
Harmonious Development with

Symfony 6

Chapter 1: Hello Symfony

Welcome. Hello. Hi, my name is Ryan and I have the absolute pleasure to introduce you to the

beautiful and fascinating and productive world of Symfony 6. Seriously, I feel like Willie Wonka

inviting you into my chocolate factory, except with hopefully less sugar-related injuries. Anyways,

if you're new to Symfony, I'm... honestly a bit jealous! You're going to love the journey... and

hopefully become an even better developer along the way: you're definitely going to build some

cool stuff.

The secret sauce of Symfony is that it starts tiny, which makes it easy to learn. But then, it

scales up its features automatically through a unique recipe system. In Symfony 6, those

features include new JavaScript tools and a new security system... just to name two of the many

new things.

Symfony is also lightning fast with a huge focus on creating a joyful developer experience, but

without sacrificing programming best practices. Yea: you get to love coding and love your code.

I know... that sounded cheesy, but it's true.

So come with me and you'll be in a world of pure elucidation.

That's my first time singing in these tutorials... and maybe my last. Let's get started.

Installing the "symfony" Binary

Head over to https://symfony.com/download. On this page, you'll find some instructions - which

will differ based on your operating system - on how to download something called the Symfony

binary.

This is... not actually Symfony. It's just a command line tool that will help us start new Symfony

projects and give us some nice local development tools. It's optional, but I highly recommend it!

Once you've installed this - I already have - open up your favorite terminal app. I'm using iTerm

for mac, but it doesn't matter. If you got everything set up correctly, you should be able to run:

https://symfony.com/download

symfony

Or even better:

symfony list

to see a list of all the "things" that this symfony binary can do. There's a lot of stuff here: things

that help with "local" development... and also some optional services for deployment. We'll walk

through the stuff you need to know along the way.

Let's Start a Symfony App!

Ok, so we want to start a brand new shiny Symfony app. To do that run:

symfony new mixed_vinyl

Where "mixed_vinyl" is the directory the new app will be downloaded into. That's our top-secret

project to combine the best part of the 90's - no, not dial-up internet, I'm talking about mix tapes

- with the auditory delight of records. More on that later.

Behind the scenes, this command uses composer - that's PHP's package manager - to create

the new project. More on that later.

The end-result is that we can move into our new mixed_vinyl directory. Open this folder up in

your favorite editor. I'm using PhpStorm and I highly recommend it.

Meeting our new Project

So what did that symfony new command do? It bootstrapped a new Symfony project! Ooh. And

we already have a git repository. Run:

git status

Yep: on branch main, nothing to commit. Try:

git log

Cool. After downloading the new project, the command committed all of the original files

automatically... which was very nice of it. Though I do wish that first commit message was a bit

more rock n' roll.

What I really want to show you is that our new project is super small! Try this command:

git show --name-only

Yup! Our entire project is... about 17 files. And we'll learn about all of these along the way. But I

want you to feel comfortable: there's not a lot of code here.

We're going to add features little-by-little. But if you did want to start with a bigger, more fully-

featured project, you can do that by running that symfony new command with --webapp .

 Tip

If you want a fully-dockerized new Symfony app, check out

https://github.com/dunglas/symfony-docker

Checking System Requirements

Before we jump into coding, let's make sure our system is ready. Run another command from

the symfony binary:

symfony check:req

https://github.com/dunglas/symfony-docker

Looks good! If your PHP install is missing any extensions... or there are any other problems...

like your computer is actually a teapot, this will let you know.

Starting the Dev Web Server

So: we have a new Symfony app over here... and our system is ready! All we need now is a

subwoofer. I mean web server! You can set up a real web server like Nginx or something trendy

like Caddy. But for local development, the Symfony binary can help us. Run:

symfony serve -d

And... we have a web server running! Come back!

The first time you run this, it might ask you to run a different command to set up an SSL

certificate, which is nice because then the server supports https.

Moment of truth! Copy the URL, spin over to your browser, hold your breath and woo! Hello

Symfony 6 welcome page... complete with fancy color changes whenever we reload.

Next: let's meet - and become friends with - the code inside our app, so we can demystify what

each part does. Then we'll code.

Chapter 2: Meet our Tiny App

Let's get to know our new project because my ultimate goal is for you to really understand how

things work. As I mentioned, there isn't a lot here yet... about 15 files. And there are really only

three directories that we ever need to think or worry about.

The public/ Directory

The first is public/ ... and this is simple: it's the document root. In other words, if you need a

file to be publicly accessible - like an image file or a CSS file - it needs to live inside public/ .

Right now, this holds exactly one file: index.php , which is called the "front controller".

public/index.php

1
2
3
4
5
6
7
8
9

Ooo. That's a fancy word that means that - no matter what URL the user goes to - this is the

script that's always executed first. Its job is to boot up Symfony and run our app. And now that

we've looked at it, we'll probably never need to think about or open it ever again.

config/ & src/

And, really, other than putting CSS or image files into public/ , this is not a directory you will

deal with on a day-to-day basis. Which means... I kinda lied! There are really only two

directories that we need to think about: config/ and src/ .

<?php

use App\Kernel;

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

return function (array $context) {
 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);
};

The config/ directory holds... kittens! Oh, I wish. Nah, it holds config files. And src/ holds

100% of your PHP classes. We will spend 95% of our time inside the src/ directory.

composer.json & vendor/

Okay... so where is "Symfony"? Our project started with a composer.json file. This lists all of

the third party libraries that our app needs. The "symfony new" command that we ran secretly

used "Composer" - that's PHP's package manager - to install these libraries... which is really just

a way of saying that Composer downloaded these libraries into the vendor/ directory.

 Go Deeper!

If you're not familiar with Composer package manager - check out our separate course

called Wonderful World of Composer.

Symfony itself is actually a collection of a bunch of small libraries that each solve a specific

problem. In the vendor/symfony/ directory, it looks like we already have about 25 of these.

Technically our app only requires these six packages, but some of those packages require other

packages... and Composer is smart enough to download everything we need.

Anyways, "Symfony", or really, a set of Symfony libraries, lives in the vendor/ directory and our

new app leverages that code to do its job. We're going to talk more about Composer and

installing third party packages later. But for the most part, vendor/ is yet another directory

that... we don't need to worry about!

bin/ and var/

So what's left? Well, bin/ holds exactly one file... and will always hold just this one file. We'll

talk about what bin/console does a bit later. And the var/ directory holds cache and log files.

Those files are important... but we will never need to look at or think about that stuff.

Yup, we're going to live pretty much entirely inside of the config/ and src/ directories.

PhpStorm Setup

https://symfonycasts.com/screencast/composer

Ok, one last piece of homework before we start coding. Feel free to use whatever code editor

you want: PhpStorm, VS Code, code carrier pigeon, whatever. But I highly recommend

PhpStorm. It makes developing with Symfony a dream... and they're not even paying me to say

that! Though, if they do want to start paying me, I accept payment in stroopwafels.

Part of what makes PhpStorm so great is a plugin that's designed specifically for Symfony. I'll go

to my PhpStorm preferences and, inside, find Plugins, Marketplace then search for Symfony.

Here it is. This plugin is amazing.... which you can see because it's been downloaded 5.4 million

times! It adds tons of crazy auto-completion features that are specific to Symfony.

If you don't have it already, get it installed. Once it is installed, go back to Settings and search

up here for "Symfony" to find a new Symfony area. The one trick about this plugin is that you

need to enable it for each project. So click that check box. Also, it's not too important, but

change the web directory to public/ .

Hit Ok and... we are ready! Let's bring our app to life by creating our very first page next.

Chapter 3: Routes, Controllers & Responses

I gotta say, I miss the 90's. Well, not the beanie babies and... definitely not the way I dressed

back then, but... the mix tapes. If you weren't a kid in the 80's or 90's, you may not know how

hard it was to share your favorite tunes with your friends. Oh yea, I'm talking about a Michael

Jackson, Phil Collins, Paula Abdul mashup. Perfection.

To capitalize off of that nostalgia, but with a hipster twist, we're going to create a brand new app

called Mixed Vinyl: a store where users can create mix tapes - complete with Boyz || Men,

Mariah Carey and Smashing Pumpkins... except pressed onto a vinyl record. Hmm, I might

need to put a record player in my car.

The page we're looking at, which is super cute and changes colors when we refresh... is not a

real page. It's just a way for Symfony to say "hi" and link us to the documentation. And by the

way, Symfony's documentation is great, so definitely check it out as you're learning.

Routes & Controllers

Ok: every web framework in any language has the same job: to help us create pages, whether

those are HTML pages, JSON API responses or ASCII art. And pretty much every framework

does this in the same way: via a route & controller system. The route defines the URL for the

page and points to a controller. The controller is a PHP function that builds that page.

So route + controller = page. It's math people.

Creating the Controller

We're going to build these two things... kind of in reverse. So first, let's create the controller

function. In Symfony, the controller function is always a method inside of a PHP class. I'll show

you: in the src/Controller/ directory, create a new PHP class. Let's call it

VinylController , but the name could be anything.

src/Controller/VinylController.php

1
2
3
4
5
6
7

And, congrats! It's our first PHP class! And guess where it lives? In the src/ directory, where all

PHP classes will live. And for the most part, it doesn't matter how you organize things inside

src/ : you can usually put things into whatever directory you want and name the classes

whatever you want. So flex your creativity.

 Tip

Controllers actually do need to live in src/Controller/ , unless you change some config.

Most PHP classes can live anywhere in src/ .

But there are two important rules. First, notice the namespace that PhpStorm added on top of

the class: App\Controller . However you decide to organize your src/ directory, the

namespace of a class must match the directory structure... starting with App . You can imagine

that the App\ namespace points to the src/ directory. Then, if you put a file in a Controller/

sub-directory, it needs a Controller part in its namespace.

If you ever mess this up, like you typo something or forget this, you're gonna have a bad time.

PHP will not be able to find the class: you'll get a "class not found" error. Oh, and the other rule

is that the name of a file must match the class name inside of it, plus .php . Hence,

VinylController.php . We'll follow those two rules for all files we create in src/ .

Creating the Controller

Back to our job of creating a controller function. Inside, add a new public method called

homepage() . And no, the name of this method doesn't matter either: try naming it after your cat:

it'll work!

For now, I'm just going to put a die() statement with a message.

<?php

namespace App\Controller;

class VinylController
{
}

src/Controller/VinylController.php

1
2
3
4
5
6
7
8
9

10
11

Creating the Route

Good start! Now that we have a controller function, let's create a route, which defines the URL

to our new page and points to this controller. There are a few ways to create routes in Symfony,

but almost everyone uses attributes.

Here's how it works. Right above this method, say #[] . This is the PHP 8 attribute syntax,

which is a way to add configuration to your code. Start typing Route . But before you finish that,

notice that PhpStorm is auto-completing it. Hit tab to let it finish.

That, nicely, completed the word Route for me. But more importantly, it added a use statement

up on top. Whenever you use an attribute, you must have a corresponding use statement for it

at the top of the file.

Inside Route , pass / , which will be the URL to our page.

<?php

namespace App\Controller;

class VinylController
{
 public function homepage()
 {
 die('Vinyl: Definitely NOT a fancy-looking frisbee!');
 }
}

src/Controller/VinylController.php

1
2
3
4
5
6
7
8
9

10
11
12
13
14

And... done! This route defines the URL and points to this controller... simply because it's right

above this controller.

Let's try it! Refresh and... congratulations! Symfony looked at the URL, saw that it matched the

route - / or no slash is the same for the homepage - executed our controller and hit the die

statement!

Oh, and by the way, I keep saying controller function. That's commonly just called the

"controller" or the "action"... just to confuse things.

Returning a Response

Ok, so inside of the controller - or action - we can write whatever code we want to build the

page, like make database queries, API calls, render a template, whatever. We are going to do all

of that eventually.

The only thing that Symfony cares about is that your controller returns a Response object.

Check it out: type return and then start typing Response . Woh: there are quite a few

Response classes already in our code... and two are from Symfony! We want the one from

HTTP foundation. HTTP foundation is one of those Symfony libraries... and it gives us nice

classes for things like the Request, Response and Session. Hit tab to auto-complete and finish

that.

Oh, I should have said return new response. That's better. Now hit tab. When I let Response

auto-complete the first time, very importantly, PhpStorm added this use statement on top. Every

<?php

namespace App\Controller;

use Symfony\Component\Routing\Annotation\Route;

class VinylController
{
 #[Route('/')]
 public function homepage()
 {
 die('Vinyl: Definitely NOT a fancy-looking frisbee!');
 }
}

time we reference a class or interface, we will need to add a use statement to the top of the file

we're working in.

By letting PhpStorm auto-complete that for me, it added the use statement automatically. I'll do

that every time I reference a class. Oh, and if you're still a bit new to PHP namespaces and use

statements, check out our short and free PHP namespaces tutorial.

Anyways, inside of Response , we can put whatever we want to return to the user: HTML, JSON

or, for now, a simple message, like the title of the Mixed vinyl we're working on: PB and jams.

src/Controller/VinylController.php

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ok team, let's see what happens! Refresh and... PB and Jams! It may not like much, but we just

built our first fully-functional Symfony page! Route + controller = profit!

And you've just learned the most foundational part of Symfony... and we're just getting started.

Oh, and because our controllers always return a Response object, it's optional, but you can add

a return type to this function if you want to. But that doesn't change anything: it's just a nice way

to code.

src/Controller/VinylController.php

 // ... lines 1 - 9
10
11
 // ... lines 12 - 16

Next I'm feeling pretty confident. So let's create another page, but with a much fancier route that

matches a wildcard pattern.

<?php

namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class VinylController
{
 #[Route('/')]
 public function homepage()
 {
 return new Response('Title: "PB and Jams"');
 }
}

 #[Route('/')]
 public function homepage(): Response

https://symfonycasts.com/screencast/php-namespaces

Chapter 4: Wildcard Routes

The homepage will eventually be the place where a user can design and build their next sweet

mix tape. But in addition to creating new tapes, users will also be able to browse other people's

creations.

Creating a Second Page

Let's make a second page for that. How? By adding a second controller: public function, how

about browse : the name doesn't really matter. And to be responsible, I'll add a Response return

type.

Above this, we need our route. This will look exactly the same, except set the URL to /browse .

Inside the method, what do we always return from a controller? That's right: a Response object!

Return a new Response ... with a short message to start.

src/Controller/VinylController.php

 // ... lines 1 - 7
8
9
 // ... lines 10 - 15
16
17
18
19

20
21

Let's try it! If we refresh the homepage, nothing changes. But if we go to /browse ... we're

crushing it! A second page in under a minute! Dang!

On this page, we'll eventually list mix tapes from other users. To help find something we like, I

want users to also be able to browse by genre. For example, if I go to /browse/death-metal ,

that would show me all the death metal vinyl mix tapes. Hardcore.

Of course, if we try this URL right now... it doesn't work.

class VinylController
{

 #[Route('/browse')]
 public function browse(): Response
 {
 return new Response('Breakup vinyl? Angsty 90s rock? Browse the
collection!');
 }
}

“Not Route found”

No matching routes were found for this URL, so it shows us a 404 page. By the way, what

you're seeing is Symfony's fancy exception page, because we're currently developing. It gives

us tons of details whenever something goes wrong. When you eventually deploy to production,

you can design a different error page that your users would see.

{Wildcard} Routes

Anyways, the simplest way to make this URL work is just... to change the URL to

/browse/death-metal .

src/Controller/VinylController.php

 // ... lines 1 - 7
8
9
 // ... lines 10 - 15
16
17
18
19

20
21

But... not super flexible, right? We would need one route for every genre... which could be

hundreds! And also, we just killed the /browse URL! It now 404's.

What we really want is a route that match /browse/<ANYTHING> . And we can do that with a

wildcard. Replace the hard-coded death-metal with {} and, inside, slug . Slug is just a

technical word for a "URL-safe name". Really, we could have put anything inside the curly-

braces, like {genre} or {coolMusicCategory} : it makes no difference. But whatever we put

inside this wildcard, we are then allowed to have an argument with that same name: $slug .

class VinylController
{

 #[Route('/browse/death-metal')]
 public function browse(): Response
 {
 return new Response('Breakup vinyl? Angsty 90s rock? Browse the
collection!');
 }
}

src/Controller/VinylController.php

 // ... lines 1 - 7
8
9
 // ... lines 10 - 15
16
17
18
19

20
21

Yup, if we go to /browse/death-metal , it will match this route and pass the string

death-metal to that argument. The matching is done by name: {slug} connects to $slug .

To see if it's working, let's return a different response: Genre then the $slug .

src/Controller/VinylController.php

 // ... lines 1 - 7
8
9
 // ... lines 10 - 15
16
17
18
19
20
21

22
 // ... lines 23 - 24

Testing time! Head back to /browse/death-metal and... yes! Try /browse/emo and yea! I'm

that much closer to my Dashboard Confessional mix tape!

Oh, and it's optional, but you can add a string type to the $slug argument. That doesn't

change anything... it's just a nice way to program: the $slug was already always going to be a

string.

class VinylController
{

 #[Route('/browse/{slug}')]
 public function browse(): Response
 {
 return new Response('Breakup vinyl? Angsty 90s rock? Browse the
collection!');
 }
}

class VinylController
{

 #[Route('/browse/{slug}')]
 public function browse($slug): Response
 {
 return new Response('Genre: '.$slug);

 //return new Response('Breakup vinyl? Angsty 90s rock? Browse the
collection!');
 }

src/Controller/VinylController.php

 // ... lines 1 - 7
8
9
 // ... lines 10 - 15
16
17
18
 // ... lines 19 - 21
22
 // ... lines 23 - 24

A bit later, we'll learn how you could turn a number wildcard - like the number 5 - into an integer

if you want to.

Using Symfony's String Component

Let's make this page a bit fancier. Instead of printing out the slug exactly, let's convert it to a title.

Say $title = str_replace() and replace any dashes with spaces. Then, down here, use

title in the response. In a future tutorial, we're going to query the database for these genres, but,

for right now, we can at least make it look nicer.

src/Controller/VinylController.php

 // ... lines 1 - 7
8
9
 // ... lines 10 - 15
16
17
18
19
20
21
22
 // ... line 23
24
 // ... lines 25 - 26

If we try it, Emo doesn't look any different... but death metal does. But I want more fancy! Add

another line with $title = then type u and auto-complete a function that's literally called... u .

class VinylController
{

 #[Route('/browse/{slug}')]
 public function browse(string $slug): Response
 {

 }

class VinylController
{

 #[Route('/browse/{slug}')]
 public function browse(string $slug): Response
 {
 $title = str_replace('-', ' ', $slug);

 return new Response('Genre: '.$title);

 }

We don't use many functions from Symfony, but this is a rare example. This comes from a

Symfony library called symfony/string . As I mentioned, Symfony is many different libraries -

also called components - and we're going to leverage those libraries all the time. This one helps

you make string transformations... and it happens to already be installed.

Move the str_replace() to the first argument of u() . This function returns an object that we

can then do string operations on. One method is called title() . Say ->title(true) to

convert all words to title case.

src/Controller/VinylController.php

 // ... lines 1 - 6
7
 // ... line 8
9

10
 // ... lines 11 - 15
16
17
18
19
20
21
22
 // ... lines 23 - 24
25
 // ... lines 26 - 27

Now whe n we try it... sweet! It uppercases the letters! The string component isn't particularly

important, I just want you to see how we can already leverage parts of Symfony to get our job

done.

Making the Wildcard Optional

Ok: one last challenge. Going to /browse/emo or /browse/death-metal works. But just going

to /browse ... does not work. It's broken! A wild card can match anything, but, by default, a wild

card is required. We have to go to /browse/<something> .

Can we make a wildcard optional? Absolutely! And it's delightfully simple: make the

corresponding argument optional.

use function Symfony\Component\String\u;

class VinylController
{

 #[Route('/browse/{slug}')]
 public function browse(string $slug): Response
 {
 $title = u(str_replace('-', ' ', $slug))->title(true);

 return new Response('Genre: '.$title);

 }

src/Controller/VinylController.php

 // ... lines 1 - 8
9

10
 // ... lines 11 - 15
16
17
18
19
 // ... lines 20 - 24
25
 // ... lines 26 - 27

As soon as we do that, it tells Symfony's routing layer that the {slug} does not need to be in

the URL. So now when we refresh... it works. Though, that's not a great message for the page.

Let's see. If there's a slug, then set the title the way we were. Else, set $title to "All genres".

Oh, and move the "Genre:" up here... so that down in the Response we can just pass $title .

src/Controller/VinylController.php

 // ... lines 1 - 8
9

10
 // ... lines 11 - 15
16
17
18
19
20
21
22
23
24
25
26
 // ... lines 27 - 28
29
 // ... lines 30 - 31

Try that. On /browse ... "All Genres". On /browse/emo ... "Genre: Emo".

Next: putting text like this into a controller.... isn't very clean or scalable, especially if we start

including HTML. Nope, we need to render a template. To do that, we're going to install our first

third-party package and witness the massively important Symfony recipe system in action.

class VinylController
{

 #[Route('/browse/{slug}')]
 public function browse(string $slug = null): Response
 {

 }

class VinylController
{

 #[Route('/browse/{slug}')]
 public function browse(string $slug = null): Response
 {
 if ($slug) {
 $title = 'Genre: '.u(str_replace('-', ' ', $slug))->title(true);
 } else {
 $title = 'All Genres';
 }

 return new Response($title);

 }

Chapter 5: Symfony Flex: Aliases, Packs &
Recipes

Symfony is a set of libraries that gives us tons of tools: tools for logging, making database

queries, sending emails, rendering templates and making API calls, just to name a few. If you

counted them, I did, Symfony consists of about 100 separate libraries. Wow!

Right now, I want to start turning our pages into true HTML pages... instead of just returning text.

But we are not going to jam a bunch of HTML into our PHP classes. Yuck. Instead, we're going

to render a template.

Symfony's Start Small & Install Features Philosophy

But guess what? There is no templating library in our project! What? But I thought you just said

that Symfony has a tool for rendering templates!? Lies!

Well... Symfony does have a tool for that. But our app currently uses very few of the Symfony

libraries. The tools we have so far don't amount to much more than a route-controller-response

system. If you need to render a template or make a database query, we do not have those tools

installed in our app... yet.

I actually love this about Symfony. Instead of starting us with a gigantic project, with everything

we need, plus tons of stuff that we don't need, Symfony starts tiny. Then, if you need something,

you install it!

But before we install a templating library, at your terminal, run:

git status

Let's commit everything:

git add .

I can safely run git add . - which adds everything in my directory to git - because one of the

files that our project originally came with was a .gitignore file, which already ignores stuff like

the vendor/ directory, var/ directory, and several other paths. If you're wondering what these

weird marker things are, that's related to the recipe system, which we're about to talk about.

Anyways, run git commit and add a message:

git commit -m "route -> controller -> response -> profit"

Perfect! And now, we are clean.

Installing a Templating Library (Twig)

Okay. So how can we install a templating library? And what templating libraries are even

available for Symfony? And which is recommended? Well, of course, a great way to answer

these questions would be check the Symfony documentation.

But we can also just... guess! In any PHP project, you can add new third-party libraries to your

app by saying "composer require" and then the package name. We don't know the package

name we need yet, so I'll just guess:

composer require templates

Now, if you've used Composer before, you might be screaming at your screen right about now!

Why? Because in Composer, package names are always something/something . It is literally

not possible to have a package just named templates .

But watch: when we run this, it works! And up on top, it says using version 1 for

symfony/twig-pack . Twig is the name of the templating engine for Symfony.

Flex Aliases

To understand this, let's take a tiny step backwards. Our project started with a composer.json

file containing several Symfony libraries. One of these is called symfony/flex . Flex is a

composer plugin. So it adds more features to composer. Actually, it adds three superpowers to

composer.

 Tip

The flex.symfony.com server was shut down in favor of a new system. But you can still see

a list of all of the available recipes at https://bit.ly/flex-recipes!

The first, which we just saw, is called Flex aliases. Head to https://flex.symfony.com to see a

giant page full of packages. Search for "templates". Here it is. Under symfony/twig-pack , it

says Aliases: template, templates, twig, and twig-pack.

The idea between behind Flex aliases is dead simple. We type

composer require templates . And then, internally, Flex changes that to

symfony/twig-pack . Ultimately, that is the package that Composer installs.

This means that, most of the time, you can just "composer require" whatever you want, like

composer require logger , composer require orm , composer require icecream ,

whatever. It's just a shortcut system. The important point is that, what really got installed was

symfony/twig-pack .

Flex Packs

And that means that, in our composer.json file, we should now see symfony/twig-pack

under the require key. But if you spin over, it's not there! Gasp! Instead, it added

symfony/twig-bundle , twig/extra-bundle , and twig/twig .

We're witnessing the second superpower of Symfony Flex: unpacking packs. Copy the original

package name and... we can actually find that repository on GitHub by going to

https://github.com/symfony/twig-pack.

And... it contains just one file: composer.json . And this requires three other packages: the

three we just saw added to our project.

https://bit.ly/flex-recipes
https://flex.symfony.com/
https://github.com/symfony/twig-pack

This is called a Symfony pack. It's... really just a fake package that helps us install other

packages. It turns out, if you want a rich template engine to be added to your app, we

recommend installing these three packages. But instead of making you add them manually, you

can composer require symfony/twig-pack and get them automatically. When you install a

"pack", like this, Flex automatically "unpacks" it: it finds the three packages that the pack

depends on and adds those into your composer.json file.

So, packs are a shortcut so that you can run one composer require command and get

multiple libraries added to your project.

Ok, so what is the third and final superpower of Flex? So glad you asked! To find out, at your

terminal, run:

git status

Flex Recipes

Whoa. Normally when you run composer require , the only files it should modify - other than

downloading packages into vendor/ - are composer.json and composer.lock . Flex's third

superpower is its recipes system.

Whenever you install a package, that package may have a recipe. If it does, in addition to

downloading the package into the vendor/ directory, Flex will also execute its recipe. Recipes

can do things like add new files or even modify a few existing files.

Watch: if we scroll up a little, ah yes: it says "configuring 2 recipes". So apparently there was a

recipe for symfony/twig-bundle and also a recipe for twig/extra-bundle . And these

recipes apparently updated the config/bundles.php file and added a new directory and file.

The recipe system is sweet. All we need to do is composer require a new library and its recipe

will then add all the configuration files or other setup needed so that we can start using that

library immediately! No more following 5 manual "installation" steps in a README. When you

add a library, it works out-of-the-box.

Next: I want to dive a bit deeper into the recipes. Like, where do they live? What's their favorite

color? And what did this recipe added specifically to our app and why? I'm also going to let you

in on a little secret: every file on our project - all the files in config/ , the public/ directory... all

of this stuff - was added via a recipe. And I'll prove it.

Chapter 6: Flex Recipes

We just installed a new package by running composer require templates . Normally when

you do that, Composer will update the composer.json and composer.lock files, but nothing

else.

But when we run:

git status

There are other changes. This is thanks to Flex's recipe system. Each time we install a new

package, Flex checks a central repository to see if that package has a recipe. And if it does, it

installs it.

Where do Recipes Live?

Where do these recipes live? In the cloud... or more specifically GitHub. Check it out. Run:

composer recipes

This is a command added to composer by Flex. It lists all of the recipes that have been installed.

And if you want more info about one, just run:

composer recipes symfony/twig-bundle

This is one of the recipes that was just executed. And... cool! It shows us a couple of nice

things! The first is a tree of the files it added to our project. The second is a URL to the recipe

that was installed. I'll click to open that.

Yep! Symfony recipes live in a special repository called symfony/recipes . This is a big

directory organized by package name. There's a symfony directory that holds recipes for all

packages starting with symfony/ . The one we were just looking at... is way down here:

twig-bundle . And then there are different versions of the recipe based on your version of the

package. We're using the latest 5.4 version.

Every recipe has a manifest.json file, which controls what it does. The recipe system can

only do a specific set of operations, including adding new files to your project and modifying a

few specific files. For example, this bundles section tells flex to add this line to our

config/bundles.php file.

If we run git status again... yup! That file was modified. If we diff it:

git diff config/bundles.php

It added two lines, probably one for each of the two recipes.

Symfony Bundles?

By the way, config/bundles.php is not a file that you need to think about much. A bundle, in

Symfony land, is basically a plugin. So if you install a new bundle into your app, that gives you

new Symfony features. In order to activate that bundle, its name needs to live in this file.

So the first thing that the recipe did for twig-bundle, thanks to this line up here, was to activate

itself inside bundles.php ... so that we didn't need to do it manually. Recipes are like automated

installation.

New, Copied Files

The second section in the manifest is called copy-from-recipe . This is simple: it says to copy

the config/ and templates/ directories from the recipe into the project. If we look... the

recipe contains a config/packages/twig.yaml file... and also a

templates/base.html.twig file.

Back at the terminal, run git status again. We see these two files at the bottom:

config/packages/twig.yaml ... and inside of templates/ , base.html.twig .

I love this. Think about it: if you install a templating tool into your app, we're going to need some

configuration somewhere that tells that templating tool which directory to look inside of to find

our templates. Whelp, go check out that config/packages/twig.yaml file. We're going talk

about these Yaml files more in the next tutorial. But on a high level, this file controls how Twig -

the templating engine for Symfony - behaves. And check out the default_path key set to

%kernel.project_dir%/templates . Don't worry about this percent syntax: that's a fancy way

to refer to the root of our project.

The point is, this config says:

“Hey Twig! When you look for templates, look for them in the templates/ directory.”

And then the recipe even created that directory with a layout file inside. We'll use this in a few

minutes.

symfony.lock & Committing Files

The last unexplained file that was modified is symfony.lock . This is not important: it just keeps

track of which recipes have been installed... and you should commit it.

In fact, we should commit all of this stuff. The recipe might give us files, but then they are our's

to modify. Run:

git add .

Then:

git status

Cool. Let's commit!

git commit -m "Adding Twig and its beautiful recipe"

Updating Recipes

Done! By the way, a few months down the road, there might be changes to some of the recipes

that you've installed. And if there are, when you run

composer recipes

you'll see a little "update available" next to them. Run composer recipes:update to upgrade

to the latest version.

Oh, and before I forget, in addition to symfony/recipes , there is also a

symfony/recipes-contrib repository. So recipes can live in either of these two places. The

recipes in symfony/recipes are approved by Symfony's core team, so they're a bit more

vetted for quality. Other than that, there's no difference.

Our Project Started as One File

Now, the recipe system is so powerful that every single file in our project was added via a

recipe! I can prove it. Go to https://github.com/symfony/skeleton.

When we originally ran that symfony new command to start our project, what that really did

was clone this repository... and then ran composer install inside of it, which downloads

everything into the vendor/ directory.

Yup! Our project - the one that we see right here - was originally just a single file:

composer.json . But then, when the packages were installed, the recipes for those packages

added everything else we see. Run:

composer recipes

https://github.com/symfony/skeleton

again. One recipe is for something called symfony/console . Check out its details:

composer recipes symfony/console

And... yes! The recipe for symfony/console added the bin/console file! The recipe for

symfony/framework-bundle - one of the other packages that was originally installed - added

almost everything else, including the public/index.php file. How cool is that?

Okay next: we installed Twig! So let's get back to work and use it to render some templates!

You're going to love Twig.

Chapter 7: Twig ❤

Symfony controller classes do not need to extend a base class. As long as your controller

function returns a Response object, Symfony doesn't care what your controller looks like. But

usually, you will extend a class called AbstractController .

Why? Because it gives us shortcut methods.

Rendering a Template

And the first shortcut is render() : the method for rendering a template. So return

$this->render() and pass it two things. The first is the name of the template. How about

vinyl/homepage.html.twig .

It's not required, but it's common to have a directory with the same name as your controller

class and filename that's the same as your method, but you can do whatever. The second

argument is an array of any variables that you want to pass into the template. Let's pass in a

variable called title and set it to our mix tape title: "PB and Jams".

src/Controller/VinylController.php

 // ... lines 1 - 4
5
 // ... lines 6 - 8
9

10
11
12
13
14
15
16
17
18
 // ... lines 19 - 34

Done in here. Oh, but pop quiz! What do you think the render() method returns? Yea, it's the

thing I keep repeating: a controller must always return a Response object. render() is just a

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class VinylController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {
 return $this->render('vinyl/homepage.html.twig', [
 'title' => 'PB & Jams',
]);
 }

shortcut to render a template, get that string and put it into a Response object. render()

returns a Response .

Creating the Template

We know from earlier that when you render a template, Twig looks in the templates/ directory.

So create a new vinyl/ sub-directory... and inside of that, a file called homepage.html.twig .

To start, add an h1 and then print the title variable with a special Twig syntax: {{ title }} .

And... I'll add some hardcoded TODO text.

templates/vinyl/homepage.html.twig

1
2
3
4
5
6
7

Let's... go see if this works! We were working on our homepage, so go there and... hello Twig!

Twigs 3 Syntax

Twig is one of the nicest parts of Symfony, and also one of the easiest. We're going to go

through everything you need to know... in basically the next ten minutes.

Twig has exactly three different syntaxes. If you need to print something, use {{ . I call this the

"say something" syntax. If I say {{ saySomething }} that would print a variable called

saySomething . Once you're inside Twig, it looks a lot like JavaScript. For example, if I surround

this in quotes, now I'm printing the string saySomething . Twig has functions... so that would call

the function and print the result.

So syntax #1 - the "say something" syntax - is {{

The second syntax... doesn't really count. It's {# to create a comment... and that's it.

<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>
 Our schweet track list: TODO
</div>

templates/vinyl/homepage.html.twig

1
2
3
4
5
6
7

The third and final syntax I call the "do something" syntax. This is when you're not printing, your

doing something in the language. Examples of "doing something" would be if statements, for

loops or setting variables.

The for Loop

Let's try a for loop. Go back to the controller. I'm going to paste in a tracks list... and then pass

a tracks variable into the template set to that array.

src/Controller/VinylController.php

1
 // ... lines 2 - 8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 // ... lines 29 - 42
43

<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>
 Our schweet track list: TODO
</div>

<?php

class VinylController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {
 $tracks = [
 'Gangsta\'s Paradise - Coolio',
 'Waterfalls - TLC',
 'Creep - Radiohead',
 'Kiss from a Rose - Seal',
 'On Bended Knee - Boyz II Men',
 'Fantasy - Mariah Carey',
];

 return $this->render('vinyl/homepage.html.twig', [
 'title' => 'PB & Jams',
 'tracks' => $tracks,
]);
 }

}

Now, unlike title , tracks is an array... so we can't just print it. But, we can try! Ha! That gives

us an array to string conversion. Nope, we need to loop over tracks.

Add a header and a ul . To loop, we'll use the "do something" syntax, which is {% and then the

thing that you want to do, like for , if or set . I'll show you the full list of do something tags in a

minute. A for loop looks like this: for track in tracks , where tracks is the variable we're

looping over and track will be the variable inside the loop.

After this, add {% endfor %} : most "do something" tags have an end tag. Inside the loop, add

an li and then use the say something syntax to print track .

templates/vinyl/homepage.html.twig

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Using Sub.keys

When we try it... nice! Oh, but let's get trickier. Back in the controller, instead of using a simple

array, I'll restructure this to make each track an associative array with song and artist keys.

I'll paste in that same change for the rest.

<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>
 Tracks:

 {% for track in tracks %}

 {{ track }}

 {% endfor %}

</div>

src/Controller/VinylController.php

1
 // ... lines 2 - 8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
 // ... lines 23 - 27
28
 // ... lines 29 - 42
43

What happens if we try it? Ah, we're back to the "array to string" conversion. When we loop,

each track itself is now an array. How can we read the song and artist keys?

Remember when I said that Twig looks a lot like JavaScript? Well then, it shouldn't be a surprise

that the answer is track.song and track.artist .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 7
8
9

10
11
12
13
14
 // ... lines 15 - 16

And... that gets our list working.

Now that we have the basics of Twig down, next, let's look at the full list of "do something" tags,

learn about Twig "filters" and tackle the all-important template inheritance system.

<?php

class VinylController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {
 $tracks = [
 ['song' => 'Gangsta\'s Paradise', 'artist' => 'Coolio'],
 ['song' => 'Waterfalls', 'artist' => 'TLC'],
 ['song' => 'Creep', 'artist' => 'Radiohead'],
 ['song' => 'Kiss from a Rose', 'artist' => 'Seal'],
 ['song' => 'On Bended Knee', 'artist' => 'Boyz II Men'],
 ['song' => 'Fantasy', 'artist' => 'Mariah Carey'],
];

 }

}

 {% for track in tracks %}

 {{ track.song }} - {{ track.artist }}

 {% endfor %}

Chapter 8: Twig Inheritance

Head to https://twig.symfony.com... and then click to check its documentation. There's lots of

good stuff here. But what I want you to do is scroll down to the Twig reference. Yea!

Tags

The first things to look at, on the left, are these things called tags. This list represents every

possible thing you can use with the do something syntax. Yup, it will always be {% and then one

of these things, like for or if . And honestly, you're only going to use about 5 of these on an

everyday basis. If you want to know the syntax for one of these, just click to see its docs.

Filters

In addition to the 20 tags, Twig also has something called filters. These are sweet. Filters are

basically functions, but with a more hipster syntax. Twig does also have functions, but there are

fewer: Twig really prefers filters: they're way cooler!

For example, there's a filter called upper . Using a filter is like using the | key on the command

line. You have some value - then you "pipe it into" the filter you want, like upper .

Let's try this! Print track.artist|upper .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 10
11
 // ... lines 12 - 16

And now... it's uppercase! If you want to confuse your coworkers, you can pipe that to lower ...

which sends things back to lowercase. There's no real reason to do this, but filters can be

chained like this.

 {{ track.song }} - {{ track.artist|upper }}

https://twig.symfony.com/

templates/vinyl/homepage.html.twig

 // ... lines 1 - 10
11
 // ... lines 12 - 16

Anyways, check out the filters list because there's probably something you'll find useful.

And... that's pretty much it! Beyond functions, there's also something called "tests", which are

handy in if statements: you can say things like "if number is divisibleby 5".

Template Inheritance

Ok, just one more thing to learn about Twig, and it's cool.

View the HTML source of the page. Notice that there is no HTML structure: there's no html ,

head or body tags. Literally the HTML that we have inside of our template, is what we get.

Nothing more.

So is there... some sort of layout system in Twig where we can add a base layout around us?

Absolutely. And it's incredible. It's called template inheritance. If you have a template and you

want that to use some base layout, at the very top of the file, use a "do something" tag called

extends . Pass this the name of the layout file: base.html.twig .

templates/vinyl/homepage.html.twig

1
 // ... lines 2 - 18

That's referring to this template right here. Before we check that out, if we try this now, yikes! Big

error:

“A template that extends another cannot include content outside Twig blocks.”

To figure out what that means, open base.html.twig . This is your base layout file... and you're

totally free to customize it however you want. Right now... it's mostly just boring HTML tags...

except for a number of these "blocks".

Blocks are basically "holes" into which a child template can place content. Let me explain that in

a different way. When we say extends 'base.html.twig' , that basically says:

 {{ track.song }} - {{ track.artist|upper|lower }}

{% extends 'base.html.twig' %}

“Yo Twig! When you render this template, I want you to actually render base.html.twig ...

and then put my content inside of it.”

Twig then politely replies:

“Ok cool... I can do that. But where in base.html.twig do you want me to put all of your

content? Do you want me to put it at the bottom of the page? At the top? Some random place

in the middle?”

The way we tell Twig where to put our content within base.html.twig is by override a block.

Notice that base.html.twig already has a block called body ... and that's right where we want

to put our template's HTML.

To put it there, in our template, surround all of the content with {% block body %} ... and then

{% endblock %} .

templates/vinyl/homepage.html.twig

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

This is called template inheritance because we are overriding that body block with this new

content. So now, when Twig renders base.html.twig ... and it gets to this block body part,

it's going to print the block body HTML from our template

{% extends 'base.html.twig' %}

{% block body %}
<h1>{{ title }}</h1>

{# TODO: add an image of the record #}

<div>
 Tracks:

 {% for track in tracks %}

 {{ track.song }} - {{ track.artist }}

 {% endfor %}

</div>
{% endblock %}

Watch: refresh and... the error is gone. And if you view the page source, we have a full HTML

page!

Block Names

Oh, and the names of these blocks are not important. If you want to rename them after your

favorite 90's sitcom character, do it. Just remember to also update its name in any child

templates.

You can also add more blocks. Every block you add is just another potential override point.

Default Block Content

Oh, and you may have noticed that blocks can have default content. Look at the page right now:

the title says "Welcome". That's because the title block has default content... and we're not

overriding it. Let's change the default title to "Mixed Vinyl".

templates/base.html.twig

 // ... lines 1 - 4
5
 // ... lines 6 - 20

So now that will be the title of every page on our site... unless we override that. In our template,

either above block body or below - the order of blocks doesn't matter - add

{% block title %} , {% endblock %} and, in between "Create a new Record".

templates/vinyl/homepage.html.twig

1
2
3
4
5
 // ... lines 6 - 20
21

And now... yes! This page has a custom title.

Adding to (Instead of Replacing) the Parent Block

 <title>{% block title %}Mixed Vinyl{% endblock %}</title>

{% extends 'base.html.twig' %}

{% block title %}Create a new Record{% endblock %}

{% block body %}

{% endblock %}

Oh, and you might be wondering:

“What if I don't want to replace a block entirely.... but instead, I want to add to a block?”

That's totally possible. In base.html.twig , the title block is set to "Mixed Vinyl". If we

wanted to prepend our custom title to that, we could say "Create a new Record" then use the

"say something" tag to print a function called parent() .

templates/vinyl/homepage.html.twig

1
2
3
4
5
 // ... lines 6 - 20
21

That does exactly what you'd expect: it finds the parent template's content for this block.. and

prints it. Refresh and... that's so nice.

Template Inheritance is Class Inheritance

If you're ever confused about how template inheritance works, it's useful, for me at least, to think

about it exactly like object-oriented inheritance. Each template is like a class and each block is

like a method. So the homepage "class" extends the base.html.twig "class", but overrides

two of its methods. If that only confused you, don't worry about it.

So... that's it for Twig. You're basically a Twig expert, which I'm told is a popular topic at parties.

Next: one of the killer features of Symfony is its debugging tools. Let's get these installed and

check 'em out.

{% extends 'base.html.twig' %}

{% block title %}Create a new Record | {{ parent() }}{% endblock %}

{% block body %}

{% endblock %}

Chapter 9: Profiler: Your Debugging Best Friend

Time to install our second package. And this one is fun. Let's commit our changes first: it'll

makes it easier to check out any changes that the new package's recipe makes.

Add everything:

git add .

That looks fine so... commit:

git commit -m "Added some Tiwggy goodness"

Beautiful.

The debug Pack

Now run:

composer require debug

So yes, this is another Flex alias... and apparently it's an alias for symfony/debug-pack . And

we know that a pack is a collection of packages. So instead of adding this one line to our

composer.json file, if we check, it looks like it added one new package up under the require

section - this is a logging library - and... all the way at the bottom, it added a new require-dev

section with three other libraries.

The difference between require and require-dev isn't too important: all of these packages

were downloaded into our app, But as a best practice, if you install a library that's only meant for

local development, you should put it into require-dev . The pack did that for us! Thanks pack!

Recipe Changes

Back at the terminal, this also installed three recipes! Ooh. Let's see what those did. I'll clear the

screen and run:

git status

So this is familiar: it modified config/bundles.php to activate three new bundles. Again,

bundles are Symfony plugins, which add more features to our app.

It also added several configuration files to the config/packages/ directory. We will talk more

about these files in the next tutorial, but, on a high level, they control the behavior of those

bundles.

The Web Debug Toolbar And Profiler

So what did these new bundles give us? To find out, head over to your browser and refresh the

homepage. Holy cats, Batman! It's the web debug toolbar. This is debugging madness: a toolbar

full of good info. On the left, you can see the controller that was called along with the HTTP

status code. There's also the amount of time the page took, the memory it used and also how

many templates were rendered through Twig: this is the cute Twig icon.

On the right side, we have details about the Symfony local web server that's running and PHP

info.

But you haven't seen the best part: click any of these icons to jump into the profiler. This is the

web debug toolbar... gone crazy. It's full of data about that request, like the request and

response, all of the log messages that happened during that request, information about the

routes and the route that was matched, Twig shows you which templates were rendered and

how many times they were rendered... and there's configuration information down here. Phew!

But my most favorite section is Performance. This shows a timeline of everything that happened

during the request. This is great for two reasons. The first is pretty obvious: you can use this to

find which parts of your page are slow. So, for example, our controller took 20.4 millisecond.

And within the controller's execution, the homepage template rendered in 3.9 milliseconds and

base.html.twig rendered in 2.8 milliseconds.

The second reason this is really cool is that it uncovers all the hidden layers of Symfony. Set this

threshold down to zero. Previously, this only displayed things that took more than one

millisecond. Now it's showing everything. You don't need to worry about the vast majority of the

stuff, but it's super cool to see the layers of Symfony: the things that happen before and after

your controller is executed. We have a deep dive tutorial for Symfony if you want to learn more

about this stuff.

The web debug toolbar and profiler will also grow with our app. In a future tutorial, when we

install a library to talk to the database, we will suddenly have a new section that lists all of the

database queries that a page made and how long each took.

dump() and dd() Functions

Ok, so the debug pack installed the web debug toolbar. It also installed a logging library that

we'll use later. And it installed a package that gives us two fantastic debug functions.

Head over to VinylController . Pretend that we're doing some developing and we need to

see what this $tracks variable looks like. It's pretty obvious in this case, but sometimes you'll

want to see what's inside a complex object.

To do that, say dd($tracks) where "dd" stands for dump and die.

src/Controller/VinylController.php

 // ... lines 1 - 9
10
11
12
13
14
 // ... lines 15 - 22
23
 // ... lines 24 - 28
29
 // ... lines 30 - 43
44

class VinylController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {

 dd($tracks);

 }

}

So if we refresh... yup! That dumps the variable and kills the page. And this is a lot more

powerful - and prettier - than using var_dump() : we can expand sections and see deep data

really easily.

Instead of dd() , you can also use dump() .. to dump and live. But this might not show up where

you expect it to. Instead of printing in the middle of the page, it shows up down in the web

debug toolbar, under the target icon.

src/Controller/VinylController.php

 // ... lines 1 - 9
10
11
12
13
14
 // ... lines 15 - 22
23
 // ... lines 24 - 28
29
 // ... lines 30 - 43
44

If that's a bit too small, click to see a bigger version in the profiler.

Dumping in Twig

You can also use this dump() in Twig. Remove the dump from the controller... and then in the

template, right before the ul , dump(tracks) .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 9
10
11
12
13
 // ... lines 14 - 20
21
 // ... lines 22 - 23

And this... looks exactly the same. Except that when you dump in Twig, it does dump right into

the middle of the page

class VinylController extends AbstractController
{
 #[Route('/')]
 public function homepage(): Response
 {

 dump($tracks);

 }

}

<div>
 Tracks:

 {{ dump(tracks) }}

</div>

And even more useful, in Twig only, you can use dump() with no arguments.

templates/vinyl/homepage.html.twig

 // ... lines 1 - 9
10
11
12
13
 // ... lines 14 - 20
21
 // ... lines 22 - 23

This will dump all variables that we have access to. So here's the title variable, tracks and,

surprise! There's a third variable called app . This is a global variable that we have in all

templates... and it gives us access to things like the session and user data. And... we just

discovered it by being curious!

So now that we've got these awesome debugging tools, let's turn to our next job... which is to

make this site less ugly. Time to add CSS and a proper layout to bring our site to life!

<div>
 Tracks:

 {{ dump() }}

</div>

Chapter 10: Assets, CSS, Images, etc

If you download the course code from the page where you're watching this video, after

unzipping, you'll find a start/ directory that contains the same brand new Symfony 6 app that

we created earlier. You don't actually need that code, but it does contain one extra directory

called tutorial/ , like I have here. This holds some files that we're about to use.

So let's talk about our next goal: to make this site look like a real site... instead of looking like

something I designed myself. And that means we need a true HTML layout that brings in some

CSS.

Adding a Layout & CSS Files

We know that our layout file is base.html.twig ... and there's also a base.html.twig file in

the new tutorial/ directory. Copy that... paste it into templates, and override the original.

Before we look at that, also copy the three .png files and put those into the public/

directory... so that our users can access them.

Beautiful. Open up the new base.html.twig file. There's nothing special here. We bring in

some external CSS files from some CDNs for Bootstrap and FontAwesome. By the end of this

tutorial, we'll refactor this into a fancier way of handling CSS... but for right now, this will work

great.

But otherwise, everything is still hardcoded. We have some hardcoded navigation, the same

block body ... and a hardcoded footer. Let's go see what it looks like. Refresh and woo! Well, not

perfect, but better!

Adding a Custom CSS File

The tutorial/ directory also holds an app.css file with custom CSS. To make this publicly

available so that our user's browser can download it, it needs to live somewhere in the public/

directory. But it doesn't matter where or how you organize things inside.

Let's create a styles/ directory... and then copy app.css ... and paste it there.

Back in base.html.twig , head to the top. After all the external CSS files, let's add a link tag for

our app.css . So <link rel="stylesheet" and href="" . Because the public/ directory is

our document root, to refer to a CSS or image file there, the path should be with respect to that

directory. So this will be /styles/app.css .

templates/base.html.twig

1
2
3
 // ... lines 4 - 15
16
 // ... lines 17 - 25
26
 // ... lines 27 - 85
86

Let's check it. Refresh now and... even better!

The asset() Function

I want you to notice something. So far, Symfony is not involved at all in how we organize or use

images or CSS files. Nope. Our setup is dead simple: we put things in the public/ directory...

then refer to them with their paths.

But does Symfony have any cool features to help work with CSS and JavaScript? Absolutely. It's

called Webpack Encore and Stimulus. And we'll talk about both of those towards the end of the

tutorial.

But even in this simple setup - where we just put files in public/ and point to them - Symfony

does have one minor feature: the asset() function.

It works like this: instead of using /styles/app.css , say {{ asset() }} and then, inside

quotes, move our path there... but without the opening "/".

<!DOCTYPE html>
<html>
 <head>

 <link rel="stylesheet" href="/styles/app.css">

 </head>

</html>

templates/base.html.twig

1
2
3
 // ... lines 4 - 15
16
 // ... lines 17 - 25
26
 // ... lines 27 - 85
86

So the path is still relative to the public/ directory... you just don't need to include the first "/".

Before we talk about what this does... let's go see if it works. Refresh and... it doesn't! Error:

“Unknown function: did you forget to run composer require symfony/asset .”

I keep saying that Symfony starts small... and then you install things as you need them.

Apparently, this asset() function comes from a part of Symfony that we don't have yet! But

getting it is easy. Copy this composer require command, spin over to your terminal and run it:

composer require symfony/asset

This is a pretty simple install: it downloads just this one package... and there are no recipes.

But when we try the page now... it works! Check out the HTML source. Interesting: the link

tag's href is still, literally, /styles/app.css . That's exactly what we had before! So what the

heck is this asset() function doing?

The answer is... not much. But it's still a good idea to use. The asset() function gives you two

features. First, imagine you deploy to a sub-directory of a domain. Like, the homepage lives at

https://example.com/mixed-vinyl.

If that were the case, then in order for our CSS to work, the href would need to be

/mixed-vinyl/styles/app.css . In this situation, the asset() function would detect the sub-

directory automatically and add that prefix for you.

The second - and more important thing that the asset() function does - is allow you to easily

switch to a CDN later. Because this path is now going through the asset() function, we could,

<!DOCTYPE html>
<html>
 <head>

 <link rel="stylesheet" href="{{ asset('styles/app.css') }}">

 </head>

</html>

https://example.com/mixed-vinyl

via a configuration file, say:

“Hey Symfony! When you output this path, please prefix it with the URL to my CDN.”

This means that, when we load the the page, instead of href="/styles/app.css , it would be

something like https://mycdn.com/styles/app.css .

So the asset() function might not be doing anything you need today, but anytime you

reference a static file - whether it's a CSS file, JavaScript file, image, whatever, use this function.

In fact, up here, I'm referencing three images. Let's use asset : {{ asset() ... and then it auto-

completes the path! Thanks Symfony plugin! Repeat this for the second image... and the third.

templates/base.html.twig

1
2
3
 // ... lines 4 - 6
7

8

9

 // ... lines 10 - 15
16
 // ... lines 17 - 25
26
 // ... lines 27 - 85
86

We know this won't make any difference today... we can refresh the HTML source to see the

same paths... but we're ready for a CDN in the future.

Homepage And Browse Page HTML

So the layout now looks great! But the content for our homepage is... just kind of hanging out...

looking weird... like me in middle school. Back in the tutorial/ directory, copy the homepage

template... and overwrite our original file.

<!DOCTYPE html>
<html>
 <head>

 <link rel="apple-touch-icon" sizes="180x180" href="{{ asset('apple-touch-
icon.png') }}">
 <link rel="icon" type="image/png" sizes="32x32" href="{{ asset('favicon-
32x32.png') }}">
 <link rel="icon" type="image/png" sizes="16x16" href="{{ asset('favicon-
16x16.png') }}">

 <link rel="stylesheet" href="{{ asset('styles/app.css') }}">

 </head>

</html>

Open that up. This still extends base.html.twig ... and it still overrides the body block. And

then, it has a bunch of completely hard coded HTML. Let's go see what it looks like. Refresh

and... it looks awesome!

Except that... it's 100% hard coded. Let's fix that. All the way on top, here's the name of our

record, print the title variable.

And then, below for the songs.. we have a long list of hardcoded HTML. Let's turn this into a

loop. Add {% for track in tracks %} like we had before. And... at the bottom, endfor .

For the song details, use track.song ... and track.artist . And now we can remove all the

hardcoded songs.

templates/vinyl/homepage.html.twig

1
 // ... lines 2 - 4
5
6
7
8
 // ... lines 9 - 34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53

54
55
56
57

Sweet! Let's try that. Hey! It's coming to life people!

One more page to go! The /browse page. You know the drill: copy browse.html.twig , and

paste into our directory. This looks a lot like the homepage: it extends base.html.twig and

overrides block body .

Over in VinylController , we weren't rendering a template before... so let's do that now:

return $this->render('vinyl/browse.html.twig') and let's pass in the genre. Add a

variable for that: $genre = and if we have a slug... use our fancy title-case code, else set this to

null. Then delete the $title stuff... and pass genre into Twig.

{% extends 'base.html.twig' %}

{% block body %}
<div class="container">
 <h1 class="d-inline me-3">{{ title }}</h1> <i class="fas fa-edit"></i>
 <div class="row mt-5">

 <div class="col-12 col-md-8 ps-5">
 <h2 class="mb-4">10 songs (30 minutes of 60 still available)</h2>
 {% for track in tracks %}
 <div class="song-list">
 <div class="d-flex mb-3">

 <i class="fas fa-play me-3"></i>

 {{ track.song }} - {{ track.artist
}}

 <i class="fas fa-bars mx-3"></i>

 <i class="fas fa-times"></i>

 </div>
 </div>
 {% endfor %}
 <button type="button" class="btn btn-success"><i class="fas fa-plus">
</i> Add a song</button>
 </div>
 </div>
</div>
{% endblock %}

src/Controller/VinylController.php

1
2
 // ... lines 3 - 9
10
11
 // ... lines 12 - 29
30
31
32
33
34
35
36
37
38
39

Back in the template, use this in the h1 . In Twig, we can also use fancy syntax. So if we have a

genre , print genre , else print All Genres .

templates/vinyl/browse.html.twig

1
2
3
4
5
 // ... lines 6 - 45
46
47

Testing time. Head over to /browse : "Browse all genres"! And then /browse/death-metal :

Browse Death Metal. Friends, this is starting to feel like a real site!

Except that these links up in the nav... go nowhere! Let's fix that next by learning how to

generate URLs. We're also going to meet the mega-powerful bin/console command line tool.

<?php

class VinylController extends AbstractController
{

 #[Route('/browse/{slug}')]
 public function browse(string $slug = null): Response
 {
 $genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) : null;

 return $this->render('vinyl/browse.html.twig', [
 'genre' => $genre
]);
 }
}

{% extends 'base.html.twig' %}

{% block body %}
<div class="container">
 <h1>Browse {{ genre ? genre : 'All Genres' }}</h1>

</div>
{% endblock %}

Chapter 11: Generate Urls & bin/console

There are two different ways that we can interact with our app. The first is via the web server...

and that's what we've been doing! We got to a URL and... behind the scenes, it executes

public/index.php , which boots up Symfony, calls the routing and runs our controller.

Hello bin/console

What's the second way we can interact with our app? We haven't seen it yet: it's via a command

line tool called bin/console . At your terminal run:

php bin/console

... to see a bunch of commands within this script. I love this thing. It's full of stuff to help us

debug, eventually it will have code-generation commands, commands for setting secrets: all

kinds of good stuff that we're going to discover little-by-little.

But I do want to point out that... there's nothing special about this bin/console script! It's just a

file: there's literally a bin/ directory with a console file inside. You'll probably never need to

open this file or think about it, but it is useful. Oh, and on most systems, you can just run:

./bin/console

... which looks cooler. Or sometimes you may see me run:

symfony console

... which is just another way to execute this file. We'll talk more about this in a future tutorial.

bin/console debug:router

The first command I want to check out inside of bin/console is debug:router :

php bin/console debug:router

This is awesome. It shows us every route in our app, like our two routes for / and

/browse/{slug} . What are these other routes? They come form the web debug toolbar and

profiler system... and they're only here while we're developing locally.

Ok, back on our site.... at the top of the page, we have two non-functional links to the homepage

and browse page. Let's hook these up. Open templates/ base.html.twig ... and search for

a tags. Here we go.

So it would be really easy to get this working by just href="/" . But instead, whenever we link

to a page in Symfony, we're going to ask the routing system to generate a URL for us. We'll say:

“Please generate the URL to the homepage's route, or the browse page's route.”

Then, if we ever change the URL of a route, all our links will instantly update. Magic.

Naming your Route

Let's start with the homepage. How do we ask Symfony to generate a URL to this route? Well

first, we need to give the route a name. Surprise! Every route has an internal name. You can

see it back in debug:router . Our route's are named app_vinyl_homepage and

app_vinyl_browse . Huh, those are the exact names of my pet turtles when I was kid.

Where did these names come from? By default, Symfony automatically generates a name for

us, which is fine. The name isn't used at all until we generate a URL to it. And as soon as we do

need to generate a URL to a route, I highly recommend taking control of this name... just to

make sure it never accidentally changes.

To do this, find the route and add an argument: name set to, how about, app_homepage . I like

using the app_ prefix: it makes it easier to search for a route name later.

src/Controller/VinylController.php

1
2
 // ... lines 3 - 9
10
11
12
13
14
 // ... lines 15 - 27
28
 // ... lines 29 - 38
39

By the way, PHP 8 attributes - like this Route attribute - are represented by actual, physical

PHP classes. If you hold command or ctrl, you can open it and look inside. This is great: the

__construct() method shows all of the different options you can pass to the attribute.

For example, there's a name argument... and then we're using PHP's named argument syntax

to pass this into the attribute. Opening up an attribute is a great way to learn about its options.

Generating a URL from Twig

Anyways, now that we've given this a name, go back to our terminal and run debug:router

again:

php bin/console debug:router

This time... yea! The route is named app_homepage ! Copy that, then head back to

base.html.twig . To generate a URL inside of twig, say {{ - because we're going to print

something - and then use a Twig function called path() . Pass this the route name.

<?php

class VinylController extends AbstractController
{
 #[Route('/', name: 'app_homepage')]
 public function homepage(): Response
 {

 }

}

templates/base.html.twig

1
2
 // ... lines 3 - 26
27
 // ... lines 28 - 31
32
33
34
35
 // ... lines 36 - 84
85
86

Done! Refresh... and the link up here works!

One more link to go. We know step one: give the route a name. So name: and, how about,

app_browse .

src/Controller/VinylController.php

1
2
 // ... lines 3 - 9
10
11
 // ... lines 12 - 29
30
31
32
 // ... lines 33 - 37
38
39

Copy that, and... scroll down a bit. Here it is: "Browse Mixes". Change that to

{{ path('app_browse') }} .

<!DOCTYPE html>
<html>

 <body>

 <i class="fas fa-record-vinyl"></i>
 Mixed Vinyl

 </body>
</html>

<?php

class VinylController extends AbstractController
{

 #[Route('/browse/{slug}', name: 'app_browse')]
 public function browse(string $slug = null): Response
 {

 }
}

templates/base.html.twig

1
2
 // ... lines 3 - 26
27
 // ... lines 28 - 40
41
42

43
 // ... lines 44 - 84
85
86

And now... that link works too!

Generating URLs with Wildcards

Oh, but on this page, we have some quick links to go to the browse page for a specific genre.

And these do not work yet.

This is interesting. We want to generate a URL like before... but this time we need to pass

something to the {slug} wildcard. Open browse.html.twig . Here's how we do that. The first

part is the same: {{ path() }} and then the name of the route: app_browse .

If we stopped here, it would generate /browse . To pass values to any wildcards in a route,

path() has a second argument: an associative array of those value. And, again, just like

JavaScript, to create an "associative array", you use { and } . I'm going to hit enter to break this

onto multiple lines... just to keep things readable. Inside add a slug key to the array... and

since this is the "Pop" genre, set it to pop .

Cool! Let's repeat this two more times: {{ path('app_browse') }} , pass curly braces for an

associative array, with slug set to rock . And then one more time down here... which I'll do

really quickly.

<!DOCTYPE html>
<html>

 <body>

 <li class="nav-item">
 <a class="nav-link" style="margin-top: 20px;" href="
{{ path('app_browse') }}">Browse Mixes

 </body>
</html>

templates/vinyl/browse.html.twig

 // ... lines 1 - 2
3
 // ... lines 4 - 7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
 // ... lines 25 - 52
53

Let's see if it works! Refresh. Ah! Variable rock doesn't exist. I bet some of you saw me do that.

I forgot my quotes, so this looks like a variable.

Try it again. There we go. And try the links... yes! They work!

Next: we've created two HTML pages. Now let's see what it looks like to create a JSON API

endpoint.

{% block body %}

 <ul class="genre-list ps-0 mt-2 mb-3">
 <li class="d-inline">
 <a class="btn btn-primary btn-sm" href="{{ path('app_browse', {
 slug: 'pop'
 }) }}">Pop

 <li class="d-inline">
 <a class="btn btn-primary btn-sm" href="{{ path('app_browse', {
 slug: 'rock'
 }) }}">Rock

 <li class="d-inline">
 <a class="btn btn-primary btn-sm" href="{{ path('app_browse', {
 slug: 'heavy-metal'
 }) }}">Heavy Metal

{% endblock %}

Chapter 12: JSON API Endpoint

In a future tutorial, we're going to create a database to manage songs, genres, and the mixed

vinyl records that our users are creating. Right now, we're working entirely with hardcoded

data... but our controllers - and - especially templates won't feel that much different once we

make this all dynamic.

So here's our new goal: I want to create an API endpoint that will return the data for a single

song as JSON. We're going to use this in a few minutes to bring this play button to life. At the

moment, none of these buttons do anything, but they do look pretty.

Creating the JSON Controller

The two steps to creating an API endpoint are... exactly the same as creating an HTML page:

we need a route and a controller. Since this API endpoint will be returning song data, instead of

adding another method inside of VinylController , let's create a totally new controller class.

How you organize this stuff is entirely up to you.

Create a new PHP class called SongController ... or SongApiController would also be a

good name. Inside, this will start like any other controller, by extending AbstractController .

Remember: that's optional... but it gives us shortcut methods with no downside.

Next, create a public function called, how about, getSong() . Add the route... and hit tab to

auto-complete this so that PhpStorm adds the use statement on top. Set the URL to

/api/songs/{id} , where id will eventually be the database id of the song.

And because we have a wildcard in the route, we are allowed to have an $id argument. Finally,

even though we don't need to do this, because we know that our controller will return a

Response object, we can set that as the return type. Make sure to auto-complete the one from

Symfony's HttpFoundation component.

Inside the method, to start, dd($id) ... just to see if everything is working.

src/Controller/SongController.php

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Let's do this! Head over to /api/songs/5 and... got it! Another new page.

Back in that controller, I'm going to paste in some song data: eventually, this will come from the

database. You can copy this from the code block on this page. Our job is to return this as JSON.

So how do we return JSON in Symfony? By returning a new JsonResponse and passing it the

data.

<?php

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class SongController extends AbstractController
{
 #[Route('/api/songs/{id}')]
 public function getSong($id): Response
 {
 dd($id);
 }
}

src/Controller/SongController.php

1
2
 // ... lines 3 - 5
6
 // ... lines 7 - 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

I know... too easy! Refresh and... hello JSON! Now you might be thinking:

“Ryan! You've been telling us - repeatedly - that a controller must all always return a Symfony

Response object, which is what render() returns. Now you're returning some other type of

Response object?”

Ok, fair... but this works because JsonResponse is a Response. Let me explain. Sometimes it's

useful to jump into core classes to see how they work. To do that, in PHPStorm - if you're on a

Mac hold command, otherwise hold control - and then click the class name that you want to

jump into. And... surprise! JsonResponse extends Response . Yea, we're still returning a

Response . But this sub-class is nice because it automatically JSON encodes our data and sets

the Content-Type header to application/json .

The ->json() Shortcut Method

Oh, and back in our controller, we can be even lazier by saying

return $this->json($song) ... where json() is another shortcut method that comes from

AbstractController .

<?php

use Symfony\Component\HttpFoundation\JsonResponse;

class SongController extends AbstractController
{
 #[Route('/api/songs/{id}')]
 public function getSong($id): Response
 {
 // TODO query the database
 $song = [
 'id' => $id,
 'name' => 'Waterfalls',
 'url' => 'https://symfonycasts.s3.amazonaws.com/sample.mp3',
];

 return new JsonResponse($song);
 }
}

src/Controller/SongController.php

1
2
 // ... lines 3 - 9
10
11
12
13
14
 // ... lines 15 - 20
21
22
23
24

Doing this makes absolutely no difference because this is just a shortcut to return ... a

JsonResponse !

If you're building a serious API, Symfony has a serializer component that's really good at

turning objects into JSON... and then JSON back into objects. We talk a lot about it in our API

Platform tutorial, which is a powerful library for creating APIs in Symfony.

Next, let's learn how to make our routes smarter, like by making a wildcard only match a

number, instead of matching anything.

<?php

class SongController extends AbstractController
{
 #[Route('/api/songs/{id}')]
 public function getSong($id): Response
 {

 return $this->json($song);
 }
}

Chapter 13: Smart Routes: GET-only & Validate
{Wildcards}

Now that we have a new page, at your terminal, run debug:router again.

php bin/console debug:router

Yep, there's our new endpoint! Notice that the table has a column called "Method" that says

"any". This means that you can make a request to this URL using any HTTP method - like GET

or POST - and it will match that route.

Restricting Routes to GET or POST Only

But the purpose of our new API endpoint is to allow users to make a GET request to fetch song

data. Technically, right now, you could also make a POST for request to this... and it would work

just fine. We might not care, but often with APIs, you'll want to restrict an endpoint to only work

with one specific method like GET, POST or PUT. Can we make this route somehow only match

GET requests?

Yep! By adding another option to the Route . In this case, it's called methods , it even auto-

completes! Set this to an array and, put GET .

src/Controller/SongController.php

1
2
 // ... lines 3 - 9
10
11
12
13
14
 // ... lines 15 - 22
23
24

<?php

class SongController extends AbstractController
{
 #[Route('/api/songs/{id}', methods: ['GET'])]
 public function getSong($id): Response
 {

 }
}

I'm going to hold Command and click into the Route class again... so we can see that... yup!

methods is one of the arguments.

Back over on debug:router :

php bin/console debug:router

Nice. The route will now only match GET requests. It's... kind of hard to test this, since a

browser always makes GET requests if you go directly to a URL... but this is where another

bin/console command comes in handy: router:match .

If we run this with no arguments:

php bin/console router:match

It gives us an error but shows how it's used! Try:

php bin/console router:match /api/songs/11

And... that matches our new route! But now ask what would happen if we made a POST request

to that URL with --method=POST :

php bin/console router:match /api/songs/11 --method=POST

No routes match this path with that method! But it does say that it almost matched our route.

Restricting Route Wildcards by Regex

Let's do one more thing to tighten up our new endpoint. I'm going to add an int type-hint to the

$id argument.

src/Controller/SongController.php

1
2
 // ... lines 3 - 9
10
11
12
13
14
 // ... lines 15 - 22
23
24

That... doesn't change anything, except that PHP will now take the string id from the URL that

Symfony passes into this method and cast it into an int , which is... just nice because then

we're dealing with a true integer in our code.

You can see the subtle difference in the response. Right now, the id field is a string. When we

refresh, id is now a true number in JSON.

But... if somebody was being tricky... and went to /api/songs/apple ... yikes! A PHP error,

which, on production, would be a 500 error page! I do not like that.

But... what can we do? The error comes comes from when Symfony tries to call our controller

and passes in that argument. So it's not like we can put code down in the controller to check if

$id is a number: it's too late!

So what if, instead, we could tell Symfony that this route should only match if the id wildcard is

a number. Is that possible? Totally!

By default, when you have a wildcard, it matches anything. But you can change it match a

custom regular expression. Inside of the curly braces, right after the name, add a < then > and,

in between, \d+ . That's a regular expression meaning "a digit of anything length".

<?php

class SongController extends AbstractController
{
 #[Route('/api/songs/{id}', methods: ['GET'])]
 public function getSong(int $id): Response
 {

 }
}

src/Controller/SongController.php

1
2
 // ... lines 3 - 9
10
11
12
13
14
 // ... lines 15 - 22
23
24

Try it! Refresh and... yes! A 404. No route found: it simply didn't match this route. A 404 is

great... but a 500 error... that's something we want to avoid. And if we head back to

/api/songs/5 ... that still works.

Next: if you asked me what the most central and important part of Symfony is, I wouldn't

hesitate: it's services. Let's find out what a service is and how it's the key to unlocking Symfony's

potential.

<?php

class SongController extends AbstractController
{
 #[Route('/api/songs/{id<\d+>}', methods: ['GET'])]
 public function getSong(int $id): Response
 {

 }
}

Chapter 14: Service Objects

I see Symfony as two big parts. The first half is the route, controller, response system. It's dead

simple and well... you're already an expert on it! The second half of Symfony is all about the

many useful objects that are floating around... just waiting for us to use them!

Hello Service Objects

For example, when we render a template, what we are actually doing is taking advantage of a

Twig object and asking it to render a template. There's also a logger object, a cache object, a

database connection object, an object that helps make API requests, and many, many more!

And when you install a new bundle, that give you even more useful objects.

The truth is that everything that Symfony does is... actually done by one of these useful objects.

Heck there's even a router object that's responsible for finding the matching route for the given

page!

In the Symfony world, and really the object oriented programming world in general, these

"objects that do work" have a special name: services. But don't let that word confuse you. When

you hear service, just think: that's an object that does work! Like a templating object that renders

a template or a database connection object that makes queries.

And since service objects do work, they're basically... tools that help you get your job done! The

second half of Symfony is all about discovering which services are available and how to use

them.

The debug:autowiring Command

Let's try something. In our controller, I want to log a message... maybe some debugging

message. Since logging a message is work, it's done by a service. Does our app already have a

logger service? And if so, how do we get it?

To find out, move over to your terminal and run another bin/console command:

php bin/console debug:autowiring

Say hello to one of the most powerful bin/console commands. I love this thing! This lists all of

the services that exist in our app. Okay, it's actually not the full list, but this shows the services

that you're most likely to need. And even though our app is small, there's a lot of stuff here!

There's a filesystem service... and down here a cache service. There's even a twig service!

Is there a service for logging? You can look in this list... or you can re-run this command and

search for the word log:

php bin/console debug:autowiring log

Excellent! For now, ignore everything except for the first line. This line tells us that there is a

logger service and that this object implements an interface called Psr\Log\LoggerInterface .

Fetching a Service via Autowiring

Ok, so why does knowing that help us? Because if you want a service, you ask for it by using

the type-hint shown in this command. It's called autowiring.

Let's try it. Head over to our controller and add a second argument. Actually, the order of these

arguments doesn't matter. What matters is that the new argument is type-hinted with

LoggerInterface . I'll hit tab to autocomplete that... so that PhpStorm adds the use statement

on top.

In this case, the argument can be called anything, like $logger . When Symfony sees this type-

hint, it looks inside of the debug:autowiring list... and because there's a match, it will pass us

the logger service.

So we now know two different types of arguments that we are allowed to have in controller: you

can have an argument whose name matches a wildcard in the route or an argument whose

type-hint matches one of the services in our app.

Using the Logger

Ok, so now that we know Symfony will pass us the logger service object, let's use it! I don't

know, yet, what methods I can call on it but... if we say $logger-> ... PhpStorm... tells us! That

was easy!

I'm going to log something at an info() priority level. Let's say:

“Returning API response for song”

And then the $id .

src/Controller/SongController.php

1
2
 // ... lines 3 - 4
5
 // ... lines 6 - 10
11
12
13
14
15
 // ... lines 16 - 22
23
 // ... lines 24 - 25
26
27

Actually, we can do something even cooler with this logger service. Add {song} to the

message... and add a second argument, which is an array of extra information you want to

attach to the log message. Pass song set to $id . In a minute, you'll see that the logger will

print the actual id in place of {song} .

<?php

use Psr\Log\LoggerInterface;

class SongController extends AbstractController
{
 #[Route('/api/songs/{id<\d+>}', methods: ['GET'])]
 public function getSong(int $id, LoggerInterface $logger): Response
 {

 $logger->info('Returning API response for song '.$id);

 }
}

src/Controller/SongController.php

1
2
 // ... lines 3 - 10
11
12
13
14
15
 // ... lines 16 - 22
23
24
25
 // ... lines 26 - 27
28
29

Anyways, this controller is for our API endpoint. So let's go over and refresh. Um... ok! So no

error, that's good! But did it work? Where does the logger service... actually log to?

Let's find out next, learn a trick to see the profiler even for API requests and then leverage our

second service directly.

<?php

class SongController extends AbstractController
{
 #[Route('/api/songs/{id<\d+>}', methods: ['GET'])]
 public function getSong(int $id, LoggerInterface $logger): Response
 {

 $logger->info('Returning API response for song {song}', [
 'song' => $id,
]);

 }
}

Chapter 15: The Twig Service & Profiler for API
Requests

Since this page just loaded without an error, we think that we just successfully logged a

message via the logger service. But... where do log messages go? How can we check?

The logger service is provided by a library that we installed earlier called monolog. It was part of

the debug-pack. And you can control its configuration inside the

config/packages/monolog.yaml file, including where log messages are logged to, like which

file. We'll focus more on config in the next tutorial.

The Profiler for API Requests

But one way that you can always see the log messages for a request is via the profiler! This is

super handy. Go to the homepage, click any link on the web debug toolbar... and then go to the

Logs section. We're now seeing all the log messages that were made only during that last

request to the homepage.

Great! Except that... our log message is made on an API endpoint... and API endpoints don't

have a web debug toolbar we can click! Are we stuck? Nope! Refresh this page one more time...

then manually go to /_profiler . This is... kind of a secret door into the profiler system... and

this page shows the last ten requests made into our system. The second to the top is the API

request we just made. Click the little token link to see... yea! We're looking at the profiler for that

API request! Over in the Logs section... there it is!

“Returning API response for song 5”

... and you can even see the extra info we passed.

Rendering a Twig Template Manually

Ok, services are so important that... I want to do one more quick example. Go back to

VinylController . The render() method is really just a shortcut to fetch the "twig" service,

call some method on that object to render the template... and then put the final HTML string into

a Response object. It's a great shortcut and you should use it.

But! As a challenge, could we render a template without using that method? Of course! Let's do

it.

Step one: find the service that does the work you need to do. So, we need to find the Twig

service. Let's do our trick again:

php bin/console debug:autowiring twig

And... yes! Apparently the type-hint we need to use is Twig\Environment .

Ok! Go back to our method, add an argument, type Environment , and hit tab to auto-complete

that so PhpStorm adds the use statement. Let's call it $twig .

Below, instead of using render , let's say $html = and then $twig-> . Like with the logger, we

don't need to know what methods this class has, because, thanks to the type-hint, PhpStorm

can tell us all the methods. That render() method looks like it's probably what we want. The

first argument is the string name of the template to render and the $context argument holds

the variables. So... it has the same arguments that we were already passing.

To see if this is working, dd($html) .

src/Controller/VinylController.php

1
2
 // ... lines 3 - 10
11
12
13
14
15
 // ... lines 16 - 24
25
26
27
28
29
30
 // ... lines 31 - 40
41

Testing time! Head to the homepage... and yes! We just rendered a template manually!

Seriously awesome! And we can finish this page by wrapping that in a response:

return new Response($html) .

src/Controller/VinylController.php

1
2
 // ... lines 3 - 10
11
12
13
14
15
 // ... lines 16 - 24
25
26
27
28
29
30
31
 // ... lines 32 - 41
42

And now... the page works! And we understand that the true way to render a template is via the

Twig service. Someday, you'll find yourself in a situation where you need to render a template

<?php

class VinylController extends AbstractController
{
 #[Route('/', name: 'app_homepage')]
 public function homepage(Environment $twig): Response
 {

 $html = $twig->render('vinyl/homepage.html.twig', [
 'title' => 'PB & Jams',
 'tracks' => $tracks,
]);
 dd($html);
 }

}

<?php

class VinylController extends AbstractController
{
 #[Route('/', name: 'app_homepage')]
 public function homepage(Environment $twig): Response
 {

 $html = $twig->render('vinyl/homepage.html.twig', [
 'title' => 'PB & Jams',
 'tracks' => $tracks,
]);

 return new Response($html);
 }

}

but you are not in a controller... and so you do not have the $this->render() shortcut

method. Knowing that there's a Twig service you can fetch will be the key to solving that

problem. More on that in the next tutorial.

But in a real app, in a controller, there's no reason to do all this extra work. So I'm going to

revert this... and go back to using render() . And... then we don't need to autowire that

argument anymore... and we can even clean up the use statement.

Here are the three big, gigantic, important takeaways. First, Symfony is packed full of objects

that do work... which we call services. Services are tools. Second, all work in Symfony is done

by a service... even things like routing. And third, we can use services to help us get our work

done by autowiring them.

In the next tutorial in this series, we'll dive deeper into this very important concept.

But before we finish this tutorial, I really really want to talk about one more big awesome,

amazing thing: Webpack Encore, the key to writing professional CSS and JavaScript. Over

these last few chapters, we're going to bring our site to life and even make it as responsive as a

single page application.

Chapter 16: Setting up Webpack Encore

Our CSS setup is fine. We put files into the public/ directory and then... we point to them from

inside our templates. We could add JavaScript files the same way.

But if we want get truly serious about writing CSS and JavaScript, we need to take this to the

next level. And even if you consider yourself a mostly backend developer, the tools we're about

to talk about will allow you to write CSS and JavaScript that feels easier and is less error-prone

than what you're probably used to.

The key to taking our setup to the next level is leveraging a node library called Webpack.

Webpack is the industry standard tool for packaging, minifying and parsing your frontend CSS,

JavaScript, and other files. But don't worry: Node is just JavaScript. And its role in our app will

be pretty limited.

Setting up Webpack can be tricky. And so, in the Symfony world, we use a lightweight tool called

Webpack Encore. It's still Webpack... it just makes it easier! And we have a free tutorial about it

if you want to dive deeper.

Installing Encore

But let's do a crash course right now. First, at your command line, make sure you have Node

installed:

node -v

You'll also need either npm - which comes with Node automatically - or yarn :

yarn --version

Npm and yarn are Node package managers: they're the Composer for the Node world... and

you can use either. If you decide to use yarn - thats what I'll use - make sure to install version 1.

We're about to install a new package... so let's commit everything:

git add .

And... looks good:

git status

So commit everything:

git commit -m "Look mom! A real app"

To install Encore, run:

composer require encore:1.14.0

 Tip

If you're using version 2 or higher of symfony/webpack-encore-bundle , be sure to also

run:

composer require symfony/stimulus-bundle

The recipe needed to integrate the Symfony UX libraries was moved to this new bundle.

This installs WebpackEncoreBundle. Remember, a bundle is a Symfony plugin. And this

package has a recipe: a very important recipe. Run:

git status

The Encore Recipe

Ooh! For the first time, the recipe modified the .gitignore file. Let's go check that out. Open

.gitignore . The stuff on top is what we originally had... and down here is the new stuff added

by WebpackEncoreBundle. It's ignoring the node_modules/ directory, which is basically the

vendor/ directory for Node. We don't need to commit that because those vendor libraries are

described in another new file from the recipe: package.json . This is Node's composer.json

file: it describes the Node packages that our app needs. The most important one is Webpack

Encore itself, which is a Node library. It also has a few other package that will help us get our job

done.

The recipe also added an assets/ directory... and a configuration file to control Webpack:

webpack.config.js . The assets/ directory already holds a small set of files to get us started.

Installing Node Dependencies

Ok, with Composer, if we didn't have this vendor/ directory, we could run composer install

which would tell it to read the composer.json file and re-download all the packages into

vendor/ . The same thing happens with Node: we have a package.json file. To download this

stuff, run:

yarn install

Or:

npm install

Go node go! This will take a few moments as it downloads everything. You'll probably get a few

warnings like this, which are safe to ignore.

Great! This did two things. First, it downloaded a bunch of files into the node_modules/

directory: the "vendor" directory for Node. It also created a yarn.lock file... or

package-lock.json if you're using npm. This serves the same purpose of composer.lock : it

stores the exact versions of all the packages so that you get the same versions next time you

install your dependencies.

For the most part, you don't need to worry about these lock files... except that you should

commit them. Let's do that. Run:

git status

Then:

git add .

Beautiful:

git status

And commit:

git commit -m "Adding Webpack Encore"

Hey! Webpack Encore is now installed! But... it's not doing anything yet! Freeloader. Next, let's

use it to take our JavaScript up to the next level.

Chapter 17: Packaging JS and CSS with Encore

When we installed Webpack Encore, its recipe gave us this new assets/ directory. Check out

the app.js file. Interesting. Notice how it imports this bootstrap file. That's actually

bootstrap.js : this file right here. The .js extension is optional.

JavaScript Imports

This is one of the most important things that Webpack gives us: the ability to import one

JavaScript file from another. We can import functions, objects... really anything from another file.

We're going to talk more about this bootstrap.js file in a little bit.

This also imports a CSS file!? If you haven't seen this before, it might look... weird: JavaScript

importing CSS?

To see how this all works, in app.js , add a console.log() .

assets/app.js

 // ... lines 1 - 12
13
14

And app.css already has a body background... but add an !important so that we can

definitely see if this is being loaded.

assets/styles/app.css

1
2
3

Ok... so who reads these files? Because... they don't live in the public/ directory... so we can't

create script or link tags that point directly to them.

webpack.config.js

console.log('Hi! My name is app.js!');

body {
 background-color: lightgray !important;
}

To answer that, open webpack.config.js . Webpack Encore is an executable binary: we're

going to run it in a minute. When we do, it will load this file to get its config.

And while there are a lot of features inside of Webpack, the only thing we need to focus on right

now is this one: addEntry() . This app could be anything... like dinosaur , it doesn't matter. I'll

show you how that's used in a minute. The important thing is that it points to the

assets/app.js file. Because of this, app.js will be the first and only file that Webpack will

parse.

It's pretty cool: Webpack will reads the app.js file and then follow all of the import statements

recursively until it finally has a giant collection of all the JavaScript and CSS our app needs.

Then, it will write that into the public/ directory.

Running Webpack Encore

Let's see it in action. Find your terminal and run:

yarn watch

 Tip

If you're using NPM run:

npm run watch

This is, as it says, a shortcut for running encore dev --watch . If you look at your

package.json file, it came with a script section with some shortcuts.

Anyways, yarn watch does two things. First, it created a new public/build/ directory and,

inside, app.css and app.js files! But don't let the names fool you: app.js contains a lot more

that just what's inside assets/app.js : it contains all the JavaScript from all the imports it finds.

app.css contains all the CSS from all the imports.

The reason these files are called app.css and app.js is because of the entry name.

So the takeaway is that, thanks to Encore, we suddenly have new files in a public/build/

directory that contain all the JavaScript and CSS our app needs!

The Encore Twig Functions

And if you move over to your homepage and refresh... woh! It instantly worked!? The

background changed... and in my inspector... there's the console log! How the heck did that

happen?

Open your base layout: templates/base.html.twig . The secret is in the

encore_entry_link_tags() and encore_entry_script_tags() functions. I bet you can

guess what these do: add the link tag to build/app.css and the script tag to

build/app.js .

You can see this in your browser. View the source for the page and... yup! The link tag for

/build/app.css ... and script tag for /build/app.js . Oh, but it also rendered two other

script tags. That's because Webpack is really smart. For performance purposes, instead of

dumping one gigantic app.js file, sometimes Webpack will split it into multiple, smaller files.

Fortunately, these Encore Twig functions are smart enough to handle that: it will include all the

link or script tags needed.

The most important thing is that the code that we have in our assets/app.js file - including

anything it imports - is now functioning and showing up on our page!

Watching for Changes

Oh, and because we ran yarn watch , Encore is still running in the background watching for

changes. Check it out: go into app.css ... and change the background color. Save, move over

and refresh.

assets/styles/app.css

1
2
3

It instantly updated! That's because Encore noticed the change and recompiled the built file

really quickly.

body {
 background-color: maroon !important;
}

Next: let's move our existing CSS into the new system and learn how we can install and import

third party libraries - look Bootstrap or FontAwesome - right into our Encore setup.

Chapter 18: Installing 3rd Party Code into our
JS/CSS

We now have a nice new JavaScript and CSS system that lives entirely inside of the assets/

directory. Let's move our public styles into this. Open public/styles/app.css , copy all of this,

delete the entire directory... and then paste into the new app.css . Thanks to the

encore_entry_link_tags() in base.html.twig , the new CSS is being included... and we

don't need the old link tag anymore.

Go check it out. Refresh and... it still looks great!

Installing 3rd Party JavaScript/CSS Libraries

Go back to base.html.twig . What about these external link tags for bootstrap and

FontAwesome? Well, you can totally keeps these CDN links. But we can also process this stuff

through Encore. How? By installing Bootstrap and FontAwesome as vendor libraries and

importing them.

Remove all of these link tags... and then refresh. Yikes! It's back to looking like I designed this

site. Let's... first re-add bootstrap. Find your terminal. Since the watch command is running,

open a new terminal tab and then run:

yarn add bootstrap --dev

 Tip

If you're using NPM run:

npm add bootstrap --include=dev

This does three things. First, it adds bootstrap to our package.json file. Second it

downloads bootstrap into our node_modules/ directory... you would find it down here. And

third, it updated the yarn.lock file with the exact version of bootstrap that it just downloaded.

If we stopped now... this wouldn't make any difference! We downloaded bootstrap - yay - but

we're not using it.

To use it, we need to import it. Go into app.css . Just like in JavaScript files, we can import from

inside CSS files by saying @import and then the file. We could reference a file in the same

directory with ./other-file.css . Or, if you want to import something from the

node_modules/ directory in CSS, there's a trick: a ~ and then the package name: bootstrap .

assets/styles/app.css

1
 // ... lines 2 - 34

That's it! As soon as we did that, Encore's watch function rebuilt our app.css file... which now

includes Bootstrap! Watch: refresh the page and... we're back! So cool!

The two other things we're missing are FontAwesome and a specific Font. To add those, head

back to the terminal and run:

yarn add @fontsource/roboto-condensed --dev

Full disclosure: I did some searching before recording so that I knew the names of all the

packages we need. You can search for packages at https://npmjs.com.

Let's also add the last one we need:

yarn add @fortawesome/fontawesome-free --dev

Again, this downloaded the two libraries into our project... but doesn't automatically use them

yet. Because those libraries both hold CSS files, go back to our app.css file and import them:

@import '~' then @fortawesome/fontawesome-free . And

@import '~@fontsource/roboto-condensed' .

@import '~bootstrap';

https://npmjs.com/

assets/styles/app.css

1
2
3
4
 // ... lines 5 - 34

The first package should fix this icon... and the second should cause the font to change on the

whole page. Watch the font when we refresh... it did change! But, uh... the icons are still kind of

broken.

Importing Specific Files from node_modules/

To be totally honest, I'm not sure why that doesn't work out-of-the box. But the fix is kind of

interesting. Hold command on a Mac - or ctrl otherwise - and click this fontawesome-free

string.

When you use this syntax, it goes into your node_modules/ directory, into

@fortawesome/fontawesome-free ... and then if you don't put any filename after this, there's a

mechanism where this library tells Webpack which CSS file it should import. By default, it

imports this fontawesome.css file. For some reason... that doesn't work. What we want is this

all.css .

And we can import that by adding the path: /css/all.css . We don't need the minified file

because Encore handles minifying for us.

assets/styles/app.css

1
2
3
4
 // ... lines 5 - 34

And now... we're back!

The main reason I love Webpack Encore and this system is that it allows us to use proper

imports. We can even organize our JavaScript into small files - putting classes or functions into

each - and then import them when we need them. There's no more need for global variables.

@import '~bootstrap';
@import '~@fortawesome/fontawesome-free';
@import '~@fontsource/roboto-condensed';

@import '~bootstrap';
@import '~@fortawesome/fontawesome-free/css/all.css';
@import '~@fontsource/roboto-condensed';

Webpack also allows us to use more serious stuff like React or Vue: you can even see, in

webpack.config.js , the methods to activate those.

But usually, I like using a delightful JavaScript library called Stimulus. And I want to tell you

about it next.

Chapter 19: Stimulus: Sensible, Beautiful
JavaScript

I want to talk about Stimulus. Stimulus is a small, but delightful JavaScript library that I love. And

Symfony has first-class support for it. It's also heavily used by the Ruby on Rails community.

SPA vs "Traditional" Apps

So there are kind of two philosophies in web development. The first is where you return HTML

from your site like we've been doing on our homepage and browse page. And then you add

JavaScript behavior to that HTML. The second philosophy is to use a front-end JavaScript

framework to build all of your HTML and JavaScript. That's a single page application.

The right solution depends on your app, but I strongly like the first approach. And by using

Stimulus - as well as another tool we'll talk about in a few minutes called Turbo - we can create

highly-interactive apps that look and feel as responsive as a single page app.

We have an entire tutorial on Stimulus, but let's get a taste. You can already see how it works in

the example on their docs. You create a small JavaScript class called a controller... and then

attach that controller to one or more elements on the page. And that's it! Stimulus allows you to

attach event listeners - like click events - and has other goodies.

Stimulus Controllers in our App

 Tip

In more recent versions of Symfony (and, specifically, WebpackEncoreBundle v2), Stimulus

is no longer installed with symfony/webpack-encore-bundle . To install it, run:

composer require symfony/stimulus-bundle

In our app, when we installed Encore, it gave us a controllers/ directory. This is where our

Stimulus controllers will live. And in app.js , we import bootstrap.js . This is not a file that

you'll need to look at much, but it's super useful. This starts up Stimulus - yes, it's already

installed - and registers everything in the controllers/ directory as a Stimulus controller. This

means that if you want to create a new Stimulus controller, all you need to do is add a file to this

controllers/ directory!

And we get one Stimulus controller out-of-the box called hello_controller.js . All Stimulus

controllers follow the naming practice of something "underscore" controller.js or something

dash controller.js . The part before _controller - so hello - becomes the controller's

name.

Attaching a Controller to an Element

Let's attach this to an element. Open up templates/vinyl/homepage.html.twig . Let's see...

on the main part of the page, I'm going to add a div... and then to attach the controller to this

element, add data-controller="hello" .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 35
36
 // ... lines 37 - 59

Let's try it! Refresh and... yes! It worked! Stimulus saw this element, instantiated the controller...

and then our code changed the content of the element. The element that this controller is

attached to is available as this.element .

Stimulus Dynamically sees New Elements!

So... this is already really nice... because we get to work inside of a neat JavaScript object...

which is tied to a specific element.

But let me show you the coolest part of Stimulus: what makes it such a game changer. Inspect

element in your browser tools near the element. I'm going to modify the parent element's HTML.

Right above this - though it doesn't matter where - add another element with

data-controller="hello" .

 <div data-controller="hello"></div>

And... boom! We see the message! This is the killer feature of Stimulus: you can add these

data-controller elements onto the page whenever you want. For example, if you make an

Ajax call... which adds fresh HTML to your page, Stimulus will notice that and execute any

controllers that the new HTML should be attached to. If you've ever had problems where you

add HTML to your page via Ajax... but that new HTML's JavaScript is broken because it's

missing some event listeners, well, Stimulus just solved that.

The stimulus_controller () Function

When you use Stimulus inside of Symfony, we get a few helper functions to make life easier. So

instead of writing data-controller="hello" by hand, we can say

{{ stimulus_controller('hello') }} .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 35
36
 // ... lines 37 - 59

But that's just a shortcut to render that attribute exactly like it was before.

Ok, now that we have the basics of Stimulus, let's use it to do something real, like make an Ajax

request when we click this play icon. That's next.

 <div {{ stimulus_controller('hello') }}></div>

Chapter 20: Real-World Stimulus Example

Let's put Stimulus to the test. Here's our goal: when we click the play icon, we're going to make

an Ajax request to our API endpoint... the one in SongController . This returns the URL to

where this song can be played. We'll then use that in JavaScript to... play the song!

Take hello_controller.js and rename it to, how about song-controls_controller.js .

Inside, just to see if this is working, in connect() , log a message. The connect() method is

called whenever Stimulus sees a new matching element on the page.

assets/controllers/song-controls_controller.js

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Now, over in the template, hello isn't going to work anymore, so remove that. What I want to do

is surround each song row with this controller.... so that's this song-list element. After the

class, add {{ stimulus_controller('song-controls') }} .

import { Controller } from '@hotwired/stimulus';

/*
 * This is an example Stimulus controller!
 *
 * Any element with a data-controller="hello" attribute will cause
 * this controller to be executed. The name "hello" comes from the filename:
 * hello_controller.js -> "hello"
 *
 * Delete this file or adapt it for your use!
 */
export default class extends Controller {
 connect() {
 console.log('I just appeared into existence!');
 }
}

templates/vinyl/homepage.html.twig

1
2
3
4
5
6
 // ... lines 7 - 36
37
38
 // ... lines 39 - 50
51
52
 // ... lines 53 - 55
56
57

Let's try that! Refresh, check the console and... yes! It hit our code six times! Once for each of

these elements. And each element gets its own, separate controller instance.

Adding Stimulus Actions

Okay, next, when we click play, we want to run some code. To do that, we can add an action. It

looks like this: on the a tag, add {{ stimulus_action() }} - another shortcut function - and

pass this the controller name that you're attaching the action to - song-controls - and then a

method inside of that controller that should be called when someone clicks this element. How

about play .

{% extends 'base.html.twig' %}

{% block title %}Create a new Record | {{ parent() }}{% endblock %}

{% block body %}
<div class="container">

 {% for track in tracks %}
 <div class="song-list" {{ stimulus_controller('song-controls') }}>

 </div>
 {% endfor %}

</div>
{% endblock %}

templates/vinyl/homepage.html.twig

1
2
3
4
5
6
 // ... lines 7 - 36
37
38
39
40
41
42
 // ... lines 43 - 49
50
51
52
 // ... lines 53 - 55
56
57

Cool huh? Back in song controller, we don't need the connect() method anymore: we don't

need to do anything each time we notice another song-list row. But we do need a play()

method.

And like with normal event listeners, this will receive an event object... and then we can say

event.preventDefault() so that our browser doesn't try to follow the link click. To test,

console.log('Playing!') .

assets/controllers/song-controls_controller.js

1
 // ... lines 2 - 11
12
13
14
15
16
17
18

Let's go see what happens! Refresh and... click. It's working. It's that easy to hook up an event

listener in Stimulus. Oh, and if you inspect this element... that stimulus_action() function is

just a shortcut to add a special data-action attribute that Stimulus understands.

{% extends 'base.html.twig' %}

{% block title %}Create a new Record | {{ parent() }}{% endblock %}

{% block body %}
<div class="container">

 {% for track in tracks %}
 <div class="song-list" {{ stimulus_controller('song-controls') }}>
 <div class="d-flex mb-3">

 <i class="fas fa-play me-3"></i>

 </div>
 </div>
 {% endfor %}

</div>
{% endblock %}

import { Controller } from '@hotwired/stimulus';

export default class extends Controller {
 play(event) {
 event.preventDefault();

 console.log('Playing!');
 }
}

Installing and Importing Axios

Ok, how can we make an Ajax call from inside of the play() method? Well, we could use the

built-in fetch() function from JavaScript. But instead, I'm going to install a third-party library

called Axios. At your terminal, install it by saying:

yarn add axios --dev

We now know what this does: it downloads this package into our node_modules directory, and

adds this line to our package.json file.

Oh, and side note: you absolutely can use jQuery inside of Stimulus. I won't do it, but it works

great - and you can install - and import - jQuery like any other package. We talk about that in our

Stimulus tutorial.

Ok, so how do we use the axios library? By importing it!

At the top of this file, we're already importing the Controller base class from stimulus . Now

import axios from 'axios' . As soon as we do that, Webpack Encore will grab the axios

source code and include it in our built JavaScript files.

assets/controllers/song-controls_controller.js

 // ... lines 1 - 11
12
 // ... lines 13 - 21

Now, down here, we can say axios.get() to make a GET request. But... what should we pass

for the URL? It needs to be something like /api/songs/5 ... but how do we know what the "id"

is for this row?

Stimulus Values

One of the coolest things about Stimulus is that it allows you to pass values from Twig into your

Stimulus controller. To do that, declare which values you want to allow to passed in via a special

static property: static values = {} . Inside, let's allow an infoUrl value to be passed. I

totally just made up that name: I'm thinking we'll pass in the full URL to the API endpoint. Set

this to the type that this will be. So, a String .

import axios from 'axios';

We'll learn how we pass this value from Twig into our controller in a minute. But because we

have this, below, we can reference the value by saying this.infoUrlValue .

assets/controllers/song-controls_controller.js

 // ... lines 1 - 11
12
 // ... line 13
14
15
16
17
 // ... line 18
19
 // ... lines 20 - 21
22
23
24
25

So how do we pass that in? Back in homepage.html.twig , add a second argument to

stimulus_controller() . This is an array of the values you want to pass into the controller.

Pass infoUrl set to the URL.

Hmm, but we need to generate that URL. Does that route have a name yet? Nope! Add

name: 'api_songs_get_one' .

src/Controller/SongController.php

1
2
 // ... lines 3 - 10
11
12
13
14
15
 // ... lines 16 - 27
28
29

Perfect. Copy that... and back in the template, set infoURl to path() , the name of the route...

and then an array with any wildcards. Our route has an id wildcard.

In a real app, these tracks would probably each have a database id that we could pass. We

don't have that yet... so to, kind of, fake this, I'm going to use loop.index . This is a magic Twig

import axios from 'axios';

export default class extends Controller {
 static values = {
 infoUrl: String
 }

 play(event) {

 console.log(this.infoUrlValue);
 //axios.get()
 }
}

<?php

class SongController extends AbstractController
{
 #[Route('/api/songs/{id<\d+>}', methods: ['GET'], name: 'api_songs_get_one')]
 public function getSong(int $id, LoggerInterface $logger): Response
 {

 }
}

variable: if you're inside of a Twig for loop, you can access the index - like 1, 2, 3, 4 - by using

loop.index . So we're going to use this as a fake ID. Oh, and don't forget to say id: then

loop.index .

templates/vinyl/homepage.html.twig

 // ... lines 1 - 4
5
6
 // ... lines 7 - 36
37
38
39
40
 // ... lines 41 - 52
53
54
 // ... lines 55 - 57
58
59

Testing time! Refresh. The first thing I want you to see is that, when we pass infoUrl as the

second argument to stimulus_controller , all that really does is output a very special data

attribute that Stimulus knows how to read. That's how you pass a value into a controller.

Click one of the play links and... got it. Every controller object is passed its correct URL!

Making the Ajax Call

Let's celebrate by making the Ajax call! Do it with axios.get(this.infoUrlValue) - yes, I

just typo'ed that, .then() and a callback using an arrow function that will receive a response

argument. This will be called when the Ajax call finishes. Log the response to start. Oh, and fix

to use this.infoUrlValue .

{% block body %}
<div class="container">

 {% for track in tracks %}
 <div class="song-list" {{ stimulus_controller('song-controls', {
 infoUrl: path('api_songs_get_one', { id: loop.index })
 }) }}>

 </div>
 {% endfor %}

</div>
{% endblock %}

assets/controllers/song-controls_controller.js

1
2
 // ... lines 3 - 11
12
 // ... line 13
14
 // ... lines 15 - 18
19
20
21
22
23
24
25
26
27

Alrighty, refresh... then click a play link! Yes! It dumped the response... and one of its keys is

data ... which contains the url !

Time for our victory lap! Back in the function, we can play that audio by creating a new Audio

object - this is just a normal JavaScript object - passing it response.data.url ... and then

calling play() on this.

assets/controllers/song-controls_controller.js

1
 // ... lines 2 - 11
12
13
14
 // ... lines 15 - 18
19
20
21
22
23
24
25
26
27
28

And now... when we hit play... finally! Music to my ears.

import { Controller } from '@hotwired/stimulus';

import axios from 'axios';

export default class extends Controller {

 play(event) {
 event.preventDefault();

 axios.get(this.infoUrlValue)
 .then((response) => {
 console.log(response);
 });
 }
}

import { Controller } from '@hotwired/stimulus';

import axios from 'axios';

export default class extends Controller {

 play(event) {
 event.preventDefault();

 axios.get(this.infoUrlValue)
 .then((response) => {
 const audio = new Audio(response.data.url);
 audio.play();
 });
 }
}

If you want to learn more about Stimulus - this was a bit fast - we have an entire tutorial about

it... and it's great.

To finish off this tutorial, let's install one more JavaScript library. This one will instantly make our

app feel like a single page app. That's next.

Chapter 21: Turbo: Supercharge your App

Welcome to the final chapter of our intro to Symfony 6 tutorial. If you're watching this, you're

crushing it! And it's time to celebrate by installing one more package from Symfony. But before

we do, as you know, I like to commit everything first... in case the new package installs an

interesting recipe:

git add .

git commit -m "Never gonna let you go..."

Installing symfony/ux-turbo

Ok, let's install the new package:

composer require symfony/ux-turbo

See that "ux" in the package name? Symfony UX is a set of libraries that add JavaScript

functionality to your app... often with some PHP code to help. For example, there's a library for

rendering charts... and another for using an image Cropper with the form system.

Symfony UX Recipes

So, as you can see, this did install a recipe. OoOOo. Run

git status

so we can see what that did. Most of this is normal, like config/bundles.php means it

enabled the new bundle. The two interesting changes are assets/controllers.json and

package.json . Let's check out package.json first.

When you install a UX package, what that usually means is that you're integrating with a third-

party JavaScript library. And so, that package's recipe adds that library to your code. In this

case, the JavaScript library we're integrating with is called @hotwired/turbo . Also, the

symfony/ux-turbo PHP package itself comes with some extra JavaScript. This special line

says:

“Hey Node! I want to include a package called @symfony/ux-turbo ... but instead of

downloading that, you can just find its code in the

vendor/symfony/ux-turbo/Resources/assets directory.”

You can literally look at that path: vendor/symfony/ux-turbo/Resources/assets to find a

mini JavaScript package. Now, because this updated our package.json file, we need to re-

install our dependencies to download and get this all set up.

In fact, find your terminal that's running yarn watch . We've got an error! It says the file

@symfony/ux-turbo/package.json cannot be found, try running yarn install --force .

Let's do that! Hit control+C to stop this... and then run

yarn install --force

or npm install --force . Then, restart Encore with:

yarn watch

The other file the recipe modified was assets/controllers.json . Let's go take a look at that:

assets/controllers.json . This is another thing that's unique to Symfony UX. Normally, if we

want to add a stimulus controller, we put it into the controllers/ directory. But sometimes, we

might install a PHP package and that may want to add its own Stimulus controller into our app.

This syntax basically says:

“Hey Stimulus! Go load this Stimulus controller from that new @symfony/ux-turbo

package.”

Now this particular Stimulus controller is a little weird. It's not one that we're going to use directly

inside of the stimulus_controller() Twig function. This is, kind of a, fake controller. What

does it do? Just by it being loaded, it's going to activate the Turbo library.

Hello Turbo! By Full-Page Refreshes

So I keep talking about Turbo. What is Turbo? Well, by running that composer require

command... then reinstalling yarn, the Turbo JavaScript is now active and running on our site.

What does it do? It's simple: it turns every link click and form submit on our site into an Ajax call.

And that makes our site feel lightning fast.

Check it out. Do one last full refresh. And then watch... if I click Browse, there was no full page

refresh! If I click these icons, no refresh! Turbo intercepts those clicks, makes an Ajax call to the

URL, and then puts that HTML onto our site. This is huge because, for free, our app suddenly

looks and feels like a single page app... without us doing anything!

The Web Debug Toolbar & Profiler for Ajax Requests

Now, one other cool thing you'll notice is that even though full page reloads are gone, these Ajax

calls do show up on the web debug toolbar. And you can click to go see the profiler for that Ajax

call really easily. This Ajax part of the web debug toolbar is even more useful with Ajax calls for

an API endpoint. If we hit the play icon... that 7 just went up to 8... and here's the profiler for that

API request! I'll open that link in a new window. That's a super easy way to get to the profiler for

any Ajax request.

So Turbo is amazing... and it can do more. There are some things you need to know about it

before shipping it to production, and if you're interested, yup! We have a full tutorial about Turbo.

I wanted to mention it in this tutorial because Turbo is easiest if you add it to your app early on.

All right, congratulations! The first Symfony 6 tutorial is in the books! Pat yourself on the back...

or better, find a friend and give them a crisp high five.

And keep going! Join us for the next tutorial in this series, which will take you from a budding

Symfony developer to someone who really understands what's going on. How services work,

the point of all of these configuration files, Symfony environments, environmental variables, and

a lot more. Basically everything you'll need to do whatever you want with Symfony.

And if you have any questions or ideas, we are here for you down in the comments section

below the video.

Alright friends, see you next time!

With <3 from SymfonyCasts

