template Inheritance

What about adding a layout to our page - like a header and a footer? Take a peek at the HTML

for the page: it's just the HTML from the template. There's nothing special in Twig where a base

layout with a header and a footer is automatically wrapped around our content. Whatever you

have in your template is what you get on the page.

However, the Twig recipe did add a base layout file called base.html.twig .

templates/base.html.twig

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16

It's really simple now, but this is where we'll add our top nav, footer and any other things that

should live on every page. The question is: how can we make our template use this?

Extending the Base Layout

With a cool feature called template inheritance. In homepage.html.twig , at the top, type

{% extends then the name of the base template: base.html.twig . And notice: this is the do

something tag. We're not printing this template, we're telling Twig that we want to extend it.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>{% block title %}Welcome!{% endblock %}</title>
 <link rel="icon" href="data:image/svg+xml,<svg
xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 128 128%22><text
y=%221.2em%22 font-size=%2296%22>⚫</text></svg>">
 {% block stylesheets %}
 {% endblock %}

 {% block javascripts %}
 {% endblock %}
 </head>
 <body>
 {% block body %}{% endblock %}
 </body>
</html>

templates/main/homepage.html.twig

1
2
3
4
5
 // ... lines 6 - 40

If we do nothing else and refresh, we get an error:

“a template that extends another one cannot include content outside Twig blocks.”

Hmm. When you extend a template, it tells Twig that you want to render your template inside

that base layout. But... Twig has no idea where our content should go. Should it take our

homepage HTML and put it down here? Or up here? Or right there? It doesn't know! So it

throws that error.

The way we tell it is via these blocks. Blocks are holes into which a child template can put

content. And you may have noticed one block called body ... which is exactly where we want our

content to go. To put it there, surround all the content with a {% block body %} ... and at the

bottom, {% endblock %} .

templates/main/homepage.html.twig

1
2
3
4
5
6
7
8
 // ... lines 9 - 16
17
18
19
 // ... lines 20 - 39
40
41

And now... it's alive! It doesn't look much different, but we are inside the base layout.

This is called template inheritance because it works exactly like PHP class inheritance. Imagine

you have a Homepage class that extends a Base class. That Base class has a body() method,

{% extends 'base.html.twig' %}

<h1>
 Starshop: your monopoly-busting option for Starship parts!
</h1>

{% extends 'base.html.twig' %}

{% block body %}
<h1>
 Starshop: your monopoly-busting option for Starship parts!
</h1>

<div>

</div>

<div>

</div>
{% endblock %}

and we override that body() method in the Homepage class. It's the same concept in Twig.

Overriding the Page Title

And these block names - like javascripts , stylesheets and body - aren't special names...

and they're not registered anywhere. Feel free to create new blocks however and whenever you

want. For example, suppose we want to change the title of the page from a child template. In

this case, the recipe already gave us a block called title to do that. And this block has default

content... which is why we already see Welcome on the browser tab. Let's override this in our

template.

templates/base.html.twig

 // ... line 1
2
3
 // ... line 4
5
 // ... lines 6 - 11
12
 // ... lines 13 - 15
16

Anywhere outside the body block, say {% block title %} , type something, then

{% endblock %} .

templates/main/homepage.html.twig

1
2
3
4
5
 // ... lines 6 - 42
43

Replacing vs Appending the Parent Block

And now, got it! New title! And notice that when we override a block, we override it completely.

We don't see the word Welcome anymore. Occasionally, you may want to add to the parent

block instead of replacing it. You can do that by saying {{ parent() }} .

<html>
 <head>

 <title>{% block title %}Welcome!{% endblock %}</title>

 </head>

</html>

{% extends 'base.html.twig' %}

{% block title %}Starshop: Beam up some parts!{% endblock %}

{% block body %}

{% endblock %}

This is really neat! The parent() function grabs the content from the title block of the parent

template. Then we use {{ to print it. This time we see welcome and then our title.

But since we don't really want that, I'll remove it.

Status check: we're returning HTML and we have a base layout. Yeah, our site is still horribly

ugly, but we'll fix that in a bit.

Next up, let's run one command and instantly gain access to some of the most powerful

debugging tools on the web.

Chapter 7: Debugging with the Amazing Profiler

Symfony boasts some of the most epic debugging tools of all the Internet. But because Symfony

apps start so small, we don't even have them installed yet. Time to fix that. Head over to your

terminal and, like before, commit all of your changes so we can check out what the recipes will

do. I already did that.

Installing the Debugging Tools

Then run:

composer require debug

Yup! That's another Flex alias. And... it installs a pack. This installs four different packages that

add a variety of debugging goodness to our project. Spin over and open composer.json .

composer.json

1
 // ... lines 2 - 5
6
 // ... lines 7 - 14
15
 // ... lines 16 - 20
21
 // ... lines 22 - 78
79

Ok, the pack added one new line under the require key for monolog-bundle . Monolog is a

logging library.

Then all the way at the bottom, it added three packages to a require-dev section.

{

 "require": {

 "symfony/monolog-bundle": "^3.0",

 },

}

composer.json

1
 // ... lines 2 - 73
74
75
76
77
78
79

These are known as dev dependencies... which means they won't be downloaded when you

deploy to production. But otherwise, they work the same as packages under the require key.

All three of these help power something called the profiler. We'll see that in just a minute.

Before we do, go back to your terminal and run

git status

so we can see what the recipes did. Ok: it updated the normal files, enabled a few new bundles

and gave us three new configuration files for those bundles.

What's the end result of all this new stuff? Well, first, we now have a logging library. So, like

magic, logs will start popping into a var/log/ directory.

Hello Web Debug Toolbar & Profiler

But the mind-blowing moment happens when we refresh the page. Woh! A beautiful new black

bar at the bottom called the web debug toolbar.

This is bursting with info. Over here, we can see the route and controller for this page. That it

makes it easy to go to any page on your site - maybe one you didn't even build - and quickly find

the code behind it. We can also see how long this page took the load, how much memory it

used, and even the twig template that was rendered and how long that took.

But the real magic of the web debug toolbar happens when you click any of these links: you hop

into the profiler. This has ten times more info: details about the request and response, logs that

occurred while loading that page, routing details, and even stats about which Twig templates

were rendered. Apparently six templates were rendering: our main one, the base layout and a

{

 "require-dev": {
 "symfony/debug-bundle": "7.0.*",
 "symfony/stopwatch": "7.0.*",
 "symfony/web-profiler-bundle": "7.0.*"
 }
}

few others that power the web debug toolbar, which, by the way, won't be rendered or shown

when we deploy to production. But we'll talk about that in the next tutorial.

Then there's probably my favorite section: Performance. This slices our entire page load time

into different pieces. I love this. As you learn more about Symfony, you'll get more familiar with

what these different pieces are. This section is useful for knowing which part of your code might

be slowing down the page... but it's also a fantastic way to dive deeper into Symfony and

understand all its moving pieces.

We're going to use the profiler throughout this series, but let's turn to another debugging tool:

one that's been installed in our app this whole time!

Hello bin/console!

Head over to the command line and run:

php bin/console

Or, on most machines, you can just say ./bin/console . This is Symfony's console, and it's

packed with commands that can do all sorts of stuff! We'll learn about them along the way. You

can also add your own commands, which we'll do at the end of the tutorial.

Notice that a bunch of these start with debug - like debug:router . Try that:

php bin/console debug:router

Cool! This shows us every route in our app: the homepage route at the bottom and a bunch of

routes added by Symfony in the dev environment that power the web debug toolbar and

profiler.

Another command is debug:twig :

php bin/console debug:twig

This tells us every Twig function, filter or other thing that exists in our app. This is like the Twig

docs... except it also includes extra functions and filters that are added to Twig by bundles that

we have installed. Pretty cool.

These debug commands are super useful, and we'll keep trying more of them along the way.

Next, let's create our first API endpoint and learn about Symfony's powerful serializer

component.

Chapter 8: Creating JSON API Endpoints

If you want to build an API, you can absolutely do that with Symfony. In fact, it's a fantastic

option in part, because of API Platform. That's a framework for creating APIs built on top of

Symfony that both makes building your API fast and creates an API that's more robust than you

could imagine.

But, it's also simple enough to return JSON from a controller. Let's see if we can return some

ship data as JSON.

Creating the new Route & Controller

This will be our second page. Well, it's really an "endpoint", but this will be our second route &

controller combo. In MainController , we could add another method here. But for organization,

let's create a totally new controller class. I'll go to New -> PHP Class and call it

StarshipApiController .

Because I went to New -> PHP Class, it created the class and the namespace for me. Super

nice! Also, going forward, each time I create a controller, I'll immediately extend

AbstractController ... because those shortcuts are nice and there's no downside.

src/Controller/StarshipApiController.php

 // ... lines 1 - 2
3
4
5
 // ... lines 6 - 8
9

10
 // ... lines 11 - 36
37

Add a public function getCollection() because this will return info about a collection of

starships. And, like always, you can add the Response return type or skip it. Above this, add the

route with #[Route()] . Select the one from Attribute and hit tab.

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class StarshipApiController extends AbstractController
{

}

So I just used auto-completion to add the use statements for AbstractController , Route ,

and Response . Make sure you have all of those. For the URL, how about /api/starships .

Inside, I'll paste a $starships variable that's set to an array of three associative arrays of

starship data.

Returning JSON

You can probably imagine how this will look as JSON. How do we turn it into JSON? Well, it can

be this simple: return new Response with json_encode($starships) .

But we can do better! Instead, return $this->json($starships) .

src/Controller/StarshipApiController.php

 // ... lines 1 - 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Let's try it! Find your browser and head to /api/starships . Dang, that was easy. If you're

wondering why the JSON is styled and looks cool, that's not a Symfony thing. I have a Chrome

extension installed called JSONVue.

Adding a Model Class

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Attribute\Route;

class StarshipApiController extends AbstractController
{
 #[Route('/api/starships')]
 public function getCollection(): Response
 {
 $starships = [
 [
 'name' => 'USS LeafyCruiser (NCC-0001)',
 'class' => 'Garden',
 'captain' => 'Jean-Luc Pickles',
 'status' => 'taken over by Q',
],
 [
 'name' => 'USS Espresso (NCC-1234-C)',
 'class' => 'Latte',
 'captain' => 'James T. Quick!',
 'status' => 'repaired',
],
 [
 'name' => 'USS Wanderlust (NCC-2024-W)',
 'class' => 'Delta Tourist',
 'captain' => 'Kathryn Journeyway',
 'status' => 'under construction',
],
];

 return $this->json($starships);
 }
}

Now in the real world, when we start querying the database, we're going to be working with

objects, not associative arrays. We won't add a database in this tutorial, but we can start using

objects for our data to make things more realistic. In the src/ directory, create a new

subdirectory called Model .

Ok, important thing: what we're about to do has absolutely nothing to do with Symfony. I'm

simply looking at this array and thinking:

“You know what? Instead of passing around this associative array with name , class ,

captain , and status keys, I'd rather have a Starship class and pass around objects.”

So entirely on my own, independent of Symfony, I've decided to create a Model directory - this

could be called anything - and inside a new class called Starship . And because this class is

just to help us, we get to make it look however we want, and it doesn't need to extend any base

class.

src/Model/Starship.php

 // ... lines 1 - 2
3
4
5
6
 // ... lines 7 - 39
40

Create a public function __construct() with five properties: a private int $id , then

four more properties for each of the four keys that we have in the array:

private string $name , private string $class , private string $captain and

private string $status .

namespace App\Model;

class Starship
{

}

src/Model/Starship.php

 // ... lines 1 - 2
3
4
5
6
7
8
9

10
11
12
13
14
 // ... lines 15 - 39
40

Oh, and my editor is highlighting this file because we installed PHP-CS-Fixer and that found a

code style violation. I can click this to fix it or go here and hit Alt+Enter to do the fix there. Super

nice!

Anyway, if you're not familiar with this constructor syntax, this creates a constructor with five

arguments and, at the same time, creates five properties that will be set to whatever we pass to

these arguments.

But, because I decided to make these properties private, if we did instantiate a new Starship

object... we wouldn't be able to read any of the data! To allow that, we can create getter

methods. But, I'm not going to do this by hand. Instead, go to the Code -> Generate menu

option - or Cmd + N on a Mac - select getters then generate a getter for every property.

namespace App\Model;

class Starship
{
 public function __construct(
 private int $id,
 private string $name,
 private string $class,
 private string $captain,
 private string $status,
) {
 }

}

src/Model/Starship.php

 // ... lines 1 - 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Nice! Five shiny new, public getter method.

Creating the Model Objects

namespace App\Model;

class Starship
{
 public function __construct(
 private int $id,
 private string $name,
 private string $class,
 private string $captain,
 private string $status,
) {
 }

 public function getId(): int
 {
 return $this->id;
 }

 public function getName(): string
 {
 return $this->name;
 }

 public function getClass(): string
 {
 return $this->class;
 }

 public function getCaptain(): string
 {
 return $this->captain;
 }

 public function getStatus(): string
 {
 return $this->status;
 }
}

Ok, back in our controller, let's convert these arrays to objects: new Starship() - hit tab, so it

adds the use statement - then give this an id of, how about, 1... and transfer the other values

for name , class , captain , and finally status .

And just like that, we have our first object! I'll highlight the other two arrays and paste in the two

objects to save time.

src/Controller/StarshipApiController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 9
10
11
 // ... line 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
 // ... lines 38 - 39
40
41

We now have an array of 3 Starship objects... which feels nicer. And we're passing those to

$this->json() . Is that still going to work? Totally not! We get an array of three empty objects!

use App\Model\Starship;

class StarshipApiController extends AbstractController
{

 public function getCollection(): Response
 {
 $starships = [
 new Starship(
 1,
 'USS LeafyCruiser (NCC-0001)',
 'Garden',
 'Jean-Luc Pickles',
 'taken over by Q'
),
 new Starship(
 2,
 'USS Espresso (NCC-1234-C)',
 'Latte',
 'James T. Quick!',
 'repaired',
),
 new Starship(
 3,
 'USS Wanderlust (NCC-2024-W)',
 'Delta Tourist',
 'Kathryn Journeyway',
 'under construction',
),
];

 }
}

That's because, internally, $this->json() uses the PHP json_encode() function... and that

function can't handle private properties. What we need is something smarter: something that

can recognize that, even though the name property is private, we have a public getName()

method that can be called to read that property's value.

Hello Symfony Serializer

Is there a tool that does that? Well, remember how Symfony is a huge set of components that

solve individual problems? One component is called serializer, and its whole job is to take

objects and serialize them to JSON... or take JSON and deserialize that back into objects. And it

can totally handle situations where you have private properties with public getter methods.

So let's get it installed!

composer require serializer

And once more folks, yes, this is an alias... and it's an alias to a pack. This pack installs the

symfony/serializer package as well as a few others that make it work in a really robust way.

Now, without doing anything else, go back, refresh, and it works? How?

It turns out that the $this->json() method is smart. To peek at it, hold Command on a Mac or

Ctrl on other machines and click the method name to jump into the core Symfony file where this

lives.

Ah! The code here won't make total sense yet, but it detects if the serializer system is

available.... and if it is, uses that to transform the object to JSON.

But, what do I mean by "serializer system" exactly? And what is the serializer key... inside

this container thing? Or, what if we needed to transform an object to JSON somewhere other

than our controller... where we don't have access to the ->json() shortcut? How could we

access the serializer system from there?

Friends, it's time to learn about the most important concept in Symfony: services.

Chapter 9: Services: The Backbone of Everything

Let's talk about services. These are the most important concept in Symfony. And once you

understand them, honestly, you'll be able to do anything.

What is a Service?

First, a service is an object that does work. That's it. For example, if you instantiated a Logger

object that has a log() method, that's a service! It does work: it logs things! Or if you created a

database connection object that makes queries to the database then... yup! That's a service too.

So then... if a service is just an object that does work... what lazy objects aren't services? Our

Starship class is a perfect example of a non service. It's main job is not to do work: it's to hold

data. Sure, it has a few public methods... and you could even put some logic inside of these

methods to do something. But ultimately, it's not a worker, it's a data holder.

What about controller classes? Yeah, they're services too. Their work is to create response

objects.

Anyway, every bit of work that's done in Symfony is actually done by a service. Writing log

messages to this file? Yeah, there's a service for that. Figuring out which route matches the

current URL? That's the router service! What about rendering a twig template? Yep, it turns

out that the render() method is a shortcut to find the correct service object and call a method

on it.

The Container & debug:container

You may sometimes also hear that these services are organized into a big object called the

"service container". You can think of the container like a giant associative array of service

objects, each with a unique id. Want to see a list of every service in our app right now? Me too!

Find your terminal and run:

bin/console debug:container

That's a lot of services! Let me make this smaller so each fits on its own line... better.

On the left side, we see the ID of each service. And on the right, the class of the object that the

ID corresponds to. Cool, right?

Go back to our controller and hold control or command to open up the json() method again.

Now this makes more sense! It's checking to see if the container has a service whose ID is

serializer . If it does, it grabs that service from the container and calls the serialize()

method on it.

When we work with services, it won't look exactly like this. But the super important thing is that

we now understand what's going on.

Bundles Provide Services

My next question is: where do these services come from? Like, who says there's a service

whose ID is twig ... and that when we ask the container for it, it should return a twig

Environment object? The answer is: entirely from bundles. In fact, that's the main point of

installing a new bundle. Bundles give us services.

Remember when we installed twig? It added a bundle to our app. And guess what that bundle

did? Yup: it gave us new services, including the twig service. Bundles give us services... and

services are tools.

Autowiring

And though there are many services in this list, the vast majority of these are low-level service

objects that we won't ever use or care about. We also won't care about the ID of the services

most of the time.

Instead, run a related command called:

php bin/console debug:autowiring

This shows us all the services that are autowireable, which is the technique that we'll use to

fetch services. It's basically a curated list of the services that we're most likely to need.

Autowiring the Logger Service

So let's do a challenge: let's log something from our controller. Here's a sneak peek into how I

approach this problem in my brain:

“Ok, I need to log something! And... logging is work. And... services do work! Thus, there

must be a logger service that I can use! Quod erat demonstrandum!”

Forgive me latin nerds. The point is: if we want to log something, we just need to find the service

that does that work. Okay! Rerun the command but search for log:

php bin/console debug:autowiring log

Boom! It found about 10 services, all starting with Psr\Log\LoggerInterface . We're going to

talk about what these other services are in the next tutorial. For now, focus on the main one.

This tells me is that there is a service in the container for a logger. And to get it, we can autowire

it using this interface.

What does that mean? In the controller method where we want the logger, add an argument

type-hinted with LoggerInterface - hit tab - then say $logger .

src/Controller/StarshipApiController.php

 // ... lines 1 - 5
6
 // ... lines 7 - 10
11
12
 // ... line 13
14
15
 // ... lines 16 - 41
42
43

In this case, the name of the argument isn't important: it could be anything. What matters is that

the LoggerInterface - that corresponds to this use statement - matches the

Psr\Log\LoggerInterface from debug:autowiring .

It's that simple! Symfony will see this type-hint and say:

“Oh! Since that type-hint matches the autowiring type for this service, they must want me to

pass them that service object.”

I don't know why Symfony sounds like a frog in my head. Anyway, let's see if this works. Add

dd($logger) : dd() stands for "dump and die" and comes from Symfony.

src/Controller/StarshipApiController.php

 // ... lines 1 - 5
6
 // ... lines 7 - 10
11
12
 // ... line 13
14
15
16
 // ... lines 17 - 41
42
43

Refresh! Yes! It printed the object beautifully then stopped execution. It's working! Symfony

passes us a Monolog\Logger object, which implements that LoggerInterface .

use Psr\Log\LoggerInterface;

class StarshipApiController extends AbstractController
{

 public function getCollection(LoggerInterface $logger): Response
 {

 }
}

use Psr\Log\LoggerInterface;

class StarshipApiController extends AbstractController
{

 public function getCollection(LoggerInterface $logger): Response
 {
 dd($logger);

 }
}

The trick we just did - called autowiring - works in exactly two places: our controller methods

and the __construct() method of any service. We'll see that second situation in the next

chapter.

Controlling how Services Behave

And if you're wondering where this Logger service came from in the first place... we already

know the answer! From a bundle. In this case, MonologBundle . And... how could we configure

that service... to, I don't know, log to a different file? The answer is:

config/packages/monolog.yaml .

This config - including this line - configures MonologBundle ... which really means that it

configures how the services work that MonologBundle give us. We'll learn about this percent

syntax in the next tutorial, but this tells the Logger service to log to this dev.log file.

Using the Logger

Ok, now that we have the Logger service, let's use it! How? Well, of course, you can read the

docs. But thanks to the type-hint, our editor will help us! LoggerInterface has a bunch of

methods. Let's use ->info() and say:

src/Controller/StarshipApiController.php

 // ... lines 1 - 5
6
 // ... lines 7 - 10
11
12
 // ... line 13
14
15
16
 // ... lines 17 - 41
42
43

“Starship collection retrieved.”

Try it out: refresh. The page worked... but did it log anything? We could go check the dev.log

file. Or, we can use the Log section of the profiler for this request.

use Psr\Log\LoggerInterface;

class StarshipApiController extends AbstractController
{

 public function getCollection(LoggerInterface $logger): Response
 {
 $logger->info('Starship collection retrieved');

 }
}

Seeing the Profiler for an API Request

But... wait! This is an API request... so we don't have that cool web debug toolbar on the bottom!

That's true... but Symfony did still collect all that info! To get to the profiler for this request,

change the URL to /_profiler . This lists the most recent requests to our app, with the newest

on top. See this one? That's our API request from a minute ago! If you click this token... boom!

We're looking at the profiler for that API call in all its glory... including a Log section... with our

message.

Ok, now that we've seen how to use a service, let's create our own service next! We're

unstoppable!

Chapter 10: Creating your own Service

We know that services do work, and we know that Symfony is full of services that we can use. If

you run:

php bin/console debug:autowiring

We get the dinner menu of services, where you can order any of these by adding an argument

type-hinted with the matching class or interface.

We, of course, also do work in our code... hopefully. Right now, all that work is being done inside

our controller, like creating the Starship data. Sure, this is hard-coded right now, but imagine if

this were real work: like a complex database query. Putting the logic inside a controller is "ok"...

but what if we wanted to reuse this code somewhere else? What if, on our homepage, we

wanted to get a dynamic count of the Starships by grabbing this same data?

Creating the Service Class

To do that, we need to move this "work" into its own service that both controllers could then use.

In the src/ directory, create a new Repository directory and a new PHP class inside called

StarshipRepository .

src/Repository/StarshipRepository.php

 // ... lines 1 - 2
3
4
5
6
7

Just like when we built our Starship class, this new class has absolutely nothing to do with

Symfony. It's just a class that we've decided to create to organize our work. And so, Symfony

doesn't care what it's called, where it lives or what it looks like. I called it StarshipRepository

namespace App\Repository;

class StarshipRepository
{
}

and put it in a Repository directory because that's a common programming name for a class

whose "work" is to fetch a type of data, like Starship data.

Autowiring the New Service

Ok, before we even do anything in here, let's see if we can use this inside a controller. And,

good news! Just by creating this class, it's already available for autowiring. Add a

StarshipRepository $repository argument, and, to make sure it's working,

dd($repository) .

src/Controller/StarshipApiController.php

 // ... lines 1 - 5
6
 // ... lines 7 - 11
12
13
 // ... line 14
15

16
17
18
 // ... lines 19 - 43
44
45

All right, spin over, click back to our endpoint, and... got it. That's so cool! Symfony saw the

StarshipRepository type-hint, instantiated that object, then passed it to us. Delete the

dd() ... and let's move the starship data inside. Copy it... and create a new public function

called, how about, findAll() . Inside, return , then paste.

use App\Repository\StarshipRepository;

class StarshipApiController extends AbstractController
{

 public function getCollection(LoggerInterface $logger, StarshipRepository
$repository): Response
 {
 $logger->info('Starship collection retrieved');
 dd($repository);

 }
}

src/Repository/StarshipRepository.php

 // ... lines 1 - 4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Back over in StarshipApiController , delete that... and it's beautifully simple:

$starships = $repository->findAll() .

use App\Model\Starship;

class StarshipRepository
{
 public function findAll(): array
 {
 return [
 new Starship(
 1,
 'USS LeafyCruiser (NCC-0001)',
 'Garden',
 'Jean-Luc Pickles',
 'taken over by Q'
),
 new Starship(
 2,
 'USS Espresso (NCC-1234-C)',
 'Latte',
 'James T. Quick!',
 'repaired',
),
 new Starship(
 3,
 'USS Wanderlust (NCC-2024-W)',
 'Delta Tourist',
 'Kathryn Journeyway',
 'under construction',
),
];
 }
}

src/Controller/StarshipApiController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 10
11
12
13
14

15
16
17
 // ... lines 18 - 19
20
21

Done! When we try it, it still works... and now the code for fetching starships is nicely organized

into its own class and reusable across our app.

Constructor Autowiring

With that victory under our belt, let's doing something harder. What if, from inside

StarshipRepository , we needed access to another service to help us do our work? No

problem! We can use autowiring! Let's try to autowire the logger service again.

The only difference this time is that we're not going to add the argument to findAll() . I'll

explain why in a minute. Instead, add a new public function __construct() and do the

auto-wiring there: private LoggerInterface $logger .

src/Repository/StarshipRepository.php

 // ... lines 1 - 5
6
7
8
9

10
11
12
 // ... lines 13 - 41
42

use App\Repository\StarshipRepository;

class StarshipApiController extends AbstractController
{
 #[Route('/api/starships')]
 public function getCollection(LoggerInterface $logger, StarshipRepository
$repository): Response
 {
 $logger->info('Starship collection retrieved');
 $starships = $repository->findAll();

 }
}

use Psr\Log\LoggerInterface;

class StarshipRepository
{
 public function __construct(private LoggerInterface $logger)
 {
 }

}

Down below, to use it, copy the code from our controller, delete that, paste it here, and update it

to $this->logger .

src/Repository/StarshipRepository.php

 // ... lines 1 - 5
6
7
8
9

10
11
12
13
14
15
16
 // ... lines 17 - 40
41
42

Cool! Over in the controller, we can remove that argument because we're not using it anymore.

Testing time! Refresh! No error - that's a good sign. To see if it logged something, go to

/_profiler , click on the top request, Logs, and... there it is!

So let me explain why we added the service argument to the constructor. If we want to fetch a

service - like the logger, a database connection, whatever, this is the correct way to use

autowiring: add a __construct method inside another service. The trick we saw earlier - where

we add the argument to a normal method - yeah, that's special and only works for controller

methods. It's an extra convenience that was added to the system. It's a great feature, but the

constructor way... that's how autowiring really works.

And this "normal" way, it even works in a controller. You could add a __construct() method

with an autowirable argument and that would totally work.

The point is: if you are in a controller method, sure, add the argument to the method - it's nice!

Just remember that it's a special thing that only works here. Everywhere else, autowire through

the constructor.

Using the Service on another Page

use Psr\Log\LoggerInterface;

class StarshipRepository
{
 public function __construct(private LoggerInterface $logger)
 {
 }

 public function findAll(): array
 {
 $this->logger->info('Starship collection retrieved');

 }
}

Let's celebrate our new service by using it on the homepage. Open up MainController . This

hardcoded $starshipCount is so 30 minutes ago. Autowire

StarshipRepository $starshipRepository , then say

$ships = $starshipRepository->findAll() and count them with count() .

src/Controller/MainController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 9
10
11
12
13
14
15
16
 // ... lines 17 - 22
23
24

While we're here, instead of this hardcoded $myShip array, let's grab a random Starship

object. We can do that by saying $myShip equals $ships[array_rand($ships)]

src/Controller/MainController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 9
10
11
12
13
14
15
16
17
 // ... lines 18 - 22
23
24

Let's try it! Hunt down your browser and head to the homepage. Got it! We see the randomly

changing ship down here, and the correct ship number up here... because we're multiplying it by

10 in the template.

use App\Repository\StarshipRepository;

class MainController extends AbstractController
{
 #[Route('/')]
 public function homepage(StarshipRepository $starshipRepository): Response
 {
 $ships = $starshipRepository->findAll();
 $starshipCount = count($ships);

 }
}

use App\Repository\StarshipRepository;

class MainController extends AbstractController
{
 #[Route('/')]
 public function homepage(StarshipRepository $starshipRepository): Response
 {
 $ships = $starshipRepository->findAll();
 $starshipCount = count($ships);
 $myShip = $ships[array_rand($ships)];

 }
}

Printing Objects in Twig

And something crazy-cool just happened! A minute ago, myShip was an associative array. But

we changed it to be a Starship object. And yet, the code on our page kept working. We just

accidentally saw a superpower of Twig. Head to templates/main/homepage.html.twig and

scroll down to the bottom. When you say myShip.name , Twig is really smart. If myShip is an

associative array, it'll grab the name key. If myShip is an object, like it is now, it will grab the

name property. But even more than that, if you look at Starship , the name property is private,

so we can't access it directly. Twig realizes that. It looks at the name property, sees that it's

private, but also sees that there's a public getName() . And so, it calls that.

All we need to say is myShip.name ... and Twig handles the details of how to fetch that, which I

love.

Ok, one last tiny tweak. Instead of passing the starshipCount into our template, we can do

the count inside Twig. Delete this variable, and instead, pass a ships variable.

src/Controller/MainController.php

 // ... lines 1 - 9
10
11
 // ... line 12
13
14
15
16
 // ... line 17
18
19
20
21
22
23

In the template, there we go, for the count, we can say ships , which is an array, and then use a

Twig filter: |length .

class MainController extends AbstractController
{

 public function homepage(StarshipRepository $starshipRepository): Response
 {
 $ships = $starshipRepository->findAll();
 $myShip = $ships[array_rand($ships)];

 return $this->render('main/homepage.html.twig', [
 'myShip' => $myShip,
 'ships' => $ships,
]);
 }
}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
 // ... lines 6 - 9
10
11
12
13
 // ... lines 14 - 17
18
19
 // ... lines 20 - 42
43

That feels good. Let's do the same thing down here... and change it to greater than 2. Try that

out. Our site just keeps working!

Next up: let's create more pages and learn how to make routes that are even smarter.

{% block body %}

<div>
 Browse through {{ ships|length * 10 }} starships!

 {% if ships|length > 2 %}

 {% endif %}
</div>

{% endblock %}

Chapter 11: Fancier Routes: Requirements,
Wildcards, and More

With all the new code organization, let's celebrate by creating another API endpoint to fetch a

single starship . Start like usual: create a public function called, how about, get() . I'll

include the optional Response return type. Above this add the #[Route] with a URL of

/api/starships/ ... hmm. This time, the last part of the URL needs to be dynamic: it should

match /api/starships/5 or /api/starships/25 . How can we do that? How can we make a

route match a wildcard?

The answer is by adding { , a name, the } .

The name inside this could be anything. No matter what, this route will now match

/api/starships/* . But whatever you name this, you're now allowed to have an argument with

a matching name: $id .

Below, dump this to make sure it's working.

src/Controller/StarshipApiController.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 19
20
21
22
23
24
25

Restricting the Wildcard to be a Number

Ok! Zoom over to /api/starships/2 and... it is working!

In our app, the ID will be an integer. If I try something that is not an integers - like /wharf - the

route still matches and calls our controller. And, that's almost always okay. In a real app, if we

class StarshipApiController extends AbstractController
{

 #[Route('/api/starships/{id}')]
 public function get($id): Response
 {
 dd($id);
 }
}

queried the database with WHERE ID = 'wharf' , it wouldn't cause an error: it just wouldn't find

a matching ship! And then we could trigger a 404 page, which I'll show you how to do soon.

But sometimes, we may want to restrict these values. We may want to say:

“Only match this route if the wildcard is an integer.”

To do that, inside the curly brace, after the name, add a < , > and inside, a regular expression

\d+ .

src/Controller/StarshipApiController.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 19
20
21
22
23
24
25

This means: match a digit of any length. With this setup, if we refresh the wharf URL, we get a

404 error. Our route simply wasn't matched - no route matched - so our controller was never

called. But if we go back to /2 , that still works.

And as an added benefit, now that this only matches digits, we can add an int type to the

argument. Now, instead of the string 2 , we get the integer 2. These details aren't super

important, but I want you to know what options you have.

Restricting the Route HTTP Method

One thing that is common with APIs is to make routes only match a certain HTTP method, like

GET or POST . For example, if you want to fetch all the starships, users should make a GET

request... same if you want to fetch a single ship. If we kept building our API and created an

endpoint that could be used to create a new Starship , the standard way to do that would be to

use the same URL: /api/starships but with a POST request.

Right now, this wouldn't work. Every time the user requested /api/starships - no matter if

they use a GET or POST request, it would match this first route.

class StarshipApiController extends AbstractController
{

 #[Route('/api/starships/{id<\d+>}')]
 public function get(int $id): Response
 {
 dd($id);
 }
}

For that reason, it's common in an API to add a methods option set to an array, with GET or

POST . I'll do the same thing down here: methods: ['GET'] .

src/Controller/StarshipApiController.php

 // ... lines 1 - 9
10
11
12
13
 // ... lines 14 - 19
20
21
 // ... lines 22 - 24
25

I can't easily test this in a browser, but if we made a POST request to /api/starships/2 , it

would not match our route.

But we can see the change in our terminal. Run:

php bin/console debug:router

Perfect! Most routes match any method... but our two API routes only match if a GET request is

made to that URL.

Prefixing Every Route URL

Ok, I have one more routing trick to show you... and this is a fun one! Every route in this

controller starts with the same URL: /api/starships . Having the full URL in each route is fine.

But if we want, we can automatically prefix each route's URL. Above the class, add a #[Route]

attribute with /api/starships .

Unlike when we put this above a method, this does not create a route. It just says: every route in

this class should be prefixed with this URL. So for the first route, remove the path entirely. And

for the second, we only need the wildcard part.

class StarshipApiController extends AbstractController
{
 #[Route('/api/starships', methods: ['GET'])]
 public function getCollection(StarshipRepository $repository): Response

 #[Route('/api/starships/{id<\d+>}', methods: ['GET'])]
 public function get(int $id): Response

}

src/Controller/StarshipApiController.php

 // ... lines 1 - 9
10
11
12
13
14
 // ... lines 15 - 20
21
22
 // ... lines 23 - 25
26

Try debug:router again... and watch these URLs:

php bin/console debug:router

They don't change!

Finishing the new API Endpoint

Okay. Let's finish our endpoint. We need to find the one ship that matches this ID. Normally we'd

query the database: select * from ship where id = this ID. Our ships are hardcoded right

now, but we can still do something that will look pretty much exactly like what it will, once we do

have a database.

We already have a service - StarshipRepository - whose whole job is to fetch starship data.

Let's give it a new superpower: the ability to fetch a single Starship for an id. Add

public function find() with an int $id argument that will return a nullable Starship .

So, a Starship if we find one for this id, else null .

Right now, the easiest way write this logic is to loop over $this->findAll() as $starship ...

then if $starship->getId() === $id , return $starship . I'll change my uf to if . Much

better.

And if we didn't find anything, at the bottom, return null .

#[Route('/api/starships')]
class StarshipApiController extends AbstractController
{
 #[Route('', methods: ['GET'])]
 public function getCollection(StarshipRepository $repository): Response

 #[Route('/{id<\d+>}', methods: ['GET'])]
 public function get(int $id): Response

}

src/Repository/StarshipRepository.php

 // ... lines 1 - 7
8
9
 // ... lines 10 - 42
43
44
45
46
47
48
49
50
51
52
53

Thanks to this, our controller is so simple. First, autowire the repository by adding an argument:

StarshipRepository and just call it $repository . By the way, the order of arguments in a

controller doesn't matter.

Then $starship = $repository->find($id) . Finish at the bottom with

return $this->json($starship) .

src/Controller/StarshipApiController.php

 // ... lines 1 - 10
11
12
 // ... lines 13 - 21
22
23
24
25
26
27
28

I think we're ready! Refresh. It's perfect!

Triggering a 404 Page

But try an id that does not exist in our fake database - like /200 . The word null is... not what

we want. In this situation, we should return a response with a 404 status code.

class StarshipRepository
{

 public function find(int $id): ?Starship
 {
 foreach ($this->findAll() as $starship) {
 if ($starship->getId() === $id) {
 return $starship;
 }
 }

 return null;
 }
}

class StarshipApiController extends AbstractController
{

 public function get(int $id, StarshipRepository $repository): Response
 {
 $starship = $repository->find($id);

 return $this->json($starship);
 }
}

To do that, we're going to follow a common pattern: query for an object, then check if it returned

anything. If it did not return something, trigger a 404. Do that with throw

$this->createNotFoundException() . I'll pass this a message.

src/Controller/StarshipApiController.php

 // ... lines 1 - 10
11
12
 // ... lines 13 - 21
22
23
24
25
26
27
28
29
30
31
32

Notice the throw keyword: we're throwing a special exception that triggers a 404. That's nice

because, as soon as it hits this line, nothing after will be executed.

Try it out! Yes! A 404 response! The message - "Starship not found" - is only shown to

developers in dev mode. In production, a totally different page - or JSON - would be returned.

You can check the docs for details on production error pages.

Next: let's build the HTML version of this page, a page that shows details about a single

starship. Then we'll learn how to link between pages using the route name.

class StarshipApiController extends AbstractController
{

 public function get(int $id, StarshipRepository $repository): Response
 {
 $starship = $repository->find($id);

 if (!$starship) {
 throw $this->createNotFoundException('Starship not found');
 }

 return $this->json($starship);
 }
}

Chapter 12: Generating URLs

Let's create a "show page" for ships: a page that displays the details for just one ship. The

homepage lives in MainController . And so we could add another route and method here. But

as my site grows, I'm probably going to have multiple pages related to starships: maybe to edit

and delete them. So instead, in the Controller/ directory, create a new class. Call it

StarshipController , and, as usual, extend AbstractController .

Creating the Show Page

Inside, let's get to work! Add a public function called show() , I'll add the Response return

type, then the route, with /starships/ and a wildcard called {id} . And again, it's optional, but

I'll be fancy and add the \d+ so the wildcard only matches a number.

Now, because we have an {id} wildcard, we are allowed to have an $id argument down here.

dd($id) to see how we're doing so far.

src/Controller/StarshipController.php

 // ... lines 1 - 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Try it. Head to /starships/2 . Lovely!

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Attribute\Route;

class StarshipController extends AbstractController
{
 #[Route('/starships/{id<\d+>}')]
 public function show(int $id): Response
 {
 dd($id);
 }
}

Now we're going to do something familiar: take this $id and query our imaginary database for

the matching Starship . The key to doing this is our StarshipRepository service and its

helpful find() method.

In the controller, add a StarshipRepository $repository argument... then say $ship

equals $repository->find($id) . And if not $ship , trigger a 404 page with throw

$this->createNotFoundException() and starship not found .

Cool! At the bottom, instead of returning JSON, render a template: return $this->render()

and follow the standard naming convention for templates: starship/show.html.twig . Pass

this one variable: $ship .

src/Controller/StarshipController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Creating the Template

Controller, check! Next, in the templates/ directory, we could create a starship/ directory

and show.html.twig inside. But I want to show you a shortcut from the Symfony PhpStorm

plugin. Click on the template name, press Alt+Enter and... check it out! On top it says "Twig:

Create Template". Confirm the path and boom! We've got our new template! It's... hiding over

here. There it is: starship/show.html.twig .

use App\Repository\StarshipRepository;

class StarshipController extends AbstractController
{
 #[Route('/starships/{id<\d+>}')]
 public function show(int $id, StarshipRepository $repository): Response
 {
 $ship = $repository->find($id);
 if (!$ship) {
 throw $this->createNotFoundException('Starship not found');
 }

 return $this->render('starship/show.html.twig', [
 'ship' => $ship,
]);
 }
}

Pretty much every template starts the same: {% extend 'base.html.twig' %} ... then

override some blocks! Override title ... and this time, let's use that ship variable:

ship.name . Finish with endblock .

And for the main content, add the block body ... endblock and put an h1 inside. Print

ship.name again and... I'll paste in a table with some info.

templates/starship/show.html.twig

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Nothing special here: we're just printing basic ship data.

When we try the page... it's alive!

Linking Between Pages

Next question: from the homepage, how could we add a link to the new ship show page? The

most obvious option is to hardcode the URL, like /starships/ then the id. But there's a better

way. Instead, we're going to tell Symfony:

“Hey, I want to generate a URL to this route.”

{% extends 'base.html.twig' %}

{% block title %}{{ ship.name }}{% endblock %}

{% block body %}
 <h1>{{ ship.name }}</h1>

 <table>
 <tbody>
 <tr>
 <th>Class</th>
 <td>{{ ship.class }}</td>
 </tr>
 <tr>
 <th>Captain</th>
 <td>{{ ship.captain }}</td>
 </tr>
 </tbody>
 </table>
{% endblock %}

The advantage is that if we decide later to change the URL of this route, every link to this will

update automatically.

Let me show you. Find your terminal and run:

php bin/console debug:router

I haven't mentioned it yet, but every route has an internal name. Right now, they're being auto-

generated by Symfony, which is fine. But as soon as you want to generate a URL to a route, we

should take control of that name to make sure it never changes.

Find the show page route and add a name key. I'll use app_starship_show .

src/Controller/StarshipController.php

 // ... lines 1 - 9
10
11
12
13
 // ... lines 14 - 23
24

The name could be anything, but this is the convention I follow: app because it's a route that I'm

making in my app, then the controller class name and method name.

Naming a route doesn't change how it works. But it does let us generate a URL to it. Open up

templates/main/homepage.html.twig . Down here, turn the ship name into a link. I'll put this

onto multiple lines and add an a tag with href="" . To generate the URL, say {{ path() }}

and pass it the name of the route. I'll put the closing tag on the other side.

If we stop now, this won't quite work. On the homepage:

“Some mandatory parameters are missing - id - to generate a URL for route

app_starship_show .”

That makes sense! We're telling Symfony:

“Howdy! I want to generate a URL to this route.”

class StarshipController extends AbstractController
{
 #[Route('/starships/{id<\d+>}', name: 'app_starship_show')]
 public function show(int $id, StarshipRepository $repository): Response

}

Symfony then responds:

“Cool... except that this route has a wildcard in it. So like... what do you want me to put in the

URL for the id part?”

When there's a wildcard in the route, we need to add a second argument to path() with {} .

This is Twig's associative array syntax. So it's exactly like JavaScript: it's a key-value pair list.

Pass id set to myShip.id .

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
 // ... lines 6 - 20
21
 // ... lines 22 - 23
24
25
26
27
28
29
30
31
32
 // ... lines 33 - 44
45
46
47

And now... got it! Look at that URL: /starships/3 .

Alrighty, our site is still ugly. It's time to start fixing that by bringing in Tailwind CSS and learning

about Symfony's AssetMapper component.

{% block body %}

<div>

 <table>
 <tr>
 <th>Name</th>
 <td>
 <a href="{{ path('app_starship_show', {
 id: myShip.id
 }) }}">{{ myShip.name }}
 </td>
 </tr>

 </table>
</div>
{% endblock %}

Chapter 13: CSS & JavaScript with Asset Mapper

What about images, CSS and JavaScript? How does that work in Symfony?

Stuff in public is... Public

First off, the public/ directory is known as your document root. Anything inside public/ is

accessible to your end user. Anything not in public/ is not accessible, which is great! None of

our top secret source files can be downloaded by our users.

So if you want to create a CSS file or an image file or anything else, life can be as simple as

putting it in public/ . I can now go to /foo.txt ... and we see the file.

Hello Asset Mapper

However, Symfony has a great component called Asset Mapper that lets us effectively do the

same thing... but with some important, extra features. We have a few tutorials that go deeper

into this topic: one about Asset Mapper specifically and another about building things with Asset

Mapper called LAST Stack. Check those out to go deeper.

But let's dive into the friendly waters of Asset Mapper! Commit all your changes - I already have

- then install it with:

composer require symfony/asset-mapper

This recipe makes several changes... and we'll walk through each little-by-little as they're

important.

But already, if we move over and refresh, our background is blue! Inspect Element in your

browser and go to the console. We also have a console log!

“This log comes from assets/app.js . Welcome to asset mapper.”

https://symfonycasts.com/screencast/last-stack

Why thank you!

Asset Mapper's 2 Super Powers

Asset Mapper has two big superpowers. The first is that it helps us load CSS and JavaScript.

The recipe gave us a new assets/ directory with an app.js file and a styles/app.css file.

As we saw, the console log is coming from app.js .

assets/app.js

1
2
3
4
5
6
7
8
9

So this file is being loaded. It's also apparently including app.css , which is what gives us that

blue background.

assets/styles/app.css

1
2
3

We're going to talk more later about how these files are loaded and how this all works. But for

right now, it's enough to know that app.js and app.css are included on the page.

The second big superpower of Asset Mapper is a bit simpler. The recipe created a

config/packages/asset_mapper.yaml file. There's not a lot here:

config/packages/asset_mapper.yaml

1
2
3
4
5

just paths pointing to our assets/ directory. But because of this line, any file that we put in the

assets/ directory becomes available publicly. It's as if the assets/ directory physically lives

/*
 * Welcome to your app's main JavaScript file!
 *
 * This file will be included onto the page via the importmap() Twig function,
 * which should already be in your base.html.twig.
 */
import './styles/app.css';

console.log('This log comes from assets/app.js - welcome to AssetMapper! 🎉');

body {
 background-color: skyblue;
}

framework:
 asset_mapper:
 # The paths to make available to the asset mapper.
 paths:
 - assets/

inside public/ . This is useful because, along the way, Asset Mapper adds asset versioning: an

important frontend concept that we'll see in a minute.

Listing Assets & the Logical Path

But first, head to your terminal and run another new debug command:

php bin/console debug:asset

This shows every asset that's exposed publicly through Asset Mapper. Right now it's just two:

app.css and app.js .

If you download the course code from this page and unzip it, you'll find a tutorial/ directory

with an images/ subdirectory. I'll cut this... then paste into assets/ .

So now we have an assets/images/ directory with 5 files inside. And, by the way, you can

organize the assets/ directory however you want.

But now, spin back over and run debug:asset again:

php bin/console debug:asset

The new files are there!

Rendering an Image

On the left, see this "logical path"? That's the path we'll use to reference that file in Asset

Mapper.

I'll show you: let's render an img tag to the logo. Copy the starshop-logo.png logical path.

Then head into templates/base.html.twig . Right above the body block - so it's not

overridden by our page content - add an tag with src="" . Instead of trying to hardcode

a path, say {{ and use a new Twig function called asset() . Pass this the logical path.

That's it! Ok, I'll add an alt attribute... to be a good citizen of the web.

templates/base.html.twig

 // ... line 1
2
 // ... lines 3 - 13
14
15
16
17
18

Let's try this. Refresh and... it explodes!

“Did you forget to run composer require symfony/asset . Unknown function "asset".”

Remember: our app starts tiny. And then, as we need more features, we install more Symfony

components. And often, if you try to use a feature from a component that's not installed, it'll tell

you. The Twig asset() function comes from another tiny component called symfony/asset .

All we need to do is follow the advice. Copy the composer require command, spin over to

your terminal and run it:

composer require symfony/asset

When it finishes, move over and refresh. There's our logo!

Automatic Asset Versioning

The most interesting part? View the page source and check out the URL:

/assets/images/starshop-logo- then a long string of letters and numbers, .png . This string

is called the version hash and its generated based on the content of the file. That means that if

we update our logo later on, this hash will change automatically.

That's super important. Browsers like to cache images, JavaScript, and CSS files, which is

great: it helps performance. But when we change those files, we want our users to download the

new version: not keep using the outdated, cached version.

<html>

 <body>

 {% block body %}{% endblock %}
 </body>
</html>

But because the filename will change when we update the image, the browser is going to

automatically use the new one! It looks like this:

User goes to our site and downloads logo-abc123.png . Their browser caches it.

On the next visit, their browser sees the img tag for logo-abc123.png , finds the file in its

cache and uses it.

Then we come along, update that file and deploy.

The next time the user goes to our site, the img tag will be pointing at a different filename:

logo-def456.png . And since the browser doesn't have that file in its cache, it downloads it

fresh.

This is kind of a small detail, but it's also incredibly important to make sure our users are always

using the latest files. And the best part? It just works. Now that I've explained it, you'll never

need to think about this again.

Ok team, let's install & start using Tailwind CSS next.

Chapter 14: Tailwind CSS

What about CSS? You're free to add whatever CSS you want to app/styles/app.css . That

file is already loaded on the page.

Want to use Bootstrap CSS? Check out the Asset Mapper docs on how to do that. Or, if you

want to use Sass, there's a symfonycasts/sass-bundle to make that easy. Though, I recommend

not jumping into Sass too quickly. A lot of the features that Sass is famous for can now be done

in native CSS, like CSS variables and even CSS nesting.

Hello Tailwind

What's my personal choice for a CSS framework? Tailwind. And part of the reason is that

Tailwind is insanely popular. So if you're looking for resources or pre-built components, you're

going to have a lot of luck if you use Tailwind.

But Tailwind is a bit odd in one way: it's not simply a big CSS file that you plop onto your page.

Instead, it has a build process that scans your code for all the Tailwind classes you're using. It

then dumps a final CSS file that only contains the code you need.

In the Symfony world, if you want to use Tailwind, there's a bundle that makes it really easy.

Spin over your terminal and install a new package: composer require symfonycasts - hey I

know them - tailwind-bundle :

composer require symfonycasts/tailwind-bundle

For this package, the recipe doesn't do anything other than enable the new bundle. To get

Tailwind rocking, one time in your project, run:

php bin/console tailwind:init

https://github.com/symfonycasts/sass-bundle

This does three things. First, it downloads a Tailwind binary in the background, which you'll

never really need to think about. Second, it creates a tailwind.config.js file at the root of

our project. This tells Tailwind where it needs to look in our project for Tailwind CSS classes.

And third, it updated our app.css to add these three lines. These will be replaced by the real

Tailwind code in the background by the binary.

Running Tailwind

Finally, Tailwind needs to be built, so we need to run a command to do that:

php bin/console tailwind:build -w

This scans our templates and output the final CSS file in the background. The -w puts it in

"watch" mode: instead of building once and exiting, it watches our templates for changes. When

it notices any updates, it will automatically rebuild the CSS file. We'll see that in minute.

But we should already see a difference. Let's go to the homepage. Did you see that? The base

Tailwind code did a reset. For example, our h1 is now tiny!

Seeing Tailwind in Action

Let's try this out for real. Open templates/main/homepage.html.twig . Up on the h1 , make

this bigger by adding a class: text-2xl .

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
7
8
 // ... lines 9 - 46
47

As soon as we save that, you can see that tailwind noticed our change and rebuilt the CSS. And

when we refresh, it got bigger!

{% block body %}
<h1 class="text-2xl">
 Starshop: your monopoly-busting option for Starship parts!
</h1>

{% endblock %}

Our source app.css file is still super simple - just those few lines we saw earlier. But view the

page source and open the app.css that's being sent to our users. It's the built version from

Tailwind! Behind the scenes, some magic exists that replaces those three Tailwind lines with the

real Tailwind CSS code.

Automatically Running Tailwind with the symfony Binary

And... that's kind of it! It just works. Though there is an easier and more automatic way to run

Tailwind. Hit Ctrl+C on the Tailwind command to stop it. Then, at the root of our project, create a

file called .symfony.local.yaml . This is a config file for the symfony binary web server that

we're using. Inside, add workers , tailwind , then cmd set to an array with each part of a

command: symfony , console , tailwind , build , --watch , or you could use -w : it's the

same.

I haven't talked about it yet, but instead of running php bin/console , we can also run

symfony console followed by any command to get the same result. We'll talk about why you

might want to do that in a future tutorial. But for now, consider bin/console and

symfony console the same thing.

Also, by adding this workers key, it means that instead of us needing to run the command

manually, when we start the symfony web server, it will run it for us in the background.

Watch. In your first tab, hit Ctrl+C to stop the web server... then re-run

symfony serve

so it sees the new config file. Watch: there it is! It's running the tailwind command in the

background!

We can take advantage of this immediately. In homepage.html.twig , change this to

text-4xl , spin over and... it works! We don't even need to think about the tailwind:build

command anymore.

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
7
8
 // ... lines 9 - 46
47

And since we'll be styling with Tailwind, remove the blue background.

Copying in Styled Templates

Ok, this tutorial is not about Tailwind or how to design a website. Trust me, you do not want

Ryan leading the web design charge. But I do want to have a nice-looking site... and it's also

important to go through the process of working with a designer.

So let's pretend that someone else has created a design for our site. And they've even given us

some HTML with Tailwind classes for that design. If you download the course code, in a

tutorial/templates/ directory, we have 3 templates. One-by-one, I'm going to copy each file

and paste it over the original. Don't worry, we'll look at what's happening in each of these files.

{% block body %}
<h1 class="text-4xl">
 Starshop: your monopoly-busting option for Starship parts!
</h1>

{% endblock %}

templates/base.html.twig

1
2
3
4
5
6

7
8
9

10
11
12
13
14

15
16
17

18
19

20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>{% block title %}Welcome!{% endblock %}</title>
 <link rel="icon" href="data:image/svg+xml,<svg
xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 128 128%22><text
y=%221.2em%22 font-size=%2296%22>⚫</text></svg>">
 {% block stylesheets %}
 {% endblock %}

 {% block javascripts %}
{% block importmap %}{{ importmap('app') }}{% endblock %}
 {% endblock %}
 </head>
 <body class="text-white" style="background: radial-gradient(102.21% 102.21%
at 50% 28.75%, #00121C 42.62%, #013954 100%);">
 <div class="flex flex-col justify-between min-h-screen relative">
 <div>
 <header class="h-[114px] shrink-0 flex flex-col sm:flex-row
items-center sm:justify-between py-4 sm:py-0 px-6 border-b border-white/20
shadow-md">

 <img class="h-[42px]" src="{{ asset('images/starshop-
logo.png') }}" alt="starshop logo">

 <nav class="flex space-x-4 font-semibold">

 Home

 About

 Contact

 <a class="rounded-[60px] py-2 px-5 bg-white/10 hover:bg-
white/20" href="#">
 Get Started

 </nav>
 </header>
 {% block body %}{% endblock %}
 </div>
 <div class="p-5 bg-white/5 mt-3 text-center">
 Made with ❤ by <a class="text-[#0086C4]"
href="https://symfonycasts.com">SymfonyCasts

40
41
42
43

Do homepage.html.twig ...

 </div>
 </div>
 </body>
</html>

templates/main/homepage.html.twig

1
2
3
4
5
6
7
8

9
10
11
12
13

14
15
16
17
18
19

20

21
22
23
24

25
26
27
28
29
30
31
32
33
34
35

{% extends 'base.html.twig' %}

{% block title %}Starshop: Beam up some parts!{% endblock %}

{% block body %}
 <main class="flex flex-col lg:flex-row">
 <aside
 class="pb-8 lg:pb-0 lg:w-[411px] shrink-0 lg:block lg:min-h-screen
text-white transition-all overflow-hidden px-8 border-b lg:border-b-0 lg:border-r
border-white/20"
 >
 <div class="flex justify-between mt-11 mb-7">
 <h2 class="text-[32px] font-semibold">My Ship Status</h2>
 <button>
 <svg xmlns="http://www.w3.org/2000/svg" width="20"
height="20" viewBox="0 0 448 512"><!--!Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96c0-17.7
14.3-32 32-32s32 14.3 32 32V416c0 17.7-14.3 32-32 32s-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 0-45.3l128-128c12.5-12.5 32.8-12.5 45.3 0s12.5 32.8 0
45.3L109.3 224 288 224c17.7 0 32 14.3 32 32s-14.3 32-32 32l-178.7 0 73.4
73.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0l-128-128z"/></svg>
 </button>
 </div>

 <div>
 <div class="flex flex-col space-y-1.5">
 <div class="rounded-2xl py-1 px-3 flex justify-center w-32
items-center" style="background: rgba(255, 184, 0, .1);">
 <div class="rounded-full h-2 w-2 bg-amber-400 blur-[1px]
mr-2"></div>
 <p class="uppercase text-xs">in progress</p>
 </div>
 <h3 class="tracking-tight text-[22px] font-semibold">
 <a class="hover:underline" href="{{
path('app_starship_show', {
 id: myShip.id
 }) }}">{{ myShip.name }}
 </h3>
 </div>
 <div class="flex mt-4">
 <div class="border-r border-white/20 pr-8">
 <p class="text-slate-400 text-xs">Captain</p>
 <p class="text-xl">{{ myShip.captain }}</p>
 </div>

 <div class="pl-8">

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52

53
54

55

56

57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76

 <p class="text-slate-400 text-xs">Class</p>
 <p class="text-xl">{{ myShip.class }}</p>
 </div>
 </div>
 </div>
 </aside>

 <div class="px-12 pt-10 w-full">
 <h1 class="text-4xl font-semibold mb-8">
 Ship Repair Queue
 </h1>

 <div class="space-y-5">
 <!-- start ship item -->
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">
 <img class="h-[83px] w-[84px]" src="/images/status-
in-progress.png" alt="Status: in progress">
 <div class="ml-5">
 <div class="rounded-2xl py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">
 <div class="rounded-full h-2 w-2 bg-amber-400
blur-[1px] mr-2"></div>
 <p class="uppercase text-xs text-nowrap">in
progress</p>
 </div>
 <h4 class="text-[22px] pt-1 font-semibold">
 <a
 class="hover:text-slate-200"
 href="#"
 >USS LeafyCruiser
 </h4>
 </div>
 </div>
 <div class="flex justify-center min-[1174px]:justify-
start mt-2 min-[1174px]:mt-0 shrink-0">
 <div class="border-r border-white/20 pr-8">
 <p class="text-slate-400 text-xs">Captain</p>
 <p class="text-xl">Jean-Luc Pickles</p>
 </div>

 <div class="pl-8 w-[100px]">
 <p class="text-slate-400 text-xs">Class</p>
 <p class="text-xl">Garden</p>
 </div>
 </div>

77
78
79
80
81
82
83

84
85
86
87

and finally show.html.twig .

 </div>
 <!-- end ship item -->
 </div>

 <p class="text-lg mt-5 text-center md:text-left">
 Looking for your next galactic ride?
 Browse the {{
ships|length * 10 }} starships for sale!
 </p>
 </div>
 </main>
{% endblock %}

templates/starship/show.html.twig

1
2
3
4
5
6
7
8

9
10
11
12
13
14

15
16
17
18
19

20

21
22
23
24

25
26
27

28
29
30

31
32
33

{% extends 'base.html.twig' %}

{% block title %}{{ ship.name }}{% endblock %}

{% block body %}
<div class="my-4 px-8">

 <svg class="inline text-black" xmlns="http://www.w3.org/2000/svg"
height="16" width="14" viewBox="0 0 448 512"><!--!Font Awesome Free 6.5.1 by
@fontawesome - https://fontawesome.com License -
https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path
fill="#000" d="M9.4 233.4c-12.5 12.5-12.5 32.8 0 45.3l160 160c12.5 12.5 32.8 12.5
45.3 0s12.5-32.8 0-45.3L109.2 288 416 288c17.7 0 32-14.3 32-32s-14.3-32-32-32l-
306.7 0L214.6 118.6c12.5-12.5 12.5-32.8 0-45.3s-32.8-12.5-45.3 0l-160 160z"/>
</svg>
 Back

</div>
<div class="md:flex justify-center space-x-3 mt-5 px-4 lg:px-8">
 <div class="flex justify-center">
 <img class="max-h-[300px] md:max-h-[500px]" src="{{ asset('images/purple-
rocket.png') }}" alt="purple ship launching">
 </div>
 <div class="space-y-5">
 <div class="mt-8 max-w-xl mx-auto">
 <div class="px-8 pt-8">
 <div class="rounded-2xl py-1 px-3 flex justify-center w-32 items-
center bg-amber-400/10">
 <div class="rounded-full h-2 w-2 bg-amber-400 blur-[1px] mr-
2"></div>
 <p class="uppercase text-xs">{{ ship.status }}</p>
 </div>

 <h1 class="text-[32px] font-semibold border-b border-white/10 pb-
5 mb-5">
 {{ ship.name }}
 </h1>
 <h4 class="text-xs text-slate-300 font-semibold mt-2
uppercase">Spaceship Captain</h4>
 <p class="text-[22px] font-semibold">{{ ship.captain }}</p>

 <h4 class="text-xs text-slate-300 font-semibold mt-2
uppercase">Class</h4>
 <p class="text-[22px] font-semibold">{{ ship.class }}</p>

 <h4 class="text-xs text-slate-300 font-semibold mt-2
uppercase">Ship Status</h4>

34

35
36
37
38
39

 Tip

If you copy the files (instead of the file contents), Symfony's cache system may not notice

the change and you won't see the new design. If that happens, clear the cache by running

php bin/console cache:clear .

I'm going to delete the tutorial/ directory entirely so I don't get confused and edit the wrong

templates.

Ok, let's see what this did! Refresh. It looks beautiful! I love working inside a nice design. But...

some parts are broken. In homepage.html.twig , this is our ship repair queue... which looks

nice... but there's no Twig code! The status is hardcoded, name is hardcoded and there's no

loop.

 <p class="text-[22px] font-semibold">30,000 lys to next
service</p>
 </div>
 </div>
 </div>
</div>
{% endblock %}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 42
43
44
45
46
47
48
49
50

51

52

53
54

55

56

57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">
 <h1 class="text-4xl font-semibold mb-8">
 Ship Repair Queue
 </h1>

 <div class="space-y-5">
 <!-- start ship item -->
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">
 <img class="h-[83px] w-[84px]" src="/images/status-
in-progress.png" alt="Status: in progress">
 <div class="ml-5">
 <div class="rounded-2xl py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">
 <div class="rounded-full h-2 w-2 bg-amber-400
blur-[1px] mr-2"></div>
 <p class="uppercase text-xs text-nowrap">in
progress</p>
 </div>
 <h4 class="text-[22px] pt-1 font-semibold">
 <a
 class="hover:text-slate-200"
 href="#"
 >USS LeafyCruiser
 </h4>
 </div>
 </div>
 <div class="flex justify-center min-[1174px]:justify-
start mt-2 min-[1174px]:mt-0 shrink-0">
 <div class="border-r border-white/20 pr-8">
 <p class="text-slate-400 text-xs">Captain</p>
 <p class="text-xl">Jean-Luc Pickles</p>
 </div>

 <div class="pl-8 w-[100px]">
 <p class="text-slate-400 text-xs">Class</p>
 <p class="text-xl">Garden</p>
 </div>
 </div>
 </div>
 <!-- end ship item -->

79
 // ... lines 80 - 84
85
86
87

Next: let's take our new design and make it dynamic. We'll also learn how to organize things into

template partials and introduce a PHP enum, which are fun.

 </div>

 </div>
 </main>
{% endblock %}

Chapter 15: Twig Partials & for Loops

We just gave our site a design makeover... which means we updated our templates to include

HTML elements with a bunch of Tailwind classes. The result? A site that's easy on the eyes.

For some parts of the templates, things are still dynamic: we have Twig code to print out the

captain and class. But in other parts, everything is hard-coded. And... this is pretty typical: a

frontend developer might code up the site in HTML & Tailwind... but leave it for you to make it

dynamic and bring it to life.

Organizing into a Template Partial

At the top of homepage.html.twig , this long <aside> element is the sidebar. It's fine that this

code lives in homepage.html.twig ... but it does take up a lot of space! And what if we want to

reuse this sidebar on another page?

One great feature of Twig is the ability to take "chunks" of HTML and isolate them into their own

templates so you can reuse them. These are called template partials... since they hold code for

just part of the page.

Copy this code, and in the main/ directory - though this could go anywhere - add a new file

called _shipStatusAside.html.twig . Paste inside.

templates/main/_shipStatusAside.html.twig

1
2

3
4
5
6
7

8
9

10
11
12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

<aside
 class="pb-8 lg:pb-0 lg:w-[411px] shrink-0 lg:block lg:min-h-screen text-white
transition-all overflow-hidden px-8 border-b lg:border-b-0 lg:border-r border-
white/20"
>
 <div class="flex justify-between mt-11 mb-7">
 <h2 class="text-[32px] font-semibold">My Ship Status</h2>
 <button>
 <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20"
viewBox="0 0 448 512"><!--!Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96c0-17.7
14.3-32 32-32s32 14.3 32 32V416c0 17.7-14.3 32-32 32s-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 0-45.3l128-128c12.5-12.5 32.8-12.5 45.3 0s12.5 32.8 0
45.3L109.3 224 288 224c17.7 0 32 14.3 32 32s-14.3 32-32 32l-178.7 0 73.4
73.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0l-128-128z"/></svg>
 </button>
 </div>

 <div>
 <div class="flex flex-col space-y-1.5">
 <div class="rounded-2xl py-1 px-3 flex justify-center w-32 items-
center" style="background: rgba(255, 184, 0, .1);">
 <div class="rounded-full h-2 w-2 bg-amber-400 blur-[1px] mr-2">
</div>
 <p class="uppercase text-xs">in progress</p>
 </div>
 <h3 class="tracking-tight text-[22px] font-semibold">
 <a class="hover:underline" href="{{ path('app_starship_show', {
 id: myShip.id
 }) }}">{{ myShip.name }}
 </h3>
 </div>
 <div class="flex mt-4">
 <div class="border-r border-white/20 pr-8">
 <p class="text-slate-400 text-xs">Captain</p>
 <p class="text-xl">{{ myShip.captain }}</p>
 </div>

 <div class="pl-8">
 <p class="text-slate-400 text-xs">Class</p>
 <p class="text-xl">{{ myShip.class }}</p>
 </div>
 </div>
 </div>
</aside>

Back in homepage.html.twig , delete that, then include it with {{ - so the say something

syntax - include() and the name of the template: main/_shipStatusAside.html.twig .

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
7
 // ... lines 8 - 51
52
53

Try it out! And... no change! The include() statement is simple:

“Render this template and give it the same variables that I have”

If you're wondering why I prefixed the template with an underscore... no reason! It's just a

convention that helps me know that this template holds only a part of the page.

Looping over the Ships in Twig

In the homepage template, we can focus on the ship list below, which is this area. Right now,

there's just one ship... and it's hard-coded. Our intention is to list every ship that we're currently

repairing. And we do already have a ships variable that we're using at the bottom: it's an array

of Starship objects.

So for the first time in Twig, we need to loop over an array! To do that, I'll remove this comment,

and say {% - so the do something tag - then for ship in ships . ships is the array variable

we already have and ship is the new variable name in the loop that represents a single

Starship object. At the bottom, add {% endfor %} .

{% block body %}
 <main class="flex flex-col lg:flex-row">
 {{ include('main/_shipStatusAside.html.twig') }}

 </main>
{% endblock %}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
 // ... lines 16 - 43
44
45
 // ... lines 46 - 50
51
52
53

And already... when we try it, we get three hard-coded ships! That's an improvement!

Next: it's time for a plot twist that'll lead us to creating a PHP enum.

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}

 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

Chapter 16: PHP Enums

Inside the loop, making things dynamic is nothing new... which is great! For in progress, say

{{ ship.status }} . When we refresh, it prints! Though, yikes! The statuses are running way

out of their space. Our data doesn't match the design!

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
 // ... lines 16 - 43
44
45
 // ... lines 46 - 50
51
52
53

Plot twist! Someone changed the project's requirements... right in the middle! That "never"

happens! The new plan is this: each ship should have a status of in progress , waiting , or

completed . Over in src/Repository/StarshipRepository.php , our ships do have a

status - it's this argument - but it's a string that can be set to anything.

Creating an Enum

So we need to do some refactoring to fit the new plan. Let's think: there are exactly three valid

statuses. This a perfect use case for a PHP enum.

If you're not familiar with enums, they're lovely and a great way to organize a set of statuses -

like published, unpublished & draft - or sizes - small, medium or large - or anything similar.

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}

 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

In the Model/ directory - though this could live anywhere... we're creating the enum for our own

organization - create a new class and call it StarshipStatusEnum . As soon as I typed the word

enum, PhpStorm changed the template from class to an enum . So we're not creating a class,

as you can see, we created an enum

src/Model/StarshipStatusEnum.php

 // ... lines 1 - 2
3
4
5
6
 // ... lines 7 - 9
10

Add a : string to the enum to make what's called a "string-backed enum". We won't go too

deep, but this allows us to define each status - like WAITING and assign that to a string, which

will be handy in a minute. Add a status for IN_PROGRESS and finally one for COMPLETED .

src/Model/StarshipStatusEnum.php

 // ... lines 1 - 2
3
4
5
6
7
8
9

10

That's it! That's all an enum is: a set of "states" that get centralized in one place.

Next: open up the Starship class. The last argument is currently a string status. Change it

to be a StarshipStatusEnum . And at the bottom, the getStatus method will now return a

StarshipStatusEnum .

namespace App\Model;

enum StarshipStatusEnum: string
{

}

namespace App\Model;

enum StarshipStatusEnum: string
{
 case WAITING = 'waiting';
 case IN_PROGRESS = 'in progress';
 case COMPLETED = 'completed';
}

src/Model/StarshipStatusEnum.php

 // ... lines 1 - 2
3
4
5
6
7
8
9

10

Finally, in StarshipRepository where we create each Starship , my editor is angry. It says:

“Hey! This argument accepts a StarshipStatusEnum , but you're passing a string!”

Let's calm it down. Change this to StarshipStatusEnum:: ... and it autocomplete the choices!

Let's make the first one IN_PROGRESS . And that did add the use statement for the enum to the

top of the class. For the next one, make it COMPLETED ... and for the last, WAITING .

namespace App\Model;

enum StarshipStatusEnum: string
{
 case WAITING = 'waiting';
 case IN_PROGRESS = 'in progress';
 case COMPLETED = 'completed';
}

src/Repository/StarshipRepository.php

 // ... lines 1 - 5
6
 // ... lines 7 - 8
9

10
 // ... lines 11 - 14
15
16
 // ... lines 17 - 18
19
20
 // ... lines 21 - 24
25
26
27
 // ... lines 28 - 31
32
33
34
 // ... lines 35 - 38
39
40
41
42
 // ... lines 43 - 53
54

Refactoring done! Well... maybe. When we refresh, busted! It says:

“object of class StarshipStatusEnum could not be converted to string”

And it's coming from the ship.status Twig call.

That makes sense: ship.status is now an enum... which can't be directly printed as a string.

The easiest fix, in homepage.html.twig , is to add .value .

use App\Model\StarshipStatusEnum;

class StarshipRepository
{

 public function findAll(): array
 {

 return [
 new Starship(

 StarshipStatusEnum::IN_PROGRESS
),
 new Starship(

 StarshipStatusEnum::COMPLETED
),
 new Starship(

 StarshipStatusEnum::WAITING
),
];
 }

}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
16

17

 // ... line 18
19
20

 // ... line 21
22

23
 // ... lines 24 - 29
30
31
 // ... lines 32 - 42
43
44
45
 // ... lines 46 - 50
51
52
53

Because we made our enum string-backed, it has a value property, which will be the string that

we assigned to the current status. Try it now. It looks great! In progress, completed, waiting.

Next: let's learn how we can make this last change a bit more elegant by creating smarter

methods on our Starship class. Then we'll put the finishing touches on our design.

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">

 <div class="ml-5">
 <div class="rounded-2xl py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">

 <p class="uppercase text-xs text-nowrap">{{
ship.status.value }}</p>
 </div>

 </div>
 </div>

 </div>
 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

Chapter 17: Smart Model Methods & Making the
Design Dynamic

Adding the .value to the end of the enum to print it works like a charm. But I want to show

another, more elegant, solution.

Adding Smarter Model Methods

In Starship , it'll probably be common for us to want to get the string status of a Starship . To

make that easier, why not add a shortcut method here called getStatusString()? This will

return a string , and inside, return $this->status->value .

src/Model/Starship.php

 // ... lines 1 - 4
5
6
 // ... lines 7 - 40
41
42
43
44
45

Thanks to this, over in the template, we can shorten to ship.statusString .

class Starship
{

 public function getStatusString(): string
 {
 return $this->status->value;
 }
}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
16

17

 // ... line 18
19
20

 // ... line 21
22

23
 // ... lines 24 - 29
30
31
 // ... lines 32 - 42
43
44
45
 // ... lines 46 - 50
51
52
53

Oh, and this is more Twig smartness! There is no property called statusString on Starship !

But Twig doesn't care. It sees that there is a getStatusString() method and calls that.

Watch: when we refresh, the page still works. I really like this solution, so I'll copy that... and

repeat it up here for the alt attribute.

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">

 <div class="ml-5">
 <div class="rounded-2xl py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">

 <p class="uppercase text-xs text-nowrap">{{
ship.statusString }}</p>
 </div>

 </div>
 </div>

 </div>
 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
16

17

18

19
20

 // ... line 21
22

23
 // ... lines 24 - 29
30
31
 // ... lines 32 - 42
43
44
45
 // ... lines 46 - 50
51
52
53

And while we're fixing this, in show.html.twig , we print the status there too. So I'll make that

same change... then close this.

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">
 <img class="h-[83px] w-[84px]" src="/images/status-
in-progress.png" alt="Status: {{ ship.statusString }}">
 <div class="ml-5">
 <div class="rounded-2xl py-1 px-3 flex justify-
center w-32 items-center bg-amber-400/10">

 <p class="uppercase text-xs text-nowrap">{{
ship.statusString }}</p>
 </div>

 </div>
 </div>

 </div>
 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

templates/starship/show.html.twig

 // ... lines 1 - 4
5
 // ... lines 6 - 11
12
 // ... lines 13 - 15
16
17
18
19

 // ... line 20
21
22
 // ... lines 23 - 34
35
36
37
38
39

Finishing our Dynamic Template

Ok: let's finish making our homepage template dynamic: it's smooth space sailing from here. For

the ship name, {{ ship.name }} , for the captain, {{ ship.captain }} . And down here for

the class, {{ ship.class }} .

{% block body %}

<div class="md:flex justify-center space-x-3 mt-5 px-4 lg:px-8">

 <div class="space-y-5">
 <div class="mt-8 max-w-xl mx-auto">
 <div class="px-8 pt-8">
 <div class="rounded-2xl py-1 px-3 flex justify-center w-32 items-
center bg-amber-400/10">

 <p class="uppercase text-xs">{{ ship.statusString }}</p>
 </div>

 </div>
 </div>
 </div>
</div>
{% endblock %}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
16

17

 // ... line 18
19
 // ... lines 20 - 23
24
25
 // ... lines 26 - 27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
 // ... lines 46 - 50
51
52
53

Oh, and let's fill in the link: {{ path() }} then the name of the route. We're linking to the show

page for the ship, so the route is app_starship_show . And because this has an id wildcard,

pass id set to ship.id .

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">

 <div class="ml-5">

 <h4 class="text-[22px] pt-1 font-semibold">
 <a

 >{{ ship.name }}
 </h4>
 </div>
 </div>
 <div class="flex justify-center min-[1174px]:justify-
start mt-2 min-[1174px]:mt-0 shrink-0">
 <div class="border-r border-white/20 pr-8">
 <p class="text-slate-400 text-xs">Captain</p>
 <p class="text-xl">{{ ship.captain }}</p>
 </div>

 <div class="pl-8 w-[100px]">
 <p class="text-slate-400 text-xs">Class</p>
 <p class="text-xl">{{ ship.class }}</p>
 </div>
 </div>
 </div>
 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
16

17

 // ... line 18
19
 // ... lines 20 - 23
24
25
26
27

28
29
30
31
 // ... lines 32 - 42
43
44
45
 // ... lines 46 - 50
51
52
53

And now, so much better! It looks nice and we can click these links.

Dynamic Image Paths

But... the image is still broken. Earlier, when we copied the images into our assets/ directory, I

included three files for the three statuses. Up here, we are "kind of" pointing to the in progress

status... but this isn't the right way to reference images in the assets/ directory. Instead, say

{{ asset() }} and pass the path relative to the assets/ directory, called the "logical" path.

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">

 <div class="ml-5">

 <h4 class="text-[22px] pt-1 font-semibold">
 <a
 class="hover:text-slate-200"
 href="{{ path('app_starship_show', { id:
ship.id }) }}"
 >{{ ship.name }}
 </h4>
 </div>
 </div>

 </div>
 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

If we try that now... we're closer. But the "in progress" part needs to be dynamic based on the

status. One thing we could try is Twig concatenation: to add ship.status to the string. That is

possible, though it's a bit ugly.

Instead, let's revisit the solution we used a minute ago: making all the data about our Starship

easily accessible... from the Starship class.

Here's what I mean: add a public function getStatusImageFilename() that returns a

string.

src/Model/Starship.php

 // ... lines 1 - 4
5
6
 // ... lines 7 - 45
46
47
 // ... lines 48 - 52
53
54

Let's do all the logic for creating the filename right here. I'll paste in a match function.

This says: check $this->status and if it's equal to WAITING , return this string. If it's equal to

IN_PROGRESS return this string and so on.

src/Model/Starship.php

 // ... lines 1 - 4
5
6
 // ... lines 7 - 45
46
47
48
49
50
51
52
53
54

And exactly like before, because we have a getStatusImageFilename() method, we get to, in

Twig, pretend like we have a statusImageFilename property.

class Starship
{

 public function getStatusImageFilename(): string
 {

 }
}

class Starship
{

 public function getStatusImageFilename(): string
 {
 return match ($this->status) {
 StarshipStatusEnum::WAITING => 'images/status-waiting.png',
 StarshipStatusEnum::IN_PROGRESS => 'images/status-in-progress.png',
 StarshipStatusEnum::COMPLETED => 'images/status-complete.png',
 };
 }
}

templates/main/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 8
9
 // ... lines 10 - 13
14
15
16

17

18

 // ... lines 19 - 30
31
 // ... lines 32 - 42
43
44
45
 // ... lines 46 - 50
51
52
53

And now, we got it!

Last Details of Making the Design Dynamic

Final things! Let's fill in some missing links, like this logo should go to the homepage. Right

now... it goes nowhere.

Remember, when we want to link to a page, we need to make sure that route has a name. In

src/Controller/MainController.php ... our homepage does not have a name. Ok, it has an

auto-generated name, but we don't want to rely on that.

Add name: set to app_homepage . Or you could use app_main_homepage .

{% block body %}
 <main class="flex flex-col lg:flex-row">

 <div class="px-12 pt-10 w-full">

 <div class="space-y-5">
 {% for ship in ships %}
 <div class="bg-[#16202A] rounded-2xl pl-5 py-5 pr-11 flex
flex-col min-[1174px]:flex-row min-[1174px]:justify-between">
 <div class="flex justify-center min-[1174px]:justify-
start">
 <img class="h-[83px] w-[84px]" src="{{
asset(ship.statusImageFilename) }}" alt="Status: {{ ship.statusString }}">

 </div>

 </div>
 {% endfor %}
 </div>

 </div>
 </main>
{% endblock %}

src/Controller/MainController.php

 // ... lines 1 - 9
10
11
12
13
 // ... lines 14 - 22
23

To link the logo, in base.html.twig ... here it is... Use {{ path('app_homepage') }} .

templates/base.html.twig

1
2
 // ... lines 3 - 13
14

15
16
17

18
 // ... line 19
20
 // ... lines 21 - 34
35
 // ... line 36
37
 // ... lines 38 - 40
41
42
43

Copy that and repeat it below for another home link.

class MainController extends AbstractController
{
 #[Route('/', name: 'app_homepage')]
 public function homepage(StarshipRepository $starshipRepository): Response

}

<!DOCTYPE html>
<html>

 <body class="text-white" style="background: radial-gradient(102.21% 102.21%
at 50% 28.75%, #00121C 42.62%, #013954 100%);">
 <div class="flex flex-col justify-between min-h-screen relative">
 <div>
 <header class="h-[114px] shrink-0 flex flex-col sm:flex-row
items-center sm:justify-between py-4 sm:py-0 px-6 border-b border-white/20
shadow-md">

 </header>

 </div>

 </div>
 </body>
</html>

templates/base.html.twig

1
2
 // ... lines 3 - 13
14

15
16
17

18
 // ... line 19
20
21
22

23
24
 // ... lines 25 - 33
34
35
 // ... line 36
37
 // ... lines 38 - 40
41
42
43

We'll leave these other links for a future tutorial.

Back at the browser, click that logo! All good. The final missing link is over on the show page.

This "back" link should also go to the homepage. Open up show.html.twig . And up on top -

there it is - I'll paste that same link.

<!DOCTYPE html>
<html>

 <body class="text-white" style="background: radial-gradient(102.21% 102.21%
at 50% 28.75%, #00121C 42.62%, #013954 100%);">
 <div class="flex flex-col justify-between min-h-screen relative">
 <div>
 <header class="h-[114px] shrink-0 flex flex-col sm:flex-row
items-center sm:justify-between py-4 sm:py-0 px-6 border-b border-white/20
shadow-md">

 <nav class="flex space-x-4 font-semibold">
 <a class="hover:text-amber-400 pt-2" href="{{
path('app_homepage') }}">
 Home

 </nav>
 </header>

 </div>

 </div>
 </body>
</html>

templates/starship/show.html.twig

 // ... lines 1 - 4
5
6
7

8

9
10
11
 // ... lines 12 - 38
39

Ok team, the design is done! Congrats! Treat yourself to a tea... or latte... or donut or a walk

amongst nature to celebrate. Because this is huge! Our site looks and feels real. I'm thrilled.

Now we can focus on the finer details. Like, when we click this link, the sidebar is supposed to

collapse. To handle that, I want to introduce you to my favorite tool for writing JavaScript:

Stimulus.

{% block body %}
<div class="my-4 px-8">
 <a class="bg-white hover:bg-gray-200 rounded-xl p-2 text-black" href="{{
path('app_homepage') }}">
 <svg class="inline text-black" xmlns="http://www.w3.org/2000/svg"
height="16" width="14" viewBox="0 0 448 512"><!--!Font Awesome Free 6.5.1 by
@fontawesome - https://fontawesome.com License -
https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path
fill="#000" d="M9.4 233.4c-12.5 12.5-12.5 32.8 0 45.3l160 160c12.5 12.5 32.8 12.5
45.3 0s12.5-32.8 0-45.3L109.2 288 416 288c17.7 0 32-14.3 32-32s-14.3-32-32-32l-
306.7 0L214.6 118.6c12.5-12.5 12.5-32.8 0-45.3s-32.8-12.5-45.3 0l-160 160z"/>
</svg>
 Back

</div>

{% endblock %}

Chapter 18: Stimulus: Writing Pro JavaScript

We know how to write HTML in our templates. And we're handling CSS with Tailwind. What

about JavaScript? Well, like with CSS, there's an app.js file, and it's already included on the

page. So you can put whatever JavaScript you want right here.

But I highly recommend using a small, but mean, JavaScript library called Stimulus. It is one of

my absolute favorite things on the Internet. You take a part of your existing HTML and connect it

to a small JavaScript file, called a controller. This allows you to add behavior: like when you click

this button, the greet method on the controller will be called.

And that's really it! Sure, Stimulus has more features, but you already understand the core of

how it works. Despite its simplicity, this will let us build any JavaScript and user interface

functionality we need, in a reliable and predictable way. So let's get it installed.

Installing Stimulus

Stimulus is a JavaScript library, but Symfony has a bundle that helps integrate it. Over at your

terminal, if you want to see what the recipe does, commit your changes. I already have. Then

run:

composer require symfony/stimulus-bundle

When this finishes... the recipe did make some changes. Let's walk through the important ones.

The first is in app.js : our main JavaScript file. Open that up, there we go.

assets/app.js

1
2
3
4
5
6
7
8
9

10

It added an import on top - ./bootstrap.js - to a new file that lives right next to this.

assets/bootstrap.js

1
2
3
4
5

The purpose of this file is to start the Stimulus engine. Also, in importmap.php , the recipe

added the @hotwired/stimulus JavaScript package along with another file that helps boot up

Stimulus inside Symfony.

importmap.php

 // ... lines 1 - 15
16
 // ... lines 17 - 20
21
22
23
24
25
26
27

Finally, the recipe created an assets/controllers/ directory. This is where our custom

controllers will live. And it included a demo controller to get us started! Thanks!

import './bootstrap.js';
/*
 * Welcome to your app's main JavaScript file!
 *
 * This file will be included onto the page via the importmap() Twig function,
 * which should already be in your base.html.twig.
 */
import './styles/app.css';

console.log('This log comes from assets/app.js - welcome to AssetMapper! 🎉');

import { startStimulusApp } from '@symfony/stimulus-bundle';

const app = startStimulusApp();
// register any custom, 3rd party controllers here
// app.register('some_controller_name', SomeImportedController);

return [

 '@hotwired/stimulus' => [
 'version' => '3.2.2',
],
 '@symfony/stimulus-bundle' => [
 'path' => './vendor/symfony/stimulus-bundle/assets/dist/loader.js',
],
];

assets/controllers/hello_controller.js

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16

These controller files do have an important naming convention. Because this is called

hello_controller.js , to connect this with an element on the page, we'll use

data-controller="hello" .

How Stimulus Works

So here's how this works. As soon as Stimulus sees an element on the page with

data-controller="hello" , it will instantiate a new instance of this controller and call the

connect() method. So, this hello controller should automatically and instantly change the

content of the element it's attached to.

And we can already see this. Refresh the page. Stimulus is now active on our site. This means

it's watching for elements with data-controller . Let's do something wild: inspect element on

the page, find any element - like this anchor tag - and add data-controller="hello" . Watch

what happens when I click off to activate this change. Boom! Stimulus saw that element,

instantiated our controller and called the connect() method. And you can do this as many

times as you want on the page.

The point is: no matter how a data-controller element get on your page, Stimulus sees it.

So if we make an Ajax call that returns HTML and put that onto the page... yeah, Stimulus is

going to see that and our JavaScript is going to work. That's the key: when you write JavaScript

import { Controller } from '@hotwired/stimulus';

/*
 * This is an example Stimulus controller!
 *
 * Any element with a data-controller="hello" attribute will cause
 * this controller to be executed. The name "hello" comes from the filename:
 * hello_controller.js -> "hello"
 *
 * Delete this file or adapt it for your use!
 */
export default class extends Controller {
 connect() {
 this.element.textContent = 'Hello Stimulus! Edit me in
assets/controllers/hello_controller.js';
 }
}

with Stimulus, your JavaScript will always work, no matter how and when that HTML is added to

the page.

Creating a closeable Stimulus Controller

So let's use Stimulus to power our close button. Over in the assets/controller/ directory,

duplicate hello_controller.js and make a new one called closeable_controller.js .

I'll clear out almost everything and get down to the absolute basics: import Controller from

stimulus... then create a class that extends it.

assets/controllers/closeable_controller.js

1
2
3
 // ... lines 4 - 6
7

This doesn't do anything, but we can already attach it to an element on the page. Here's the

plan: we're going to attach the controller to the entire aside element. Then, when we click this

button, we'll remove the aside .

That element lives over in templates/main/_shipStatusAside.html.twig . To attach the

controller, add data-controller="closeable" . Oh, see that autocompletion? That comes

from a Stimulus plugin for PhpStorm.

templates/main/_shipStatusAside.html.twig

1
 // ... line 2
3
4
 // ... lines 5 - 35
36

If we move over and refresh, nothing will happen yet: the close button doesn't work. But open

your browser's console. Nice! Stimulus adds helpful debugging messages: that it's starting and

then - importantly closeable initialize , closeable connect .

This means that it did see the data-controller element and initialized that controller.

import { Controller } from '@hotwired/stimulus';

export default class extends Controller {

}

<aside

 data-controller="closeable"
>

</aside>

So back to our goal: when we click this button, we want to call code inside the closeable

controller that will remove the aside . In closeable_controller.js , add a new method

called, how about, close() . Inside, say this.element.remove() .

assets/controllers/closeable_controller.js

 // ... lines 1 - 2
3
4
5
6
7

In Stimulus, this.element will always be whatever element your controller is attached to. So,

this aside element. But otherwise, this code is standard JavaScript: every Element has a

remove() method.

To call the close() method, on the button, add data-action="" then the name of our

controller - closeable - a # sign, and the name of the method: close .

templates/main/_shipStatusAside.html.twig

1
 // ... line 2
3
4
5
 // ... line 6
7
8

9
10
 // ... lines 11 - 35
36

Animating the Close

export default class extends Controller {
 close() {
 this.element.remove();
 }
}

<aside

 data-controller="closeable"
>
 <div class="flex justify-between mt-11 mb-7">

 <button data-action="closeable#close">
 <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20"
viewBox="0 0 448 512"><!--!Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96c0-17.7
14.3-32 32-32s32 14.3 32 32V416c0 17.7-14.3 32-32 32s-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 0-45.3l128-128c12.5-12.5 32.8-12.5 45.3 0s12.5 32.8 0
45.3L109.3 224 288 224c17.7 0 32 14.3 32 32s-14.3 32-32 32l-178.7 0 73.4
73.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0l-128-128z"/></svg>
 </button>
 </div>

</aside>

That's it! Testing time. Click! Gone! But I want it be fancier! I want it to animate when closing

instead of being instant. Can we do that? Sure! And we don't need much JavaScript... because

modern CSS is amazing.

Over on the aside element, add a new CSS class - it could go anywhere - called

transition-all .

That's a Tailwind class that activates CSS transitions. This means that if certain style properties

change - like the width suddenly being set to 0 - it will transition that change, instead of instantly

changing it.

Also add overflow-hidden so that, as the width gets smaller, it doesn't create a weird scroll

bar.

If we try this now, it still closes instantly. That's because there's nothing to transition: we're not

changing the width... just removing the element.

But watch this. Inspect Element and find the aside : here it is. Manually change the width to 0.

Cool! You go tiny, big, tiny, big, tiny! The CSS side of things is working.

Back in our controller, instead of removing the element, we need to change the width to zero,

wait for the CSS transition to finish, then remove the element. We can do the first with

this.element.style.width = 0 .

templates/main/_shipStatusAside.html.twig

1
 // ... line 2
3
4
5
 // ... line 6
7
8

9
10
 // ... lines 11 - 35
36

The tricky part is waiting for the CSS transition to finish before removing the element. To help

with that, I'm going to paste a method at the bottom of our controller.

assets/controllers/closeable_controller.js

 // ... lines 1 - 2
3
4
5
 // ... lines 6 - 8
9

10
11
12
13
14
15
16

If you're not familiar, the # sign makes this a private method in JavaScript: a small detail. This

code looks fancy, but it has a simple job: to ask the element to tell us when all of its CSS

animations are finished.

Thanks to that, up here, we can say await this.#waitForAnimation() . And whenever you

use await , you need to put async on the function around this. I won't go into details about

<aside

 data-controller="closeable"
>
 <div class="flex justify-between mt-11 mb-7">

 <button data-action="closeable#close">
 <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20"
viewBox="0 0 448 512"><!--!Font Awesome Pro 6.5.1 by @fontawesome -
https://fontawesome.com License - https://fontawesome.com/license (Commercial
License) Copyright 2024 Fonticons, Inc.--><path fill="#fff" d="M384 96c0-17.7
14.3-32 32-32s32 14.3 32 32V416c0 17.7-14.3 32-32 32s-32-14.3-32-32V96zM9.4
278.6c-12.5-12.5-12.5-32.8 0-45.3l128-128c12.5-12.5 32.8-12.5 45.3 0s12.5 32.8 0
45.3L109.3 224 288 224c17.7 0 32 14.3 32 32s-14.3 32-32 32l-178.7 0 73.4
73.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0l-128-128z"/></svg>
 </button>
 </div>

</aside>

export default class extends Controller {
 async close() {
 this.element.style.width = '0';

 }

 #waitForAnimation() {
 return Promise.all(
 this.element.getAnimations().map((animation) => animation.finished),
);
 }
}

async , but that won't change how our code works.

assets/controllers/closeable_controller.js

 // ... lines 1 - 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Let's check the result! Refresh. And... I absolutely love that.

Next up, everyone wants a single page application, right? A site where there are zero full page

refreshes. But to build one, don't we need to use a JavaScript framework like React? No! We're

going to transform our app into a single page application in... about 3 minutes with Turbo.

export default class extends Controller {
 async close() {
 this.element.style.width = '0';

 await this.#waitForAnimation();
 this.element.remove();
 }

 #waitForAnimation() {
 return Promise.all(
 this.element.getAnimations().map((animation) => animation.finished),
);
 }
}

Chapter 19: Turbo: Your Single Page App

When I build a UI, I want it to be beautiful, interactive, and smooth. Personally, I choose not to

use front-end frameworks like React or Vue or Next. But you can... and there's nothing wrong

with them: those are great tools. Also, building an API in Symfony is awesome!

But if you want to build your HTML in Twig - like I love doing - we can absolutely have a super-

rich, responsive, interactive user interface!

One big piece of a fancy interface is removing full-page reloads. Right now, when I click around,

watch: it's fast, but these are full-page reloads. Those don't happen if you use something like

React or Vue.

To eliminate those, we're going to use another library from the same people that made Stimulus

called Turbo. Turbo can do a lot of things, but its main job is to eliminate full-page refreshes.

Like Stimulus, it's a JavaScript library. And also like Stimulus, Symfony has a bundle that helps

integrate it.

Installing Turbo

Find your terminal and run:

composer require symfony/ux-turbo

This time, the recipe made two interesting changes. I'll show you. The first is in

importmap.php : it added the @hotwired/turbo JavaScript package.

importmap.php

 // ... lines 1 - 15
16
 // ... lines 17 - 26
27
28
29
30

The second change is in assets/controllers.json . We didn't talk about this file before, but it

was added by the StimulusBundle recipe: it's a way to activate Stimulus controllers that live

inside third-party packages.

assets/controllers.json

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

So the symfony/ux-turbo PHP package we just installed has a JavaScript controller inside

called turbo-core . And because we have enabled: true here, it means that controller is

now registered and available: it's as if it lived in our assets/controllers/ directory.

Now we're not going to use this controller directly - we're not going to attach it to an element.

But the fact that it's being loaded & registered with Stimulus is enough to activate Turbo on our

site.

Full Page Refreshes Gone

What the heck does that mean? It's like magic: give the page a refresh, and bam! Full-page

reloads vanish! Watch up here: when I click back, you won't see it reload. Boom! It's super fast

return [

 '@hotwired/turbo' => [
 'version' => '7.3.0',
],
];

{
 "controllers": {
 "@symfony/ux-turbo": {
 "turbo-core": {
 "enabled": true,
 "fetch": "eager"
 },
 "mercure-turbo-stream": {
 "enabled": false,
 "fetch": "eager"
 }
 }
 },
 "entrypoints": []
}

and all happening via Ajax.

Here's how it works. When we click this link, Turbo intercepts the click and, instead of a full page

reload, it makes an Ajax call to that page. That Ajax call returns the full HTML for that page and

then Turbo puts that onto this page.

That small thing transforms our project into a single page application and makes a big difference

with how fast our site feels.

AJAX Calls & the Web Debug Toolbar

But there's one more thing. I'll refresh so we can see it. Whenever you make an Ajax call in a

Symfony app - whether it's via Turbo or any other way - the Web Debug Toolbar notices that.

Watch right around here when I click. Check that out! We have a running list of all the Ajax calls

made on this page. And if we want to see the profiler for any of those Ajax requests, we can

click the link.

And yeah... there we are. Here's the Ajax request that was made for the homepage. Though

with Turbo, you don't even need to rely on this trick because, as we click around, this entire bar

is replaced by the new Web Debug Toolbar for the page.

Oh, and get this: in Turbo 8, which is out now, your site will feel even faster. That's thanks to a

new feature called Instant Click. With this, when you hover over a link, Turbo makes an Ajax call

to that page before you click. Then, when you do click, it loads instantly... or at least has a head

start.

Turbo has a lot of other features, and we use a bunch of them in our LAST Stack Tutorial where

we build a frontend with popovers, modals, toast notifications, and more.

Turbo Requires Good JavaScript

But one note about Turbo. Because full page reloads are gone, your JavaScript needs to be

built in a way to handle that. A lot of JavaScript expects full page reloads... and if HTML is

suddenly added to the page without a reload, it breaks. The good news is that if you write your

JavaScript in Stimulus, you're good.

https://symfonycasts.com/screencast/last-stack

Watch. No matter how we get to the homepage, our JavaScript to close the sidebar just keeps

working.

Alright squad, we're on the home stretch! Before we finish, I want to do one last bonus chapter

where we play with Symfony's awesome generation tool: MakerBundle.

Chapter 20: Maker Bundle: Let's Generate Some
Code!

Hats off for nearly making it through the first Symfony tutorial. You've taken a huge step toward

building whatever you want on the web. To celebrate, I want to play with MakerBundle:

Symfony's awesome tool for code generation.

Composer require vs require-dev

Let's get it installed:

composer require symfony/maker-bundle --dev

We haven't seen that --dev flag yet, but it's not that important. Move over and open

composer.json . Thanks to the flag, instead of symfony/maker-bundle going under the

require key, it was added down here under require-dev .

composer.json

1
 // ... lines 2 - 84
85
 // ... line 86
87
 // ... lines 88 - 89
90
91

By default, when you run composer install , it will download everything under both require

and require-dev . But require-dev is meant for packages that don't need to be available on

production: packages that you only need when you're developing locally. That's because, when

you do deploy, if you want, you can tell Composer:

“Hey! Only install the packages under my require key: don't install the require-dev stuff.”

{

 "require-dev": {

 "symfony/maker-bundle": "^1.52",

 }
}

That can give you a small performance boost on production. But mostly, it's not a big deal.

The Maker Commands

Now, we just installed a bundle. Do you remember the main thing that bundles give us? That's

right: services. This time, the services that MakerBundle gave us are services that provide new

console commands. Drumroll please. Run:

php bin/console

Or, actually, I'll start running symfony console , which is the same thing. Thanks to the new

bundle, we have a ton of commands that start with make ! Commands for generating a security

system, making a controller, generating doctrine entities to talk to the database, forms, listeners,

a registration form.... lots and lots of stuff!

Generating a Console Command

Let's use one of these to make our own custom console command. Run:

symfony console make:command

This will interactively ask us about our command. Let's call it: app:ship-report . Done!

This created exactly one file: src/Command/ShipReportCommand.php . Let's go check that out!

src/Command/ShipReportCommand.php

 // ... lines 1 - 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44

namespace App\Command;

use Symfony\Component\Console\Attribute\AsCommand;
use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;
use Symfony\Component\Console\Style\SymfonyStyle;

#[AsCommand(
 name: 'app:ship-report',
 description: 'Add a short description for your command',
)]
class ShipReportCommand extends Command
{
 public function __construct()
 {
 parent::__construct();
 }

 protected function configure(): void
 {
 $this
 ->addArgument('arg1', InputArgument::OPTIONAL, 'Argument
description')
 ->addOption('option1', null, InputOption::VALUE_NONE, 'Option
description')
 ;
 }

 protected function execute(InputInterface $input, OutputInterface $output):
int
 {
 $io = new SymfonyStyle($input, $output);
 $arg1 = $input->getArgument('arg1');

 if ($arg1) {
 $io->note(sprintf('You passed an argument: %s', $arg1));
 }

 if ($input->getOption('option1')) {
 // ...
 }

45

46
47
48
49

Cool! This is a normal class - it is a service, by the way - but with an attribute above:

#[AsCommand] . This tells Symfony:

“Yo! See this service? It's not just a service: I would like you to include it in the list of console

commands.”

The attribute includes the name of the command and a description. Then the class itself has a

configure() method where we can add arguments and options. But the main part is that,

when somebody calls this command, Symfony will call execute() .

This $io variable is cool. It lets us output things - like $this->note() or $this->success() -

with different styles. And though we don't see it here, we can also ask the user questions

interactively.

The best part? Just by creating this class, it's ready to use! Try it out:

symfony console app:ship-report

That's so cool! The message down here comes from the success message at the bottom of the

command. And thanks to configure() , we have one argument called arg1 . Arguments are

string that we pass after the command, like:

symfony console app:ship-report ryan

It says:

“You passed an argument: ryan”

... which comes from this spot in the command.

 $io->success('You have a new command! Now make it your own! Pass --help
to see your options.');

 return Command::SUCCESS;
 }
}

Building a Progress Bar

There are a lot of fun things you can do with commands... and I want to play with one of them.

One of the superpowers of the $io object is to create animated progress bars.

Imagine we're building a ship report... and it requires some heavy queries. So we want to show

a progress bar on the screen. To do that, say $io->progressStart() and pass it however

many rows of data we're looping through and handling. Let's pretend we're looping over 100

rows of data for this report.

Instead of looping over real data, create a fake loop with for . I'm even going to include the $i

variable in the middle! Inside, to advance the progress bar, say $io->advance() . Then, here is

where we would do our heavy query or heavy work. Fake that with a usleep(10000) to create

a short pause.

After the loop, finish with $io->progressFinish() .

src/Command/ShipReportCommand.php

 // ... lines 1 - 16
17
18
 // ... lines 19 - 31
32

33
 // ... lines 34 - 44
45
46
47
48
49
50
 // ... lines 51 - 54
55
56

That's it! Spin over and give that a try:

symfony console app:ship-report ryan

Oh, that is so cool.

class ShipReportCommand extends Command
{

 protected function execute(InputInterface $input, OutputInterface $output):
int
 {

 $io->progressStart(100);
 for ($i = 0; $i < 100; ++$i) {
 $io->progressAdvance();
 usleep(10000);
 }
 $io->progressFinish();

 }
}

And... that's it people! Give yourself a high five... or, better, surprise a co-worker with a jumping

high five! Then celebrate with a well-deserved beer, tea, walk around the block or frisbee match

with your dog. Because... you did it! You took the first big step into being dangerous with

Symfony. Then, come back and try this stuff out: play with it, build a blog, create a few static

pages, anything. That will make a huge difference.

And if you ever have any questions, we watch the comment section below each video closely

and answer everything. Also keep going! In the next tutorial, we're going to become even more

dangerous by diving deeper into Symfony's configuration and services: the systems that drive

everything you'll do in Symfony.

Alright, friends, see you next time!

With <3 from SymfonyCasts

