
Webpack Encore: Frontend like
a Pro!

Chapter 1: Hello Webpack Encore

Yo friends! It's Webpack time! Yeeeeeeah! Well, maybe not super "yeeeeeeah!" if you are the

person responsible for installing and configuring Webpack... Cause, woh, yea, that can be

tough! Unless... you're using Webpack Encore! More about that in a few minutes.

Why all the Webpack Buzz?

But first, I want you to know why you should care about Webpack... like super please-let-me-

start-using-webpack-right-now-and-never-stop-using-it kind of care. Sure, technically, Webpack

is just a tool to build & compile your JavaScript and CSS files. But, it will revolutionize the way

you write JavaScript.

The reason is right on their homepage! In PHP, we organize our code into small files that work

together. But then, traditionally, in JavaScript, we just smash all our code into one gigantic file.

Or, if we do split them up, it's still a pain because we then need to remember to go add a new

script tag to every page that needs it... and those script tags need to be in just the right

order. If they're not, kaboom! And even if you do have a build system like Gulp, you still need to

manage keeping all of the files listed there and in the right order. How can our code be so nicely

organized in PHP, but such a disaster in JavaScript?

Webpack changes this. Suppose we have an index.js file but we want to organize a function

into a different, bar.js file. Thanks to Webpack, you can "export" that function as a value from

bar.js and then import and use it in index.js . Yes, we can organize our code into small

pieces! Webpack's job is to read index.js , parse through all of the import statements it

finds, and output one JavaScript file that has everything inside of it. Webpack is a huge over-

achiever.

So let's get to it! To import or... Webpack the maximum amount of knowledge from this tutorial,

download the course code from this page and code along with me. After you unzip the file, you'll

find a start/ directory that has the same code I have here: a Symfony 4 app. Open up the

README.md file for all the setup details.

The last step will be to open a terminal, move into the project and start a web server. I'm going

to use the Symfony local web server, which you can get from https://symfony.com/download.

Run it with:

symfony serve

Then, swing back over to your browser and open up https://localhost:8000 to see... The Space

Bar! An app we've been working on throughout our Symfony series. And, we did write some

JavaScript and CSS in that series... but we kept it super traditional: the JavaScript is pretty

boring, and there are multiple files but each has its own script tag in my templates.

This is not the way I really code. So, let's do this correctly.

Installing WebpackEncoreBundle + Recipe

So even though both Webpack and Encore are Node libraries, if you're using Symfony, you'll

install Encore via composer... well... sort of. Open a new terminal tab and run:

composer require "encore:^1.8"

This downloads a small bundle called WebpackEncoreBundle. Actually, Encore itself can be

used with any framework or any language! But, it works super well with Symfony, and this thin

bundle is part of the reason.

This bundle also has a Flex recipe - oooooOOOOooo - which gives us some files to get started!

If you want to use Webpack from outside of a Symfony app, you would just need these files in

your app.

Back in the editor, check out package.json :

https://symfony.com/download
https://localhost:8000/

package.json

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

This is the composer.json file of the Node world. It requires Encore itself plus two optional

packages that we'll use:

package.json

1

2

3

4

5

6

 // ... lines 7 - 14

15

Installing Encore via Yarn

To actually download these, go back to your terminal and run:

yarn

Or... yarn install if you're less lazy than me - it's the same thing. Node has two package

managers - "Yarn" and "npm" - I know, kinda weird - but you can install and use whichever you

want. Anyways, this is downloading our 3 libraries and their dependencies into Node's version of

the vendor/ directory: node_modules/ .

{

 "devDependencies": {

 "@symfony/webpack-encore": "^0.27.0",

 "core-js": "^3.0.0",

 "webpack-notifier": "^1.6.0"

 },

 "license": "UNLICENSED",

 "private": true,

 "scripts": {

 "dev-server": "encore dev-server",

 "dev": "encore dev",

 "watch": "encore dev --watch",

 "build": "encore production --progress"

 }

}

{

 "devDependencies": {

 "@symfony/webpack-encore": "^0.27.0",

 "core-js": "^3.0.0",

 "webpack-notifier": "^1.6.0"

 },

}

And... done! Congrats! You now have a gigantic node_modules/ directory... because

JavaScript has tons of dependencies. Oh, the recipe also updated our .gitignore file to

ignore node_modules/ :

.gitignore

 // ... lines 1 - 22

23

24

25

 // ... lines 26 - 27

28

 // ... lines 29 - 31

Just like with Composer, there is no reason to commit this stuff. This also ignores

public/build/ , which is where Webpack will put our final, built files.

Hello webpack.config.js

In fact, I'll show you why. At the root of your app, the recipe added the most important file of all

webpack.config.js :

###> symfony/webpack-encore-bundle ###

/node_modules/

/public/build/

###

webpack.config.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

var Encore = require('@symfony/webpack-encore');

Encore

 // directory where compiled assets will be stored

 .setOutputPath('public/build/')

 // public path used by the web server to access the output path

 .setPublicPath('/build')

 // only needed for CDN's or sub-directory deploy

 //.setManifestKeyPrefix('build/')

 /*

 * ENTRY CONFIG

 *

 * Add 1 entry for each "page" of your app

 * (including one that's included on every page - e.g. "app")

 *

 * Each entry will result in one JavaScript file (e.g. app.js)

 * and one CSS file (e.g. app.css) if you JavaScript imports CSS.

 */

 .addEntry('app', './assets/js/app.js')

 //.addEntry('page1', './assets/js/page1.js')

 //.addEntry('page2', './assets/js/page2.js')

 // When enabled, Webpack "splits" your files into smaller pieces for

greater optimization.

 .splitEntryChunks()

 // will require an extra script tag for runtime.js

 // but, you probably want this, unless you're building a single-page

app

 .enableSingleRuntimeChunk()

 /*

 * FEATURE CONFIG

 *

 * Enable & configure other features below. For a full

 * list of features, see:

 * https://symfony.com/doc/current/frontend.html#adding-more-features

 */

 .cleanupOutputBeforeBuild()

 .enableBuildNotifications()

 .enableSourceMaps(!Encore.isProduction())

 // enables hashed filenames (e.g. app.abc123.css)

 .enableVersioning(Encore.isProduction())

 // enables @babel/preset-env polyfills

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

This is the configuration file that Encore reads. Actually, if you use Webpack by itself, you would

have this exact same file! Encore is basically a configuration generator: you tell it how you want

Webpack to behave and then, all the way at the bottom, say:

“Please give me the standard Webpack config that will give me that behavior.”

Encore makes things easy, but it's still true Webpack under-the-hood.

Most of the stuff in this file is for configuring some optional features that we'll talk about along

the way - so ignore it all for now. The three super important things that we need to talk about are

output path, public path and this addEntry() thing:

 .configureBabel(() => {}, {

 useBuiltIns: 'usage',

 corejs: 3

 })

 // enables Sass/SCSS support

 //.enableSassLoader()

 // uncomment if you use TypeScript

 //.enableTypeScriptLoader()

 // uncomment to get integrity="..." attributes on your script & link

tags

 // requires WebpackEncoreBundle 1.4 or higher

 //.enableIntegrityHashes()

 // uncomment if you're having problems with a jQuery plugin

 //.autoProvidejQuery()

 // uncomment if you use API Platform Admin (composer req api-admin)

 //.enableReactPreset()

 //.addEntry('admin', './assets/js/admin.js')

;

module.exports = Encore.getWebpackConfig();

webpack.config.js

1

2

3

4

5

6

7

 // ... lines 8 - 10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 65

66

 // ... lines 67 - 68

Let's do that next, build our first Webpack'ed files and include them on the page.

var Encore = require('@symfony/webpack-encore');

Encore

 // directory where compiled assets will be stored

 .setOutputPath('public/build/')

 // public path used by the web server to access the output path

 .setPublicPath('/build')

 /*

 * ENTRY CONFIG

 *

 * Add 1 entry for each "page" of your app

 * (including one that's included on every page - e.g. "app")

 *

 * Each entry will result in one JavaScript file (e.g. app.js)

 * and one CSS file (e.g. app.css) if you JavaScript imports CSS.

 */

 .addEntry('app', './assets/js/app.js')

 //.addEntry('page1', './assets/js/page1.js')

 //.addEntry('page2', './assets/js/page2.js')

;

Chapter 2: Webpacking our First Assets

So, Webpack only needs to know three things. The first - setOutputPath() - tells it where to

put the final, built files and the second - setPublicPath() - tells it the public path to this

directory:

webpack.config.js

 // ... lines 1 - 2

3

4

5

6

7

 // ... lines 8 - 65

66

 // ... lines 67 - 68

The Entry File

The third important piece, and where everything truly starts, is addEntry() :

 Tip

The Encore recipe now puts app.js in assets/app.js . But the purpose of the file is

exactly the same!

Encore

 // directory where compiled assets will be stored

 .setOutputPath('public/build/')

 // public path used by the web server to access the output path

 .setPublicPath('/build')

;

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 65

66

 // ... lines 67 - 68

Here's the idea: we point Webpack at just one JavaScript file - assets/js/app.js . Then, it

parses through all the import statements it finds, puts all the code together, and outputs one file

in public/build called app.js . The first argument - app - is the entry's name, which can

be anything, but it controls the final filename: app becomes public/build/app.js .

And the recipe gave us a few files to start. Open up assets/js/app.js :

 Tip

The recipe now puts CSS files into an assets/styles/ directory. So,

assets/styles/app.css - but the purpose of all these files is the same.

Encore

 /*

 * ENTRY CONFIG

 *

 * Add 1 entry for each "page" of your app

 * (including one that's included on every page - e.g. "app")

 *

 * Each entry will result in one JavaScript file (e.g. app.js)

 * and one CSS file (e.g. app.css) if you JavaScript imports CSS.

 */

 .addEntry('app', './assets/js/app.js')

 //.addEntry('page1', './assets/js/page1.js')

 //.addEntry('page2', './assets/js/page2.js')

;

assets/js/app.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

This is the file that Webpack will start reading. There's not much here yet - a console.log()

and... woh! There is one cool thing: a require() call to a CSS file! We'll talk more about this

later, but in the same way that you can import other JavaScript files, you can import CSS too!

And, by the way, this require() function and the import statement we saw earlier on

Webpack's docs, do basically the same thing. More on that soon.

To make the CSS a bit more obvious, open app.css and change the background to

lightblue and add an !important so it will override my normal background:

assets/css/app.css

1

2

3

disableSingleRuntimeChunk()

Before we execute Encore, back in webpack.config.js , we need to make one other small

tweak. Find the enableSingleRuntimeChunk() line, comment it out, and put

disableSingleRuntimeChunk() instead:

/*

 * Welcome to your app's main JavaScript file!

 *

 * We recommend including the built version of this JavaScript file

 * (and its CSS file) in your base layout (base.html.twig).

 */

// any CSS you require will output into a single css file (app.css in this

case)

require('../css/app.css');

// Need jQuery? Install it with "yarn add jquery", then uncomment to

require it.

// const $ = require('jquery');

console.log('Hello Webpack Encore! Edit me in assets/js/app.js');

body {

 background-color: lightblue !important;

}

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 26

27

28

29

30

 // ... lines 31 - 66

67

 // ... lines 68 - 69

Don't worry about this yet - we'll see exactly what it does later.

Running Encore

Ok! We've told Webpack where to put the built files and which one file to start parsing. Let's do

this! Find your terminal and run the Encore executable with:

./node_modules/.bin/encore dev

 Tip

For Windows, your command may need to be node_modules\bin\encore.cmd dev

Because we want a development build. And... hey! A nice little notification that it worked!

And... interesting - it built two files: app.js and app.css . You can see them inside the

public/build directory. The app.js file... well... basically just contains the code from the

assets/js/app.js file because... that file didn't import any other JavaScript files. We'll

change that soon. But our app entry file did require a CSS file:

assets/js/app.js

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

Encore

 // will require an extra script tag for runtime.js

 // but, you probably want this, unless you're building a single-page

app

 //.enableSingleRuntimeChunk()

 .disableSingleRuntimeChunk()

;

// any CSS you require will output into a single css file (app.css in this

case)

require('../css/app.css');

And yea, Webpack understands this!

Here's the full flow. First, Webpack looks at assets/js/app.js . It then looks for all the

import and require() statements. Each time we import a JavaScript file, it puts those

contents into the final, built app.js file. And each time we import a CSS file, it puts those

contents into the final, built app.css file.

Oh, and the final filename - app.css? It's app.css because our entry is called app. If we

changed this to appfoo.css , renamed the file, then ran Encore again, it would still build

app.js and app.css files thanks to the first argument to addEntry() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 19

20

 // ... lines 21 - 66

67

 // ... lines 68 - 69

Adding the Script & Links Tags

What this means is... we now have one JavaScript file that contains all the code we need and

one CSS file that contains all the CSS! All we need to do is add them to our page!

Open up templates/base.html.twig . Let's keep the existing stylesheets for now and add

a new one: <link rel="stylesheet" href=""> the asset() function and the public

path: build/app.css :

Encore

 .addEntry('app', './assets/js/app.js')

;

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

10

 // ... lines 11 - 14

15

16

 // ... lines 17 - 107

108

At the bottom, add the script tag with src="{{ asset('build/app.js') }}" .

 Tip

In new Symfony projects, the javascripts block is at the top of this file - inside the

<head> tag. We'll learn more about why in a few minutes.

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

 // ... lines 93 - 105

106

107

108

If you're not familiar with the asset() function, it's not doing anything important for us.

Because the build/ directory is our document root, we're literally pointing to the public path.

Let's try it! Move over, refresh and... hello, weird blue background. And in the console... yes!

There's the log!

<!doctype html>

<html lang="en">

 <head>

 {% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('build/app.css') }}">

 {% endblock %}

 </head>

</html>

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 <script src="{{ asset('build/app.js') }}"></script>

 {% endblock %}

 </body>

</html>

 Tip

If you're coding along with a fresh Symfony project, you likely will not see the

console.log() being printed. That's ok! In the next chapter, you'll learn about a Twig

function that will render some <script> tags that you're currently missing.

We've only started to scratch the surface of the possibilities of Webpack. So if you're still

wondering: "why is going through this build process so useful?". Stay tuned. Because next,

we're going to talk about the require() and import statements and start organizing our

code.

Chapter 3: Twig Helpers, entrypoints.json & yarn
Scripts

Encore is outputting app.css and app.js thanks to the app entry:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 19

20

 // ... lines 21 - 66

67

 // ... lines 68 - 69

And we successfully added the <link> tag for app.css and, down here, the <script> for

app.js :

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

10

 // ... lines 11 - 14

15

16

17

18

 // ... lines 19 - 90

91

92

 // ... lines 93 - 105

106

107

108

The Twig Helper Functions

Encore

 .addEntry('app', './assets/js/app.js')

;

<!doctype html>

<html lang="en">

 <head>

 {% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('build/app.css') }}">

 {% endblock %}

 </head>

 <body>

 {% block javascripts %}

 <script src="{{ asset('build/app.js') }}"></script>

 {% endblock %}

 </body>

</html>

But when you use Encore with Symfony, you won't render script and link tags by hand. No way!

We're going to be way lazier, and use some helper functions from WebpackEncoreBundle. For

the stylesheets, use {{ encore_entry_link_tags() }} and pass it app , because that's

the name of the entry:

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

10

 // ... lines 11 - 14

15

16

 // ... lines 17 - 107

108

At the bottom, replace the script tag with almost the same thing:

{{ encore_entry_script_tags('app') }} :

 Tip

In new Symfony projects, the javascripts block is at the top of this file - inside the

<head> tag. Also, Encore will render a defer attribute on each script tag. To follow this

tutorial, in config/packages/webpack_encore.yaml , comment-out the

defer: true key to avoid this. For more info about defer and its performance benefits,

check out https://symfony.com/blog/moving-script-inside-head-and-the-defer-attribute

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

 // ... lines 93 - 105

106

107

108

<!doctype html>

<html lang="en">

 <head>

 {% block stylesheets %}

 {{ encore_entry_link_tags('app') }}

 {% endblock %}

 </head>

</html>

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </body>

</html>

https://symfony.com/blog/moving-script-inside-head-and-the-defer-attribute

Move over and refresh to try this. Wow! This made absolutely no difference! The <link> tag

on top looks exactly the same. And... if I search for "script"... yep! That's identical to what we

had before.

So... why? Or maybe better, how? Is it just taking the app and turning it into build/app.js?

Not quite... it's a bit more interesting than that.

In the public/build/ directory, Encore generates a very special file called

entrypoints.json . This is a map from each entry name to the CSS and JS files that are

needed to make it run. If you were listening closely, I just said two strange things. First, we only

have one entry right now. But yes, we will eventually have multiple entries to power page-

specific CSS and JS. Second, for performance, eventually Webpack may split a single entry into

multiple JavaScript and CSS files and we will need multiple script and link tags. We'll talk more

about that later.

The important thing right now is: we have these handy helpers that output the exact link and

script tags we need... even if we need multiple.

Using --watch

Ok, back to Encore. Because it's a build tool, each time you make a change to anything, you

need to rebuild:

./node_modules/.bin/encore dev

That's lame. So, of course, Webpack also has a "watch" mode. Re-run the same command but

with --watch on the end:

./node_modules/.bin/encore dev --watch

Encore boots up, builds and... just chills out and waits for more changes. Let's test this. In

app.js , I think we need a few more exclamation points:

assets/js/app.js

 // ... lines 1 - 13

14

Save, then check out the terminal. Yea! It already rebuilt! In your browser, refresh. Boom! Extra

exclamation points. If that doesn't work for some reason, do a force refresh.

Shortcut "scripts"

But even that is too much work. Press Ctrl+C to stop Encore. Instead, just run:

yarn watch

That's a shortcut to do the same thing. You can even see it in the output:

encore dev --watch . But there's no magic here. Open up package.json . We got this file

from the recipe when we installed the WebpackEncoreBundle via Composer. See this

scripts section?

package.json

1

 // ... lines 2 - 8

9

10

11

12

13

14

15

This is a feature of Yarn and npm: you can add "shortcut" commands to make your life easier.

yarn watch maps to encore dev --watch . Later, we'll use yarn build to generate our

assets for production.

With all this done, let's get back to the core of why Webpack is awesome: being able to import

and require other JavaScript. That's next.

console.log('Hello Webpack Encore! Edit me in assets/js/app.js!!!');

{

 "scripts": {

 "dev-server": "encore dev-server",

 "dev": "encore dev",

 "watch": "encore dev --watch",

 "build": "encore production --progress"

 }

}

Chapter 4: Modules: require() & import()

Let's get back to talking about the real power of Webpack: the ability to import or require

JavaScript files. Pretend that building this string is actually a lot of work. Or maybe it's

something we need to re-use from somewhere else in our code:

assets/js/app.js

 // ... lines 1 - 13

14

So, we want to isolate it into its own file. If this were PHP, we would create a new file to hold this

logic. In JavaScript, we're going to do the same thing.

In assets/js/ , create a new file called get_nice_message.js . Unlike PHP, in JavaScript,

each file that you want to use somewhere else needs to export something, like a function,

object, or even a string. Do that by saying module.exports = and then the thing you want to

export. Let's create a function() with one argument exclamationCount :

assets/js/get_nice_message.js

1

 // ... line 2

3

Inside, let's go steal our string... then return that string and, to increase our fanciness, add

'!'.repeat(exclamationCount) :

assets/js/get_nice_message.js

1

2

3

Yes. Because strings are objects in JavaScript, this works - it's kinda cool. By the way, when a

JavaScript file exports a value like this, it's known as a "module". That's not a big deal, but you'll

hear this term a lot: JavaScript modules. OooOOOoo. It just refers to what we're doing here.

Now go back to app.js . At the top, well... it doesn't need to be on top, but usually we organize

the imports there, add const getNiceMessage = require('./get_nice_message'); :

console.log('Hello Webpack Encore! Edit me in assets/js/app.js!!!');

module.exports = function(exclamationCount) {

};

module.exports = function(exclamationCount) {

 return 'Hello Webpack Encore! Edit me in

assets/js/app.js'+'!'.repeat(exclamationCount);

};

assets/js/app.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 17

Notice the .js extension is optional, you can add it or skip it - Webpack knows what you mean.

And because, key strokes are expensive... and programmers are lazy, you usually don't see it.

Also, that ./ at the beginning is important. When you're pointing to a file relative to the current

one, you need to start with ./ or ../ . If you don't, Webpack will think you're trying to import a

third-party package. We'll see that soon.

And now that we have our getNiceMessage() function, let's call it! Pass it 5 for just the right

number of excited exclamation points:

assets/js/app.js

 // ... lines 1 - 13

14

15

16

And because we're running the watch command in the background, when we refresh, it just

works!

import Versus require

But! When we originally looked at the Webpack docs, they weren't using require() and

module.exports ! Nope, they were using import and export . It turns out, there are two

/*

 * Welcome to your app's main JavaScript file!

 *

 * We recommend including the built version of this JavaScript file

 * (and its CSS file) in your base layout (base.html.twig).

 */

// any CSS you require will output into a single css file (app.css in this

case)

require('../css/app.css');

// Need jQuery? Install it with "yarn add jquery", then uncomment to

require it.

// const $ = require('jquery');

const getNiceMessage = require('./get_nice_message');

const getNiceMessage = require('./get_nice_message');

console.log(getNiceMessage(5));

valid ways to export and import values from other files... and they're basically identical.

To use the other way, remove module.exports and say export default :

assets/js/get_nice_message.js

1

 // ... line 2

3

That does the same thing. The default is important. With this syntax, a module, so, a file, can

export more than one thing. We're not going to talk about that here, but most of the time, you'll

want to export just one thing, and this default keyword is how you do that.

Next, back in app.js , the require changes to

import getNiceMessage from './get_nice_message' :

assets/js/app.js

 // ... lines 1 - 13

14

 // ... lines 15 - 17

That's it! That is 100% the same as what we had before. So, which should you use? Use this

syntax. The require() function comes from Node. But the import and export syntax are

the official way to do module loading in ECMAScript, which is the actual name for the JavaScript

language specification.

You can - and should - also use this for CSS. Just import , then the path:

assets/js/app.js

 // ... lines 1 - 7

8

9

 // ... lines 10 - 17

There's no from in this case because we don't need it to return a value to us.

Make sure all this coolness works: refresh! Yes!

Woh! Hey! Shut the front door! Did we just organize our JavaScript without global variables?

Yes! We totally did! And that is no small thing. Heck, we could stop the tutorial right now, and

you would still have this amazing superpower.

export default function(exclamationCount) {

};

import getNiceMessage from './get_nice_message';

// any CSS you require will output into a single css file (app.css in this

case)

import '../css/app.css';

But... we won't! There is still so much cool stuff to talk about. Like, how we can now super easily

install third-party libraries via Yarn and import them in our code. Let's do it!

Chapter 5: Importing External Libraries & Global
Variables

We already added the app entry files to our base layout: the <script> tag and the <link>

tag both live here:

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

10

 // ... lines 11 - 14

15

16

17

18

 // ... lines 19 - 90

91

92

 // ... lines 93 - 105

106

107

108

This means that any time we have some CSS or JavaScript that should be included on every

page, we can put it in app.js .

Look down at the bottom:

<!doctype html>

<html lang="en">

 <head>

 {% block stylesheets %}

 {{ encore_entry_link_tags('app') }}

 {% endblock %}

 </head>

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </body>

</html>

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Ah... we have a few script tags for external files and some inline JavaScript. Shame on me!

Let's refactor all of this into our new Encore-powered system.

The first thing we include is jQuery... which makes sense because we're using it below. Great!

Get rid of it. Not surprisingly... this gives us a nice, big error:

“$ is not defined”

Installing a Library (jQuery)

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 <script src="https://code.jquery.com/jquery-3.2.1.min.js"

integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4="

crossorigin="anonymous"></script>

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.3/umd/popper.min.

integrity="sha384-

vFJXuSJphROIrBnz7yo7oB41mKfc8JzQZiCq4NCceLEaO4IHwicKwpJf9c9IpFgh"

crossorigin="anonymous"></script>

 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta.2/js/bootstrap.min.js" integrity="sha384-

alpBpkh1PFOepccYVYDB4do5UnbKysX5WZXm3XxPqe5iKTfUKjNkCk9SaVuEZflJ"

crossorigin="anonymous"></script>

 <script>

 $('.dropdown-toggle').dropdown();

 $('.custom-file-input').on('change', function(event) {

 var inputFile = event.currentTarget;

 $(inputFile).parent()

 .find('.custom-file-label')

 .html(inputFile.files[0].name);

 });

 </script>

 {% endblock %}

 </body>

</html>

No worries! One of the most wondrous things about modern JavaScript is that we can install

third-party libraries properly. I mean, with a package manager. Find your terminal and run:

yarn add jquery --dev

The --dev part isn't important. Technically we only need these files during the "build"

process... they don't need to be included on production... which is why the --dev makes

sense. But in 99% of the cases, it doesn't matter. We'll talk about production builds and

deploying at the end of the tutorial.

And... that was painless! We now have jQuery in our app.

Importing a Third-Party Library

We already know how to import a file that lives in a directory next to us. To import a third party

library, we can say import $ from , and then the name of the package: jquery :

assets/js/app.js

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 15

The critical thing is that there is no . or ./ at the start. If the path starts with a . , Webpack

knows to look for that file relative to this one. If there is no . , it knows to look for it inside the

node_modules/ directory.

Check it out: open node_modules/ and ... there's it is! A jquery directory! But how does it

know exactly which file in here to import? I'm so glad you asked! Open jQuery's

package.json file. Every JavaScript package you install... unless it's seriously ancient, will

have a main key that tells Webpack exactly which file it should import. We just say

import 'jquery' , but it really imports this specific file.

// any CSS you require will output into a single css file (app.css in this

case)

import '../css/app.css';

import $ from 'jquery';

Global Variables inside Webpack

Cool! We've imported jQuery in app.js and set it to a $ variable. And because that

<script> tag is included above our inline code in base.html.twig :

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

The $ variable should be available down here, right?

Nope! $ is still not defined! Wait, the second error is more clear. Yep, $ is not defined, coming

from our code in base.html.twig .

This uncovers a super important detail. When you import a file from a 3rd party library, that file

behaves differently than if you add a <script> tag on your page that points to the exact same

file! Yea!

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.3/umd/popper.min.

integrity="sha384-

vFJXuSJphROIrBnz7yo7oB41mKfc8JzQZiCq4NCceLEaO4IHwicKwpJf9c9IpFgh"

crossorigin="anonymous"></script>

 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta.2/js/bootstrap.min.js" integrity="sha384-

alpBpkh1PFOepccYVYDB4do5UnbKysX5WZXm3XxPqe5iKTfUKjNkCk9SaVuEZflJ"

crossorigin="anonymous"></script>

 <script>

 $('.dropdown-toggle').dropdown();

 $('.custom-file-input').on('change', function(event) {

 var inputFile = event.currentTarget;

 $(inputFile).parent()

 .find('.custom-file-label')

 .html(inputFile.files[0].name);

 });

 </script>

 {% endblock %}

 </body>

</html>

That's because a well-written library will contain code that detects how it's being used and then

changes its behavior.

Check it out: open jquery.js . It's not super easy to read, but look at this: if

typeof module.exports === "object" . That's key. This is jQuery detecting if it's being

used from within an environment like Webpack. If it is, it exports the jQuery object in the same

way that we're exporting a function from the get_nice_message.js file:

assets/js/get_nice_message.js

1

 // ... line 2

3

But if we are not in a module-friendly environment like Webpack... specifically, if jQuery is being

loaded via a script tag in our browser, it's not too obvious, but this code is creating a global

variable.

So, if jQuery is in a script tag, we get a global $ variable. But if you import it like we're doing

here:

assets/js/app.js

 // ... lines 1 - 10

11

 // ... lines 12 - 15

It does not create a global variable. It returns the jQuery object, which is then set on this local

variable. Also, all modules... or "files", in Webpack live in "isolation": if you set a variable in one

file, it won't be available in any other file, regardless of what order they're loaded.

That is probably the biggest thing to re-learn in Webpack. Global variables are dead. That's

awesome. But it also changes everything.

Forcing a Global jQuery Variable

The ultimate solution is to refactor all of your code from your templates and un-Webpack-ified

JavaScript files into Encore. But... if you're upgrading an existing site, phew! You probably have

a ton of JavaScript that expects there to be global $ or jQuery variables. Moving all of that

into Encore all at once... it's, uh... not very realistic.

So, if you really want a global variable, you can add one with global.$ = $:

export default function(exclamationCount) {

};

import $ from 'jquery';

assets/js/app.js

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

That global keyword is special to Webpack. Try it now: refresh! It works!

But... don't do this unless you have to. I'll remove it and add some comments to explain that this

is useful for legacy code:

assets/js/app.js

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 17

Let's properly finish this next by refactoring all our code into app.js , which will include

installing two more libraries and our first jQuery plugin... It turns out that jQuery plugins are a

special beast.

import $ from 'jquery';

global.$ = $;

import $ from 'jquery';

// uncomment if you have legacy code that needs global variables

//global.$ = $;

Chapter 6: Bootstrap & the Curious Case of jQuery
Plugins

The inline code in base.html.twig isn't working anymore because we've eliminated the $

global variable:

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

 // ... lines 92 - 95

96

97

98

99

100

101

102

103

104

105

106

107

Woo! To make it work, let's move all this code into app.js :

assets/js/app.js

 // ... lines 1 - 15

16

17

18

19

20

21

22

23

24

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 <script>

 $('.dropdown-toggle').dropdown();

 $('.custom-file-input').on('change', function(event) {

 var inputFile = event.currentTarget;

 $(inputFile).parent()

 .find('.custom-file-label')

 .html(inputFile.files[0].name);

 });

 </script>

 {% endblock %}

 </body>

</html>

console.log(getNiceMessage(5));

$('.dropdown-toggle').dropdown();

$('.custom-file-input').on('change', function(event) {

 var inputFile = event.currentTarget;

 $(inputFile).parent()

 .find('.custom-file-label')

 .html(inputFile.files[0].name);

});

Instead of global variables, we're importing $ and that's why it's called $ down here:

assets/js/app.js

 // ... lines 1 - 10

11

 // ... lines 12 - 17

18

19

20

21

22

23

24

It's all just local variables.

Try it now. Ok, it sorta works. It logs... then explodes. The error has some Webpack stuff on it,

but it ultimately says:

“dropdown is not a function”

Click the app.js link. Ah, it's having trouble with the dropdown() function. That is one of the

functions that Bootstrap adds to jQuery. And... it makes sense why it's missing: we're running all

of our code here, and then including Bootstrap:

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

 // ... lines 93 - 94

95

96

97

98

It's simply not adding the function in time! Well actually, it's a bit more than that. Even if we

moved this script tag up, it still wouldn't work. Why? Because when you include Bootstrap via a

import $ from 'jquery';

$('.dropdown-toggle').dropdown();

$('.custom-file-input').on('change', function(event) {

 var inputFile = event.currentTarget;

 $(inputFile).parent()

 .find('.custom-file-label')

 .html(inputFile.files[0].name);

});

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta.2/js/bootstrap.min.js" integrity="sha384-

alpBpkh1PFOepccYVYDB4do5UnbKysX5WZXm3XxPqe5iKTfUKjNkCk9SaVuEZflJ"

crossorigin="anonymous"></script>

 {% endblock %}

 </body>

</html>

script tag, it expects jQuery to be a global variable... and that - wonderfully - doesn't exist

anymore.

Let's do this properly.

Installing Bootstrap

Oh, by the way, this popper.js thing is here because it's needed by Bootstrap:

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

93

94

95

96

97

98

You'll see how this works in Webpack in a moment. Delete both of the script tags:

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

93

94

95

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.3/umd/popper.min.

integrity="sha384-

vFJXuSJphROIrBnz7yo7oB41mKfc8JzQZiCq4NCceLEaO4IHwicKwpJf9c9IpFgh"

crossorigin="anonymous"></script>

 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta.2/js/bootstrap.min.js" integrity="sha384-

alpBpkh1PFOepccYVYDB4do5UnbKysX5WZXm3XxPqe5iKTfUKjNkCk9SaVuEZflJ"

crossorigin="anonymous"></script>

 {% endblock %}

 </body>

</html>

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </body>

</html>

Then, find your terminal and run:

yarn add "bootstrap@^4" --dev

Oh, and how did I know that the package name was bootstrap? Just because I cheated and

searched for it before recording. Go to https://yarnpkg.com/ and search for "Bootstrap". 9.7

million downloads... in the last 30 days... that's probably the right one.

And... it's done! Oh, and there's a little notice:

“bootstrap has an unmet peer dependency popper.js”

We'll come back to that in a minute.

Importing jQuery Plugins

Back in app.js installing Bootstrap isn't enough. On top, add import 'bootstrap' :

assets/js/app.js

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

Nope, we don't need to say import $ from or anything like that. Bootstrap is a jQuery plugin

and jQuery plugins are... super weird. They do not return a value. Instead, they modify jQuery

and add functions to it. I'll add a note here because... it just looks strange: it's weird that adding

this allows me to use the tooltip() function, for example.

How Bootstrap Finds jQuery

But wait a second. If Bootstrap modifies jQuery... internally, how does it get the jQuery object in

order to do that? I mean, jQuery is no longer global: if we need it, we need to import it. Well...

because Bootstrap is a well-written library, it does the exact same thing. It detects that it's in a

Webpack environment and, instead of expecting there to be a global jQuery variable, it

imports jquery , just like we are.

import $ from 'jquery';

import 'bootstrap'; // adds functions to jQuery

https://yarnpkg.com/

And, fun fact, when two different files import the same module, they get back the same, one

instance of it - a lot like Symfony's container. We import jQuery and assign it to $. Then, a

microsecond later, Bootstrap imports that same object and modifies it:

assets/js/app.js

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

By the time we get past line 12, the $ variable has the new tooltip() function.

Installing popper.js

But... you may have noticed that, while I was talking about how awesome this is all going to

work... my build was failing!

“This dependency was not found: popper.js in bootstrap.js ”

This is awesome! Bootstrap has two dependencies: jQuery but also another library called

popper.js . Internally, it tries to import both of them. But, because this is not installed in our

project, it fails. By the way, if you're wondering:

“Why doesn't Bootstrap just list this as a dependency in its package.json so that it's

automatically downloaded for us?”

Excellent question! And that's exactly how we would do it in the PHP world. Short answer: Node

dependencies are complicated, and so sometimes it will work like this, but sometimes it's a

better idea for a library to force us to install its dependency manually. That's called a "peer"

dependency.

Anyways, this is a great error, and it even suggests how to fix it:

npm install --save popper.js . Because we're using Yarn, we'll do our version of that

command. Back in your open terminal tab, run:

yarn add popper.js --dev

import $ from 'jquery';

import 'bootstrap'; // adds functions to jQuery

When that finishes... ah. Because we haven't modified any files, Webpack doesn't know it

should re-build. Let's go over here and just add a space. That triggers a rebuild which is...

successful!

Try it out - refresh! No errors.

Next! I have a surprise! Webpack has already started to silently optimize our build through a

process called code splitting. Let's see what that means and learn how it works.

Chapter 7: The Magic of Split Chunks

View the HTML source and search for app.js . Surprise! We have multiple script tags! Actually,

let me go to the inspect - it's a bit prettier. Black magic! We have two script tags - one for

app.js but also one for vendors~app.js . What the heck? Go look at the public/build/

directory. Yeah, there is a vendors~app.js file.

I love this feature. Check out webpack.config.js . One of the optional features that came

pre-enabled is called splitEntryChunks() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 23

24

25

 // ... lines 26 - 66

67

 // ... lines 68 - 69

Here's how it works. We tell Webpack to read app.js , follow all the imports, then eventually

create one app.js file and one app.css file. But internally, Webpack uses an algorithm that,

in this case, determines that it's more efficient if the one app.js file is split into two: app.js

and vendors~app.js . And then, yea, we need two script tags on the page.

The Logic of Splitting

That may sound... odd at first... I mean, isn't part of the point of Webpack to combine all our

JavaScript into a single file so that users can avoid making a ton of web requests?

Yes... but not always. The vendors~app.js file has some Webpack-specific code on top, but

most of this file contains the vendor libraries that we imported. Stuff like bootstrap &

jquery .

Encore

 // When enabled, Webpack "splits" your files into smaller pieces for

greater optimization.

 .splitEntryChunks()

;

When Webpack is trying to figure out how to split the app.js file, it looks for code that satisfies

several conditions. For example, if it can find code from the node_modules/ directory and that

code is bigger than 30kb and splitting it into a new file would result in 3 or fewer final JavaScript

files for this entry, it will split it. That's exactly what's happening here. Webpack especially likes

splitting "vendor" code - that's the stuff in node_modules/ - into its own file because vendor

code tends to change less often. That means your user's browser can cache the

vendors~app.js file for a longer time... which is cool, because those files tend to be pretty

big. Then, the app.js file - which contains our code that probably changes more often, is

smaller.

The algorithm also looks for code re-use. Right now, we only have one entry. But in a little while,

we're going to create multiple entries to support page-specific CSS and JavaScript. When we do

that, Webpack will automatically start analyzing which modules are shared between those

entries and isolate them into their own files. For example, suppose our

get_nice_message.js file is imported from two different entries: app and admin . Without

code splitting, that code would be duplicated inside the final built app.js and admin.js . With

code splitting, that code may be split into its own file. I say "may" because Webpack is smart: if

the code is tiny, splitting it into its own file would be worse for performance.

SplitChunksPlugin

All of this craziness happens without us even knowing or caring. This feature comes from a part

of Webpack called the SplitChunksPlugin. On top, it explains the logic it uses to split. But you

can configure all of this.

Oh, see this big example config? This is a small piece of what Webpack's config normally looks

like without Encore: your webpack.config.js would be a big config object like this. So, if we

wanted to apply some of these changes, how could we do that in Encore?

The answer lives at the bottom of webpack.config.js . At the end, we call

Encore.getWebpackConfig() , which generates standard Webpack config:

webpack.config.js

 // ... lines 1 - 68

69

If you need to, you can always set this to a variable, modify some keys, then export the final

value when you're finished:

module.exports = Encore.getWebpackConfig();

// webpack.config.js

// ...

const config = Encore.getWebpackConfig();

config.optimization.splitChunks.minSize = 20000;

module.exports = config;

But for most things, there's an easier way. In this case, you can say

.configureSplitChunks() and pass it a callback function. Encore will pass you the default

split chunks configuration and then you can tweak it:

// webpack.config.js

// ...

Encore.

 // ...

 .splitEntryChunks()

 .configureSplitChunks(function(splitChunks) {

 splitChunks.minSize = 20000;

 })

 // ...

;

module.exports = Encore.getWebpackConfig();

This is a common way to extend things in Encore.

But... Webpack does a pretty great job of splitting things out-of-the-box. And... if you look at the

entrypoints.json file, Encore makes sure that this file stays up-to-date with exactly which

script and link tags each entry requires. The Twig helpers are already reading this file and taking

care of everything:

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

93

94

95

Basically, code splitting is free performance.

Oh, and all of this applies to CSS too. In a few minutes, after we've made our CSS a bit fancier,

you'll notice that we'll suddenly have multiple link tags.

Next, let's do that! Let's take our CSS up a level by removing the extra link tags from our base

layout and putting everything into Encore. To do this, we'll start importing CSS files from third-

party libraries in node_modules/ .

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </body>

</html>

Chapter 8: Importing 3rd Party CSS + Image Paths

We're on a mission to refactor all the old <script> and <link> tags out of our templates.

For the base layout, we're half way done! There is only one script tag, which points to the app

entry:

templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 90

91

92

93

94

95

That's perfect.

Back on top, we do still have multiple link tags, including Bootstrap from a CDN, FontAwesome,

which I apparently just committed into my public/css directory, and some custom CSS in

styles.css :

<!doctype html>

<html lang="en">

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </body>

</html>

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

10

11

12

13

14

15

16

 // ... lines 17 - 94

95

First, eliminate Bootstrap! In the same way that we can properly install JavaScript libraries with

Yarn, we can also install CSS libraries! Woo!

In app.js , we're already importing a single app.css file:

assets/js/app.js

 // ... lines 1 - 7

8

9

 // ... lines 10 - 25

We could add another import right here for the Bootstrap CSS. Instead, I prefer to import just

one CSS file per entry. Then, from within that CSS file, we can use the standard @import CSS

syntax to import other CSS files. To Webpack, these two approaches are identical.

Now, you might be thinking:

“Don't we need to install the bootstrap CSS library?”

And... yes! Well, I mean, no! Um, I mean, we already did it! In node_modules/ , look for

bootstrap/ . This directory contains JavaScript but it also contains the Bootstrap CSS.

<!doctype html>

<html lang="en">

 <head>

 {% block stylesheets %}

 {{ encore_entry_link_tags('app') }}

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"

integrity="sha384-

Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"

crossorigin="anonymous">

 <link rel="stylesheet" href="{{ asset('css/font-awesome.css')

}}">

 <link rel="stylesheet" href="{{ asset('css/styles.css') }}">

 {% endblock %}

 </head>

</html>

// any CSS you require will output into a single css file (app.css in this

case)

import '../css/app.css';

Importing CSS from node_modules

But... hmm... In JavaScript, we can say import then simply the name of the package and... it

just works! But we can't repeat that same trick for CSS.

Instead, we'll point directly to the path we want, which, in this case is probably

dist/css/bootstrap.css . Here's how: @import , ~bootstrap and the path:

/dist/css/bootstrap.css :

assets/css/app.css

1

The ~ part is special to CSS and Webpack. When you want to reference the node_modules/

directory from within a CSS file, you need to start with ~ . That's different than JavaScript where

any path that doesn't start with . is assumed to live in node_modules/ . After the ~ , it's just a

normal, boring path.

But yea... that's all we need! Move over and refresh. This looks exactly the same!

Referencing just the Package Name

And... remember how I said that we can't simply import CSS by referencing only the package

name? That was... kind of a lie. Shorten this to just ~bootstrap :

assets/css/app.css

1

Go try it! Refresh and... the same!

This works thanks to a little extra feature we added to Encore... which may become a more

standard feature in the future. We already know that when we import a package by its name in

JavaScript, Webpack looks in package.json , finds the main key.... there it is and uses this

to know that it should finally import the dist/js/bootstrap.js file.

Some libraries also include these style or sass keys. And when they do, you only need to

@import ~ and the package name. Because we're doing this from inside a CSS file, it knows

to look inside package.json for a style key.

This is just a shortcut to do the exact same thing we had before.

@import '~bootstrap/dist/css/bootstrap.css';

@import '~bootstrap';

Installing & Importing Font Awesome

Bootstrap, check! Let's keep going: the next link tag is for FontAwesome. Get rid of that and

celebrate by deleting the public/css/font-awesome.css file and this entire fonts/

directory. This feels great! We're deleting things that I never should have committed in the first

place.

Next, download FontAwesome with:

yarn add font-awesome --dev

When it finishes, go back to node_modules/ and search for font-awesome/ . Got it! Nice! It

has directories for css/ , less/ , scss/ whatever format we want. And fortunately, if you look

inside package.json , it also has a style key.

Easy peasy! In app.css , add @import '~font-awesome' :

assets/css/app.css

1

2

Done. Find your browser and refresh. Let's see... down here, yes! This is a FontAwesome icon.

It still works!

Image & Font Handling

But this is way cooler than it seems! Internally, the FontAwesome CSS file references some font

files that the user's browser needs to download: these files here. But... these files aren't in our

public directory... so shouldn't the paths to these be broken?

Close up node_modules/ and check out the public/build/ directory. Whoa! Where did

this fonts/ directory come from? When Webpack sees that a CSS file refers to a font file, it

copies those fonts into this fonts/ directory and rewrites the code in the final app.css file so

that the font paths point here. Yes, it just handles it.

It also automatically adds a hash to the filename that's based on the file's contents. So if we

ever update the font file, that hash would automatically change and the CSS would

@import '~bootstrap';

@import '~font-awesome';

automatically point to it. That's free browser cache busting.

Moving our CSS into Encore

Ok one more link tag to go:

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

 // ... lines 10 - 11

12

13

14

 // ... lines 15 - 92

93

Remove it! Then, open css/styles.css , copy all of this, delete that file, and, in app.css ,

highlight the blue background and paste!

<!doctype html>

<html lang="en">

 <head>

 {% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('css/styles.css') }}">

 {% endblock %}

 </head>

</html>

assets/css/app.css

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

@import '~bootstrap';

@import '~font-awesome';

body {

 position: relative;

 background: #efefee;

 min-height: 45rem;

 padding-bottom: 80px;

}

html {height:100%}

/* NAVIGATION */

.navbar-bg {

 background: url('../images/space-nav.jpg');

 background-size: 80%;

}

.dropdown-menu, .dropdown-menu.show {

 right: 0;

}

.space-brand {

 color: #fff;

 font-weight: bold;

}

.nav-profile-img {

 width: 50px;

 border: 1px solid #fff;

}

.nav-tabs .nav-link:focus, .nav-tabs .nav-link:hover {

 color: #efefee;

}

/* ADVERTISEMENT */

.ad-space {

 background: #fff;

 border-radius: 5px;

 border-top: 5px solid green;

}

.advertisement-img {

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

 width: 150px;

 height: auto;

 border: 2px solid #efefee;

 border-radius: 5px;

}

.advertisement-text {

 font-weight: bold;

}

.quote-space {

 background: #fff;

 margin-top: 30px;

 border-radius: 5px;

 border-top: 5px solid hotpink;

}

/* ARTICLES */

.main-article {

 border: 2px solid #efefee;

 Background: #fff;

 border-top-left-radius: 6px;

 border-top-right-radius: 6px;

}

.main-article img {

 width: 100%;

 height: 250px;

 border-top-right-radius: 5px;

 border-top-left-radius: 5px;

 border-top: 5px solid lightblue;

}

.article-container {

 border: 1px solid #efefee;

 border-top-left-radius: 5px;

 border-bottom-left-radius: 5px;

 background: #fff;

}

.main-article-link, .article-container a {

 text-decoration: none;

 color: #000;

}

.main-article-link:hover {

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

 text-decoration: none;

 color: #000;

}

.article-title {

 min-width: 300px;

}

@media (max-width: 440px) {

 .article-title {

 min-width: 100px;

 max-width: 245px;

 }

}

.article-img {

 height: 100px;

 width: 100px;

 border-top-left-radius: 5px;

 border-bottom-left-radius: 5px;

}

.article-author-img {

 height: 25px;

 border: 1px solid darkgray;

}

.article-details {

 font-size: .8em;

}

/* PROFILE */

.profile-img {

 width: 150px;

 height: auto;

 border: 2px solid #fff;

}

.profile-name {

 font-size: 1.5em;

}

.my-article-container {

 background: #FFBC49;

 border: solid 1px #efefee;

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

 border-radius: 5px;

}

/* CREATE ARTICLE */

.create-article-container {

 min-width: 400px;

 background-color: lightblue;

 border-radius: 5px;

}

/* ARTICLE SHOW PAGE */

.show-article-container {

 width: 100%;

 background-color: #fff;

}

.show-article-container.show-article-container-border-green {

 border-top: 3px solid green;

 border-radius: 3px;

}

.show-article-img {

 width: 250px;

 height: auto;

 border-radius: 5px;

}

.show-article-title {

 font-size: 2em;

}

.like-article, .like-article:hover {

 color: red;

 text-decoration: none;

}

@media (max-width: 991px) {

 .show-article-title {

 font-size: 1.5em;

 }

 .show-article-title-container {

 max-width: 220px;

 }

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

}

.article-text {

 margin-top: 20px;

}

.share-icons i {

 font-size: 1.5em;

}

.comment-container {

 max-width: 600px;

}

.comment-img {

 width: 50px;

 height: auto;

 border: 1px solid darkgray;

}

.commenter-name {

 font-weight: bold;

}

.comment-form {

 min-width: 500px;

}

@media (max-width: 767px) {

 .comment-form {

 min-width: 260px;

 }

 .comment-container {

 max-width: 280px;

 }

}

/* FOOTER */

.footer {

 position: absolute;

 bottom: 0;

 width: 100%;

 height: 60px; /* Set the fixed height of the footer here */

 line-height: 60px; /* Vertically center the text there */

235

236

237

238

239

240

241

242

243

244

245

That's a simple step so... it should work, right? Nope! Check out the build failure:

“Module not found: Can't resolve ../images/space-nav.jpg in our assets/css/

directory.”

It doesn't show the exact file, but we only have one. Ah, here's the problem:

assets/css/app.css

 // ... lines 1 - 12

13

14

15

16

 // ... line 17

18

 // ... lines 19 - 246

PhpStorm is super angry about it too! This background image references ../images/ , which

was perfect when the code lived in the public/css/ directory. But when we moved it, we

broke that path!

This is awesome! Instead of us silently not realizing we did this, we get a build error. Amazing!

We can't break paths without Webpack screaming.

To fix this, let's "cut" the entire images/ directory and move it into the assets/ folder. Yep,

it's gone. But Encore doesn't know to re-compile... so make a small change and save. Build

successful!

Go check it out. Refresh! It works! And even better, look at the build/ folder. We have an

images/ directory with space-nav.jpg inside. Just like with fonts, Webpack sees our path,

 background-color: #fff;

 margin-top: 10px;

}

/* Sortable */

.sortable-ghost {

 background-color: lightblue;

}

.drag-handle {

 cursor: grab;

}

/* NAVIGATION */

.navbar-bg {

 background: url('../images/space-nav.jpg');

}

realizes that space-nav.jpg needs to be public, and so moves it into the build/images/

directory and rewrites the background-image code in the final CSS to point here.

The moral is this: all we need to do is worry about writing our code correctly: using the proper

relative paths from source CSS file to source image file. Webpack handles the ugly details.

Now, this did break a few tags on our site that are referencing some of these files. Now

that they're not in the public/ directory... they don't work. We'll handle that soon.

But next, let's get more from our CSS by using Sass.

Chapter 9: Sass & Overriding Bootstrap Variables

What if I want to use Sass instead of normal CSS, or maybe Less or Stylus? Normally, that

takes some setup: you need to create a system that can compile all of your Sass files into CSS.

But with Encore, we get this for free!

Rename app.css to app.scss . Of course, when we do that, the build fails because we need

to update the import in app.js :

assets/js/app.js

 // ... lines 1 - 7

8

9

 // ... lines 10 - 26

But the build still fails. Go check out the error. Woh! That's awesome! It basically says:

“Hey! How are you? Great weather lately, right? Listen, it looks like you're trying to load a

Sass file. That's super! To do that, enable the feature in Encore and install these libraries.”

This is the philosophy of Encore: give you a really solid, but small-ish core, and then offer a ton

of optional features.

Enabling Sass

Go back to webpack.config.js . The enableSassLoader() line is already here.

Uncomment it:

// any CSS you require will output into a single css file (app.css in this

case)

import '../css/app.scss';

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 50

51

52

 // ... lines 53 - 66

67

 // ... lines 68 - 69

Back at the terminal, copy the yarn add command, go to the open tab, and run it!

 Tip

Instead of node-sass , install sass . It's a pure-JavaScript implementation that is easier to

install and is now recommended.

yarn add sass-loader@^7.0.1 sass --dev

This could take a minute or two: node-sass is a C library and it may need to compile itself

depending on your system. Ding!

Thanks to the watch script, we normally don't need to worry about stopping or restarting Encore.

There is one notable exception: when you make a change to webpack.config.js , you must

stop and restart Encore. That's just a limitation of Webpack itself: it can't re-read the fresh

configuration until you restart.

Hit Control+C and then run yarn watch again.

yarn watch

And this time... yes! We just added Sass support in like... two minutes - how awesome is that?

Organizing into Partials

Encore

 // enables Sass/SCSS support

 .enableSassLoader()

;

This next part is optional, but I want to get organized... instead of having one big file, create a

new directory called layout/ . And for this top stuff, create a file called _header.scss . Little-

by-little, we're going to move all of this code into different files. Grab the first section and put it

into header:

assets/css/layout/_header.scss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

We'll import the new files when we finish.

Next is the "advertisement" CSS. Create another folder called components/ . And inside, a

new _ad.scss file. I'll delete the header... then move the code there:

body {

 position: relative;

 background: #efefee;

 min-height: 45rem;

 padding-bottom: 80px;

}

html {height:100%}

/* NAVIGATION */

.navbar-bg {

 background: url('../images/space-nav.jpg');

 background-size: 80%;

}

.dropdown-menu, .dropdown-menu.show {

 right: 0;

}

.space-brand {

 color: #fff;

 font-weight: bold;

}

.nav-profile-img {

 width: 50px;

 border: 1px solid #fff;

}

.nav-tabs .nav-link:focus, .nav-tabs .nav-link:hover {

 color: #efefee;

}

assets/css/components/_ad.scss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Let's keep going! For the article stuff, create _articles.scss , and move the code:

.ad-space {

 background: #fff;

 border-radius: 5px;

 border-top: 5px solid green;

}

.advertisement-img {

 width: 150px;

 height: auto;

 border: 2px solid #efefee;

 border-radius: 5px;

}

.advertisement-text {

 font-weight: bold;

}

.quote-space {

 background: #fff;

 margin-top: 30px;

 border-radius: 5px;

 border-top: 5px solid hotpink;

}

assets/css/components/_articles.scss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

.main-article {

 border: 2px solid #efefee;

 Background: #fff;

 border-top-left-radius: 6px;

 border-top-right-radius: 6px;

}

.main-article img {

 width: 100%;

 height: 250px;

 border-top-right-radius: 5px;

 border-top-left-radius: 5px;

 border-top: 5px solid lightblue;

}

.article-container {

 border: 1px solid #efefee;

 border-top-left-radius: 5px;

 border-bottom-left-radius: 5px;

 background: #fff;

}

.main-article-link, .article-container a {

 text-decoration: none;

 color: #000;

}

.main-article-link:hover {

 text-decoration: none;

 color: #000;

}

.article-title {

 min-width: 300px;

}

@media (max-width: 440px) {

 .article-title {

 min-width: 100px;

 max-width: 245px;

 }

}

.article-img {

 height: 100px;

47

48

49

50

51

52

53

54

55

56

57

58

59

 // ... lines 60 - 140

Then, _profile.scss , copy that code... and paste:

assets/css/components/_profile.scss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

For the "Create Article" and "Article Show" sections, let's copy all of that and put it into

_article.scss :

 width: 100px;

 border-top-left-radius: 5px;

 border-bottom-left-radius: 5px;

}

.article-author-img {

 height: 25px;

 border: 1px solid darkgray;

}

.article-details {

 font-size: .8em;

}

.profile-img {

 width: 150px;

 height: auto;

 border: 2px solid #fff;

}

.profile-name {

 font-size: 1.5em;

}

.my-article-container {

 background: #FFBC49;

 border: solid 1px #efefee;

 border-radius: 5px;

}

assets/css/components/_articles.scss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

.main-article {

 border: 2px solid #efefee;

 Background: #fff;

 border-top-left-radius: 6px;

 border-top-right-radius: 6px;

}

.main-article img {

 width: 100%;

 height: 250px;

 border-top-right-radius: 5px;

 border-top-left-radius: 5px;

 border-top: 5px solid lightblue;

}

.article-container {

 border: 1px solid #efefee;

 border-top-left-radius: 5px;

 border-bottom-left-radius: 5px;

 background: #fff;

}

.main-article-link, .article-container a {

 text-decoration: none;

 color: #000;

}

.main-article-link:hover {

 text-decoration: none;

 color: #000;

}

.article-title {

 min-width: 300px;

}

@media (max-width: 440px) {

 .article-title {

 min-width: 100px;

 max-width: 245px;

 }

}

.article-img {

 height: 100px;

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

 width: 100px;

 border-top-left-radius: 5px;

 border-bottom-left-radius: 5px;

}

.article-author-img {

 height: 25px;

 border: 1px solid darkgray;

}

.article-details {

 font-size: .8em;

}

/* CREATE ARTICLE */

.create-article-container {

 min-width: 400px;

 background-color: lightblue;

 border-radius: 5px;

}

/* ARTICLE SHOW PAGE */

.show-article-container {

 width: 100%;

 background-color: #fff;

}

.show-article-container.show-article-container-border-green {

 border-top: 3px solid green;

 border-radius: 3px;

}

.show-article-img {

 width: 250px;

 height: auto;

 border-radius: 5px;

}

.show-article-title {

 font-size: 2em;

}

.like-article, .like-article:hover {

 color: red;

 text-decoration: none;

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

}

@media (max-width: 991px) {

 .show-article-title {

 font-size: 1.5em;

 }

 .show-article-title-container {

 max-width: 220px;

 }

}

.article-text {

 margin-top: 20px;

}

.share-icons i {

 font-size: 1.5em;

}

.comment-container {

 max-width: 600px;

}

.comment-img {

 width: 50px;

 height: auto;

 border: 1px solid darkgray;

}

.commenter-name {

 font-weight: bold;

}

.comment-form {

 min-width: 500px;

}

@media (max-width: 767px) {

 .comment-form {

 min-width: 260px;

 }

 .comment-container {

 max-width: 280px;

 }

}

And for the footer, inside layout/ , create one more file there called _footer.scss and...

move the footer code:

assets/css/layout/_footer.scss

1

2

3

4

5

6

7

8

9

And finally, copy the sortable code, create another components partial called

_sortable.scss and paste:

assets/css/components/_sortable.scss

1

2

3

4

5

6

Now we can import all of this with @import './layout/header' and

@import './layout/footer' :

assets/css/app.scss

1

2

3

4

5

 // ... lines 6 - 11

Notice: you don't need the _ or the .scss parts: that's a Sass thing. Let's add a few more

imports for the components: ad , articles , profile and sortable :

.footer {

 position: absolute;

 bottom: 0;

 width: 100%;

 height: 60px; /* Set the fixed height of the footer here */

 line-height: 60px; /* Vertically center the text there */

 background-color: #fff;

 margin-top: 10px;

}

.sortable-ghost {

 background-color: lightblue;

}

.drag-handle {

 cursor: grab;

}

@import '~bootstrap';

@import '~font-awesome';

@import './layout/header';

@import './layout/footer';

assets/css/app.scss

 // ... lines 1 - 3

4

5

6

7

8

9

10

Phew! That took some work, but I like the result! But, of course, Encore is here to ruin our party

with a build failure:

“Cannot resolve ./images/space-nav.jpeg ”

We know that error! In _header.scss ... ah, there it is:

assets/css/layout/_header.scss

 // ... lines 1 - 11

12

13

 // ... line 14

15

 // ... lines 16 - 34

The path needs to go up one more level now:

assets/css/layout/_header.scss

 // ... lines 1 - 11

12

13

 // ... line 14

15

 // ... lines 16 - 34

And... it works.

Move over and make sure nothing looks weird. Brilliant!

Adding Variables

@import './layout/header';

@import './layout/footer';

@import './components/ad';

@import './components/articles';

@import './components/profile';

@import './components/sortable';

.navbar-bg {

 background: url('../images/space-nav.jpg');

}

.navbar-bg {

 background: url('../../images/space-nav.jpg');

}

To celebrate that we're processing through Sass, let's at least use one of its features. Create a

new directory called helper/ and a new file called _variables.scss .

At the top of _header.scss , we have a gray background color:

assets/css/layout/_header.scss

1

 // ... line 2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 34

Just to prove we can do it, in _variables , create a new variable called $lightgray set to

#efefee :

assets/css/helper/_variables.scss

1

And back in headers, reference that: $lightgray :

assets/css/layout/_header.scss

1

 // ... line 2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 34

We even get auto-completion on that! As soon as we save, the build fails!

“Undefined variable: "$lightgray"”

Perfect! Because... inside of app.scss , all the way on top, we still need to @import the

helper/variables file:

assets/css/app.scss

1

 // ... lines 2 - 13

About a second later... ding! It builds and... the background is still there.

body {

 background: #efefee;

}

$lightgray: #efefee;

body {

 background: $lightgray;

}

@import './helper/variables';

Overriding Bootstrap Sass Variables

But wait, there's more! When we import bootstrap , Encore has some logic to find the right

CSS file in that package. But now that we're inside a Sass file, it's smart enough to instead

import the bootstrap.scss file! Woh!

Check it out. Hold Command or Ctrl and click ~bootstrap to jump to that directory. Then

open up package.json . This has a style key, but it also has a sass key! Because we're

importing from inside a Sass file, Encore first looks for the sass key and loads that file. If there

isn't a sass key, it falls back to using style .

Now look at the font-awesome/ directory and find its package.json file. It actually does

not have a sass key! And so, it's still loading the font-awesome.css file, which is fine. If you

did want to load the Sass file, you would just need to point at the file path directly.

Anyways, to prove that the Bootstrap Sass file is being loaded, we can override some of its

variables. See this search button? It's blue because it has the btn-info class. It's color hash

is... here: #1782b8 .

Suppose you want to change the info color globally to be a bit darker. Bootstrap lets you do that

in Sass by overriding a variable called $info .

Try it: inside the variables file, set $info: to darken() , the hash, and 10% :

assets/css/helper/_variables.scss

1

 // ... lines 2 - 5

Once the build finishes... watch closely. It got darker! How cool is that?

Next, let's fix our broken img tags thanks to one of my favorite new Encore features called

copyFiles() .

$info: darken(#17a2b8, 10%);

Chapter 10: Copying Files

Do a force refresh on the homepage. Ok, we've got some broken images. Inspect that. Of

course: this points to /images/meteor-shower.jpg .

Open this template: article/homepage.html.twig . There it is:

templates/article/homepage.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

 // ... line 15

16

17

 // ... lines 18 - 40

41

 // ... lines 42 - 61

62

63

64

A normal asset() function pointing to images/meteor-shower.jpg . That's broken

because we moved our entire images/ directory out of public/ and into assets/ .

There's a nice side-effect of using a build system like Webpack: you don't need to keep your

CSS, JavaScript or assets in a public directory anymore! You put them in assets/ , organize

them however you want, and the end-user will only ever see the final, built version.

{% block body %}

 <div class="container">

 <div class="row">

 <!-- Article List -->

 <div class="col-sm-12 col-md-8">

 <!-- H1 Article -->

 <div class="main-article mb-5 pb-3">

 <img src="{{ asset('images/meteor-shower.jpg') }}"

alt="meteor shower">

 </div>

 </div>

 </div>

 </div>

{% endblock %}

But unless you're building a single page application, you'll probably still have some cases where

you want to render a good, old-fashioned img tag. And because this image is not being

processed through Webpack, it's not being copied into the final build/ directory.

Hello copyFiles()

To make life more joyful, Encore has a feature for exactly this situation. Open up

webpack.config.js . And, anywhere in here, say .copyFiles() and pass this a

configuration object:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 53

54

 // ... line 55

56

 // ... lines 57 - 70

71

 // ... lines 72 - 73

 Tip

If you're using Encore 1.0 or later, you'll also need to install file-loader . As soon as you

use copyFiles() , check your Encore terminal tab: it will have the exact command you

need to run.

Obviously... this function helps you copy files from one place to another. Neato! But... how

exactly do we use it? One of the nicest things about Encore is that its code is extremely well-

documented. Hold Command or Ctrl and click copyFiles() . It jumps us straight to the

index.js file of Encore... which is almost entirely small methods with HUGE docs above

them! This is a great resource for finding out, not only how you can use a function, but what

functions and features are even available!

For copyFiles() , it can be as simple as:

“I want to copy everything from assets/images into my build directory.”

Encore

 .copyFiles({

 })

;

Yea, that sounds about right. If we did that, we could then reference those images from our img

tags. Copy that config, go back to webpack.config.js and paste. Oh, I have an extra set of

curly braces:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 53

54

55

56

 // ... lines 57 - 70

71

 // ... lines 72 - 73

And because we just made a change to webpack.config.js , find your terminal, press

Ctrl+C , and re-run Encore. When that finishes... go check it out. In the public/build/

directory, there they are: meteor-shower.jpg , space-ice.png and so on.

Controlling the copy Destination

Um, but it is kind of lame that it just dropped them directly into build/ , I'd rather, for my own

sanity, copy these into build/images/ .

Let's see... go back to the docs. Here it is: you can give it a destination... and this has a few

wildcards in it, like [path] , [name] and [ext] . Oh, but use this second one instead: it gives

us built-in file versioning by including a hash of the contents in the filename.

Back in our config, paste that:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 53

54

55

56

57

 // ... lines 58 - 71

72

 // ... lines 73 - 74

Encore

 .copyFiles({

 from: './assets/images'

 })

;

Encore

 .copyFiles({

 from: './assets/images',

 to: 'images/[path][name].[hash:8].[ext]'

 })

;

Before we restart Encore, shouldn't we delete some of these old files... at least to get them out

of the way and clean things up? Nope! Well, yes, but it's already happening. One other optional

feature that we're using is called cleanOutputBeforeBuild() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 38

39

 // ... lines 40 - 71

72

 // ... lines 73 - 74

This is responsible for emptying the build/ directory each time we build.

Ok, go restart Encore: Ctrl+C , then:

yarn watch

Let's go check it out! Beautiful! Everything now copies to images/ and includes a hash.

Public Path to Versioned Copied Files: manifest.json

Oh, but... that's a problem. What path are we supposed to use for the img tag? Should we put

build/images/meteor-shower.5c77...jpg? No, because if we ever updated that

image, the hash would change and all our img tags would break. And because they aren't

being processed by Webpack, that failure would be the worst kind: it would fail silently!

In the build/ directory, there are two special JSON files generated by Encore. The first -

entrypoints.json - is awesome because the Twig helpers can use it to generate all of the

script and link tags for an entry. But there's another file: manifest.json .

This is a big, simple, beautiful map that contains every file that Encore outputs. It maps from the

original filename to the final filename. For most files, because we haven't activated versioning

globally yet, the paths are the same. But check out the images! It maps from

build/images/meteor-shower.jpg to the real, versioned path! If we could read this file,

we could automagically get the correct hash!

Encore

 .cleanupOutputBeforeBuild()

;

When we installed WebpackEncoreBundle, the recipe added a

config/packages/assets.yaml file. Inside, oh! It has json_manifest_path set to the

path to manifest.json :

config/packages/assets.yaml

1

2

3

The significance of this line is that anytime we use the asset() function in Twig, it will take

that path and look for it inside of manifest.json . If it finds it, it will use the final, versioned

path.

This means that if we want to point to meteor-shower.jpg , all we need to do is use the

build/images/meteor-shower.jpg path. Copy that, go to the homepage template, and

paste it here:

templates/article/homepage.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

 // ... line 15

16

17

 // ... lines 18 - 40

41

 // ... lines 42 - 61

62

63

64

framework:

 assets:

 json_manifest_path:

'%kernel.project_dir%/public/build/manifest.json'

{% block body %}

 <div class="container">

 <div class="row">

 <!-- Article List -->

 <div class="col-sm-12 col-md-8">

 <!-- H1 Article -->

 <div class="main-article mb-5 pb-3">

 <img src="{{ asset('build/images/meteor-

shower.jpg') }}" alt="meteor shower">

 </div>

 </div>

 </div>

 </div>

{% endblock %}

There are a few other images tags in this file. Search for <img . This is pointing to an uploaded

file, not a static file - so, that's good. Ah, but this one needs to change:

build/images/alien-profile.png :

templates/article/homepage.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 20

21

22

23

 // ... line 24

25

 // ... lines 26 - 34

35

 // ... line 36

37

38

39

40

41

 // ... lines 42 - 61

62

63

64

And one more, add build/ before space-ice.png :

{% block body %}

 <div class="container">

 <div class="row">

 <!-- Article List -->

 <div class="col-sm-12 col-md-8">

 {% for article in articles %}

 <div class="article-container my-1">

 <a href="{{ path('article_show', {slug: article.slug})

}}">

 <div class="article-title d-inline-block pl-3

align-middle">

 <img

class="article-author-img rounded-circle" src="{{

asset('build/images/alien-profile.png') }}"> {{ article.author }}

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

 </div>

{% endblock %}

templates/article/homepage.html.twig

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 45

46

47

48

 // ... lines 49 - 50

51

 // ... lines 52 - 60

61

62

63

64

Let's try it! Move over, refresh and... we got it! Inspect element: it's the final, versioned filename.

Let's update the last img tags - they're in show.html.twig . Search for img tags again,

then... build/ , build/ and build/ :

{% block body %}

 <div class="container">

 <div class="row">

 <div class="col-sm-12 col-md-4 text-center">

 <div class="ad-space mx-auto mt-1 pb-2 pt-2">

 <img class="advertisement-img" src="{{

asset('build/images/space-ice.png') }}">

 </div>

 </div>

 </div>

 </div>

{% endblock %}

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

 // ... line 8

9

 // ... lines 10 - 11

12

 // ... lines 13 - 24

25

26

27

 // ... lines 28 - 39

40

41

 // ... lines 42 - 44

45

46

47

 // ... lines 48 - 54

55

56

57

58

59

60

61

 // ... lines 62 - 71

72

73

74

75

76

77

78

79

 // ... lines 80 - 86

Click to go view one of the articles. These comment avatars are now using the system.

{% block content_body %}

 <div class="row">

 <div class="col-sm-12">

 <div class="show-article-title-container d-inline-block pl-3

align-middle">

 <img

class="article-author-img rounded-circle" src="{{

asset('build/images/alien-profile.png') }}"> {{ article.author }}

 </div>

 </div>

 </div>

 <div class="row">

 <div class="col-sm-12">

 <div class="row mb-5">

 <div class="col-sm-12">

 <img class="comment-img rounded-circle" src="{{

asset('build/images/astronaut-profile.png') }}">

 </div>

 </div>

 {% for comment in article.nonDeletedComments %}

 <div class="row">

 <div class="col-sm-12">

 <img class="comment-img rounded-circle" src="{{

asset('build/images/alien-profile.png') }}">

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

{% endblock %}

copyFiles() is nice because it lets you keep all your frontend files in the same directory...

even if some need to be copied to the build directory. But to sweeten the deal, you're rewarded

with free asset versioning.

By the way, this function was added by @Lyrkan, one of the core devs for Encore and... even

though it's pretty simple, it's an absolutely brilliant implementation that I haven't seen used

anywhere else. So, if you like it, give him a thanks on Symfony Slack or Twitter.

Next, let's create multiple entry points to support page-specific CSS and JavaScript.

https://github.com/Lyrkan

Chapter 11: Page-Specific JS: Multiple Entries

On the article show page, if you check the console... it's an error!

“$ is undefined”

Coming from article_show.js . This shouldn't be surprising. And not just because I seem to

make a lot of mistakes. Open that template and go to the bottom. Ah, this brings in a

js/article_show.js file:

templates/article/show.html.twig

 // ... lines 1 - 80

81

82

83

84

85

Go find that: in public/ , I'll close build/ and... there it is:

public/js/article_show.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

This contains some traditional JavaScript from a previous tutorial. The problem is that the global

$ variable doesn't exist anymore. If you look closely on this page, you'll see that, at the bottom,

{% block javascripts %}

 {{ parent() }}

 <script src="{{ asset('js/article_show.js') }}"></script>

{% endblock %}

$(document).ready(function() {

 $('.js-like-article').on('click', function(e) {

 e.preventDefault();

 var $link = $(e.currentTarget);

 $link.toggleClass('fa-heart-o').toggleClass('fa-heart');

 $.ajax({

 method: 'POST',

 url: $link.attr('href')

 }).done(function(data) {

 $('.js-like-article-count').html(data.hearts);

 })

 });

});

we include the app.js file first and then article_show.js . And, of course, the app.js file

does import jQuery:

assets/js/app.js

 // ... lines 1 - 10

11

 // ... lines 12 - 26

But as we learned, this does not create a global variable and local variables in Webpack don't

"leak" beyond the file they're defined in.

So... this file is broken. And that's fine because I want to refactor it anyways to go through

Encore so that we can properly import the variable on top.

Before we do that, let's organize one tiny thing. In assets/js , create a new components/

directory. Move get_nice_messages.js into that... and because that breaks our build...

update the import statement in app.js to point here:

assets/js/app.js

 // ... lines 1 - 14

15

 // ... lines 16 - 26

Creating the Second Entry

Ok: I originally put this code into a separate file because it's only needed on the article show

page. We could copy all of this, put it into app.js ... and that would work! But sometimes,

instead of having one big JavaScript file, you might want to split page-specific CSS and

JavaScript into their own files.

To do that, we'll create a second Webpack "entry". Move article_show.js into

assets/js/ . Next, go into webpack.config.js and, up here, call addEntry() again.

Name it article_show and point it at ./assets/js/article_show.js :

import $ from 'jquery';

import getNiceMessage from './components/get_nice_message';

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 19

20

21

 // ... lines 22 - 72

73

 // ... lines 74 - 75

Now when we build Webpack, it will still load app.js , follow all the imports, and create

app.js and app.css files. But now it will also load article_show.js , follow all of its

imports and output new article_show.js and article_show.css files.

Each "entry", or "entry point" is like a standalone application that contains everything it needs.

And now that we have this new article_show entry, inside show.html.twig , instead of

our manual <script> tag, use

{{ encore_entry_script_tags('article_show') }} :

templates/article/show.html.twig

 // ... lines 1 - 80

81

82

83

84

85

I don't have a link tag anywhere... nope - it's not hiding on top either. That's ok, because, so

far, article_show.js isn't importing any CSS. And so, Webpack is smart enough to not

output an empty article_show.css file. But you could still plan ahead if you wanted:

encore_entry_link_tags() will print nothing if there's no CSS file. So, no harm.

Ok: because we made a change to our webpack.config.js file, stop and restart Encore:

yarn watch

And... cool! The app entry caused these three files to be created... thanks to the split chunks

stuff, and article_show just made article_show.js .

Encore

 .addEntry('app', './assets/js/app.js')

 .addEntry('article_show', './assets/js/article_show.js')

;

{% block javascripts %}

 {{ parent() }}

 {{ encore_entry_script_tags('article_show') }}

{% endblock %}

If you find your browser and refresh now... oh, same error... because we still haven't imported

that. Back in article_show.js , import $ from 'jquery' :

assets/js/article_show.js

1

2

3

 // ... lines 4 - 16

17

Refresh again and... boom! Error is gone. We can click the fancy JavaScript-powered heart

icon.

Importing CSS

Because we haven't imported any CSS yet from article_show.js , we already saw that

Webpack was smart enough to not output a CSS file. But! Open up _articles.scss . Part of

this file is CSS for the article show page... which doesn't really need to be included on every

page:

import $ from 'jquery';

$(document).ready(function() {

});

assets/css/components/_articles.scss

 // ... lines 1 - 68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

/* ARTICLE SHOW PAGE */

.show-article-container {

 width: 100%;

 background-color: #fff;

}

.show-article-container.show-article-container-border-green {

 border-top: 3px solid green;

 border-radius: 3px;

}

.show-article-img {

 width: 250px;

 height: auto;

 border-radius: 5px;

}

.show-article-title {

 font-size: 2em;

}

.like-article, .like-article:hover {

 color: red;

 text-decoration: none;

}

@media (max-width: 991px) {

 .show-article-title {

 font-size: 1.5em;

 }

 .show-article-title-container {

 max-width: 220px;

 }

}

.article-text {

 margin-top: 20px;

}

.share-icons i {

 font-size: 1.5em;

}

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Let's copy all of this code, remove it, and, at the root of the css/ directory, create a new file

called article_show.scss and... paste!

.comment-container {

 max-width: 600px;

}

.comment-img {

 width: 50px;

 height: auto;

 border: 1px solid darkgray;

}

.commenter-name {

 font-weight: bold;

}

.comment-form {

 min-width: 500px;

}

@media (max-width: 767px) {

 .comment-form {

 min-width: 260px;

 }

 .comment-container {

 max-width: 280px;

 }

}

assets/css/article_show.scss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

/* ARTICLE SHOW PAGE */

.show-article-container {

 width: 100%;

 background-color: #fff;

}

.show-article-container.show-article-container-border-green {

 border-top: 3px solid green;

 border-radius: 3px;

}

.show-article-img {

 width: 250px;

 height: auto;

 border-radius: 5px;

}

.show-article-title {

 font-size: 2em;

}

.like-article, .like-article:hover {

 color: red;

 text-decoration: none;

}

@media (max-width: 991px) {

 .show-article-title {

 font-size: 1.5em;

 }

 .show-article-title-container {

 max-width: 220px;

 }

}

.article-text {

 margin-top: 20px;

}

.share-icons i {

 font-size: 1.5em;

}

.comment-container {

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Both app.js and article_show.js are meant to import everything that's needed for the

layout and for the article show page. app.scss and article_show.scss are kinda the

same thing: they should import all the CSS that's needed for each spot.

At the top of article_show.scss , we don't strictly need to do this, but let's

@import 'helper/variables to drive home the point that this is a standalone file that

imports anything it needs:

assets/css/article_show.scss

1

2

3

 // ... lines 4 - 74

Finally, back in article_show.js add import '../css/article_show.scss' :

 max-width: 600px;

}

.comment-img {

 width: 50px;

 height: auto;

 border: 1px solid darkgray;

}

.commenter-name {

 font-weight: bold;

}

.comment-form {

 min-width: 500px;

}

@media (max-width: 767px) {

 .comment-form {

 min-width: 260px;

 }

 .comment-container {

 max-width: 280px;

 }

}

@import './helper/variables';

/* ARTICLE SHOW PAGE */

assets/js/article_show.js

1

2

 // ... lines 3 - 19

Ok, check your terminal! Suddenly, gasp! Webpack is outputting an article_show.css file!

And wow! You can really see code splitting in action! That vendors~app~article_show.js

probably contains jQuery, because Webpack saw that it's used by both entries and so isolated it

into its own file so it could be re-used.

Anyways, back in show.html.twig copy the javascripts block, paste, rename it to

stylesheets and then change to encore_entry_link_tags() :

templates/article/show.html.twig

 // ... lines 1 - 80

81

82

83

84

85

86

87

88

89

90

91

That should do it! Move over, refresh and... cool! The page still looks good and the heart still

works. If you inspect element on this page, in the head , we have two CSS files: app.css to

power the layout and article_show.css to power this page.

At the bottom, we have 4 JavaScript files to power the two entrypoints. By the way,

WebpackEncoreBundle is smart enough to not duplicate the

vendors~app~article_show.js script tag just because both entries need it. Smart!

Next: we are close to having our whole app in Encore. Let's refactor a bunch more un-

Webpack-ified code.

import '../css/article_show.scss';

import $ from 'jquery';

{% block javascripts %}

 {{ parent() }}

 {{ encore_entry_script_tags('article_show') }}

{% endblock %}

{% block stylesheets %}

 {{ parent() }}

 {{ encore_entry_link_tags('article_show') }}

{% endblock %}

Chapter 12: Entry Refactoring

Here's our mission: to get rid of all the JavaScript and CSS stuff from our public/ directory.

Our next target is admin_article_form.js :

public/js/admin_article_form.js

1

2

3

 // ... lines 4 - 33

34

35

36

37

38

 // ... lines 39 - 123

124

125

126

127

128

129

 // ... lines 130 - 148

149

This probably won't come as a huge shock, but this is used in the admin section. Go to

/admin/article . If you need to log in, use admin1@thespacebar.com , password

engage . Then click to edit any of the articles.

This page has JavaScript to handle the Dropzone upload and a few other things. Open the

template: templates/article_admin/edit.html.twig and scroll down. Ok: we have a

traditional <script> tag for admin_article_form.js as well as two external JavaScript

files that we'll handle in a minute:

Dropzone.autoDiscover = false;

$(document).ready(function() {

});

// todo - use Webpack Encore so ES6 syntax is transpiled to ES5

class ReferenceList

{

}

/**

 * @param {ReferenceList} referenceList

 */

function initializeDropzone(referenceList) {

}

templates/article_admin/edit.html.twig

 // ... lines 1 - 35

36

37

38

39

40

41

42

The Repeatable Process of Refactoring to an Entry

This is super similar to what we just did. First, move admin_article_form.js into

assets/js . This will be our third entry. So, in webpack.config.js copy addEntry() , call

this one admin_article_form and point it to admin_article_form.js :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 21

22

 // ... lines 23 - 73

74

 // ... lines 75 - 76

Finally, inside edit.html.twig , change this to use

{{ encore_entry_script_tags('admin_article_form') }} :

templates/article_admin/edit.html.twig

 // ... lines 1 - 35

36

 // ... lines 37 - 40

41

42

Now, stop and restart Encore:

{% block javascripts %}

 {{ parent() }}

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/dropzone/5.5.1/min/dropzone.min.

integrity="sha256-cs4thShDfjkqFGk5s2Lxj35sgSRr4MRcyccmi0WKqCM="

crossorigin="anonymous"></script>

 <script

src="https://cdn.jsdelivr.net/npm/sortablejs@1.8.3/Sortable.min.js"

integrity="sha256-uNITVqEk9HNQeW6mAAm2PJwFX2gN45l8a4yocqsFI6I="

crossorigin="anonymous"></script>

 <script src="{{ asset('js/admin_article_form.js') }}"></script>

{% endblock %}

Encore

 .addEntry('admin_article_form', './assets/js/admin_article_form.js')

;

{% block javascripts %}

 {{ encore_entry_script_tags('admin_article_form') }}

{% endblock %}

yarn watch

Perfect! 3 entries and a lot of good code splitting. But we shouldn't be too surprised that when

we refresh, we get our favorite JavaScript error:

“$ is not defined”

Let's implement phase 2 of refactoring. In admin_article_form.js ,

import $ from 'jquery' :

assets/js/admin_article_form.js

1

 // ... lines 2 - 152

And... we're good to go!

Refactoring the External script Tags

In addition to moving things out of public/ , I also want to remove all of these external script

tags:

templates/article_admin/edit.html.twig

 // ... lines 1 - 35

36

 // ... lines 37 - 38

39

40

 // ... line 41

42

Actually, there's nothing wrong with including external scripts - and you can definitely argue that

including some things - like jQuery - could be good for performance. If you do want to keep a

few script tags for external stuff, check out Webpack's "externals" feature to make it work nicely.

import $ from 'jquery';

{% block javascripts %}

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/dropzone/5.5.1/min/dropzone.min.

integrity="sha256-cs4thShDfjkqFGk5s2Lxj35sgSRr4MRcyccmi0WKqCM="

crossorigin="anonymous"></script>

 <script

src="https://cdn.jsdelivr.net/npm/sortablejs@1.8.3/Sortable.min.js"

integrity="sha256-uNITVqEk9HNQeW6mAAm2PJwFX2gN45l8a4yocqsFI6I="

crossorigin="anonymous"></script>

{% endblock %}

The reason I don't like them is that, in the new way of writing JavaScript, you never want

undefined variables. If we need a $ variable, we need to import $! But check it out: we're

referencing Dropzone :

assets/js/admin_article_form.js

 // ... lines 1 - 2

3

 // ... lines 4 - 152

Where the heck does that come from? Answer: it's a global variable created by this Dropzone

script tag!

templates/article_admin/edit.html.twig

 // ... lines 1 - 35

36

 // ... lines 37 - 38

39

40

 // ... line 41

42

The same is true for Sortable further down. I don't want to rely on global variables anymore.

Trash both of these script tags. Then, find your terminal, go to your open tab and run:

yarn add dropzone sortablejs --dev

I already looked up those exact package names to make sure they're right. Next, inside

admin_article_form.js , these variables will truly be undefined now. Try it: refresh. A most

excellent error!

“Dropzone is undefined”

It sure is! Fix that with import Dropzone from 'dropzone' and also

import Sortable from 'sortablejs' :

Dropzone.autoDiscover = false;

{% block javascripts %}

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/dropzone/5.5.1/min/dropzone.min.

integrity="sha256-cs4thShDfjkqFGk5s2Lxj35sgSRr4MRcyccmi0WKqCM="

crossorigin="anonymous"></script>

 <script

src="https://cdn.jsdelivr.net/npm/sortablejs@1.8.3/Sortable.min.js"

integrity="sha256-uNITVqEk9HNQeW6mAAm2PJwFX2gN45l8a4yocqsFI6I="

crossorigin="anonymous"></script>

{% endblock %}

assets/js/admin_article_form.js

1

2

3

 // ... lines 4 - 154

Now it works.

Importing the CSS

But there's one more thing hiding in our edit template: we have a CDN link to the Dropzone

CSS!

templates/article_admin/edit.html.twig

 // ... lines 1 - 29

30

31

32

33

34

 // ... lines 35 - 41

We don't need that either. Instead, in admin_article_form.js , we can import the CSS from

the Dropzone package directly. Hold Command or Control and click to open Dropzone. I'll

double-click the dropzone directory to take us there.

Inside dist ... there it is: dropzone.css . That's the path we want to import. How? With

import 'dropzone/dist/dropzone.css' :

assets/js/admin_article_form.js

 // ... line 1

2

3

 // ... lines 4 - 155

Most of the time, we're lazy and we say import then the package name. But it's totally legal to

import the package name / a specific file path.

import $ from 'jquery';

import Dropzone from 'dropzone';

import Sortable from 'sortablejs';

{% block stylesheets %}

 {{ parent() }}

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/dropzone/5.5.1/min/dropzone.min

integrity="sha256-e47xOkXs1JXFbjjpoRr1/LhVcqSzRmGmPqsrUQeVs+g="

crossorigin="anonymous" />

{% endblock %}

import Dropzone from 'dropzone';

import 'dropzone/dist/dropzone.css'

As soon as we do that, go check out the Encore watch tab. Wow! The code splitting is getting

crazy! Hiding inside there is one CSS file: vendors~admin_article_form.css .

Flip back to the edit template and add

{{ encore_entry_link_tags('admin_article_form') }} :

templates/article_admin/edit.html.twig

 // ... lines 1 - 29

30

31

32

33

34

 // ... lines 35 - 41

Try it! Find your browser and refresh! Ok, it looks like the Dropzone CSS is still working. I think

we're good!

Including script & link on the New Page

This same JavaScript & CSS code is needed on one other page. Go back to

/admin/article and click create. Oof, we still have some problems here. I'll close up

node_modules/ and open templates/article_admin/new.html.twig :

templates/article_admin/new.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 24

Ah, cool. Replace the admin_article_form.js script with our helper Twig function:

{% block stylesheets %}

 {{ parent() }}

 {{ encore_entry_link_tags('admin_article_form') }}

{% endblock %}

{% block javascripts %}

 {{ parent() }}

 <script

src="https://cdn.jsdelivr.net/autocomplete.js/0/autocomplete.jquery.min.js">

</script>

 <script src="{{ asset('js/algolia-autocomplete.js') }}"></script>

 <script src="{{ asset('js/admin_article_form.js') }}"></script>

{% endblock %}

templates/article_admin/new.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

 // ... lines 10 - 25

Under stylesheets, the new page doesn't use Dropzone, so it didn't have that same link tag

here. Add {{ encore_entry_link_tags('admin_article_form') }} anyways so that

this page has all the JS and CSS it needs:

templates/article_admin/new.html.twig

 // ... lines 1 - 10

11

12

13

14

 // ... line 15

16

 // ... lines 17 - 25

But this does highlight one... let's say... "not ideal" thing. Some of the JavaScript on the edit

page - like the Dropzone & Sortable stuff - isn't needed here... but it's part of

admin_article_form.js anyways. And actually, the reverse is true! That autocomplete

stuff? That's needed on the "new" page, but not the edit page. At the end of the tutorial, we'll talk

about async imports, which is one really nice way to help avoid packaging code all the time that

is only needed some of the time.

Anyways, if we refresh now... the page is still totally broken! Apparently this "autocomplete"

library we're importing is trying to reference jQuery. Let's fix that next... which will involve a...

sort of "magical" feature of Webpack and Encore.

{% block javascripts %}

 {{ encore_entry_script_tags('admin_article_form') }}

{% endblock %}

{% block stylesheets %}

 {{ parent() }}

 {{ encore_entry_link_tags('admin_article_form') }}

{% endblock %}

Chapter 13: Refactoring Autocomplete JS & CSS

We still have work to do to get the new.html.twig template working:

templates/article_admin/new.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

 // ... line 8

9

 // ... lines 10 - 25

we have a script tag for this external autocomplete library and one for our own

public/js/algolia-autocomplete.js file... which is our last JavaScript file in the

public/ directory! Woo!

public/js/algolia-autocomplete.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

{% block javascripts %}

 <script

src="https://cdn.jsdelivr.net/autocomplete.js/0/autocomplete.jquery.min.js">

</script>

 <script src="{{ asset('js/algolia-autocomplete.js') }}"></script>

{% endblock %}

$(document).ready(function() {

 $('.js-user-autocomplete').each(function() {

 var autocompleteUrl = $(this).data('autocomplete-url');

 $(this).autocomplete({hint: false}, [

 {

 source: function(query, cb) {

 $.ajax({

 url: autocompleteUrl+'?query='+query

 }).then(function(data) {

 cb(data.users);

 });

 },

 displayKey: 'email',

 debounce: 500 // only request every 1/2 second

 }

])

 });

});

This holds code that adds auto-completion... on this author box... which, yes, is totally broken.

Installing the Autocomplete Library

To start, remove the CDN link to this autocomplete library:

templates/article_admin/new.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 25

And, at your terminal, install it properly!

yarn add autocomplete.js --dev

Organizing our Autocomplete into a Component

Next, you know the drill, take the algolia-autocomplete.js file and move it into the

assets/js/ directory. But I'm not going to make this a new entry point. We could do that, but

really, we already have an entry file that's included on this page: admin_article_form :

templates/article_admin/new.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

 // ... lines 10 - 25

So really, admin_article_form.js should probably just use the code from

algolia-autocomplete.js .

{% block javascripts %}

 <script

src="https://cdn.jsdelivr.net/autocomplete.js/0/autocomplete.jquery.min.js">

</script>

{% endblock %}

{% block javascripts %}

 {{ encore_entry_script_tags('admin_article_form') }}

{% endblock %}

So, move that file into the components/ directory... which is kind of meant for reusable modules.

And... well, this isn't really written like a re-usable module yet because it just executes code

instead or returning something, like a function. But, we'll work on that later.

Let's also take the algolia-autocomplete.css file and move that all the way up here into

assets/css/ . And just because we can, I'll make it an SCSS file!

Okay! Back in admin_article_form.js , let's bring in this code:

import './components/algolia-autocomplete' :

assets/js/admin_article_form.js

 // ... lines 1 - 4

5

 // ... lines 6 - 157

We don't need an import from yet... because that file doesn't actually export anything. For

the CSS: import '../css/algolia-autocomplete.scss' :

assets/js/admin_article_form.js

 // ... lines 1 - 4

5

6

 // ... lines 7 - 157

Back in new.html.twig , the great thing is, we don't need to import this CSS file anymore or

any of these script files. This is really how we want our templates to look: a single a call to

{{ encore_entry_script_tags() }} and a single call to

{{ encore_entry_link_tags() }} :

templates/article_admin/new.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 22

import './components/algolia-autocomplete';

import './components/algolia-autocomplete';

import '../css/algolia-autocomplete.scss';

{% block javascripts %}

 {{ parent() }}

 {{ encore_entry_script_tags('admin_article_form') }}

{% endblock %}

{% block stylesheets %}

 {{ parent() }}

 {{ encore_entry_link_tags('admin_article_form') }}

{% endblock %}

So if we refresh right now, not surprisingly, it still won't work! And it's our favorite error!

“$ is undefined”

from algolia-autocomplete.js . Yes, this is the error I see when I close my eyes at night.

Using the autocomplete.js Library

Let's get to work. Of course, we are referencing $. So, import $ from 'jquery' :

assets/js/components/algolia-autocomplete.js

1

 // ... lines 2 - 23

We're also using the autocomplete library in here. No problem:

import autocomplete from 'autocomplete.js' :

assets/js/components/algolia-autocomplete.js

1

2

 // ... lines 3 - 23

Wait... that's not quite right. This autocomplete.js library is a standalone JavaScript library

that can be used with anything - jQuery, React, whatever. But... our existing code isn't using the

"standalone" version of the library. It's using a jQuery plugin - this .autocomplete() function

- that comes with that package:

assets/js/components/algolia-autocomplete.js

 // ... lines 1 - 3

4

5

 // ... lines 6 - 7

8

 // ... lines 9 - 19

20

21

22

So, we could refactor our code down here to use the, kind of, official way of using this library -

independent of jQuery. But... that's the easy way out! Let's see if we can get this to work as a

jQuery plugin.

import $ from 'jquery';

import $ from 'jquery';

import autocomplete from 'autocomplete.js';

$(document).ready(function() {

 $('.js-user-autocomplete').each(function() {

 $(this).autocomplete({hint: false}, [

])

 });

});

Finding and Using the jQuery Plugin

I'll hold Command or Control and click into autocomplete.js . Then double-click the

directory to zoom us there. The "main" file is this index.js at the root of the directory. But if

you look in dist/ , hey! autocomplete.jquery.js ! That's what we were including before

via the <script> tag!

So instead of importing the main file, let's import

autocomplete.js/dist/autocomplete.jquery :

assets/js/components/algolia-autocomplete.js

1

2

 // ... lines 3 - 23

And remember, we don't use import from with jQuery plugins... because they don't return

anything: they modify the jQuery object.

Ok, I think we're great and I think we're ready. Move over, refresh and... huh:

“jQuery is not defined”

Notice it doesn't say "$ is not defined": it says "jQuery is not defined"... and it's coming from

autocomplete.jquery.js ! It's coming from the third party package!

This... is tricky. Plain and simple, that file is written incorrectly. Yea, it only works if jQuery is a

global variable! And in Webpack... it's not! Let's talk more about this and fix it with some black

magic, next.

import $ from 'jquery';

import 'autocomplete.js/dist/autocomplete.jquery';

Chapter 14: Auto-Provide jQuery for Mischievous
Packages

Everything should be working... but nope! We've got this

“jQuery is not defined”

error... but it's not from our code! It's coming from inside of autocomplete.jquery.js - that

third party package we installed!

Poorly-Behaved jQuery Packages

This is the second jQuery plugin that we've used. The first was bootstrap... and that worked

brilliantly! Look inside app.js :

assets/js/app.js

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

We imported bootstrap and, yea... that was it. Bootstrap is a well-written jQuery plugin, which

means that inside, it imports jquery - just like we do - and then modifies it.

But this Algolia autocomplete.js plugin? Yea, it's not so well-written. Instead of detecting

that we're inside Webpack and importing jQuery , it just says... jQuery ! And expects it to be

available as a global variable. This is why jQuery plugins are a special monster: they've been

around for so long, that they don't always play nicely in the modern way of doing things.

So... are we stuck? I mean, this 3rd-party package is literally written incorrectly! What can we

do?

autoProvidejQuery()

import $ from 'jquery';

import 'bootstrap'; // adds functions to jQuery

Well... it's Webpack to the rescue! Open up webpack.config.js and find some commented-

out code: autoProvidejQuery() . Uncomment that:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 67

68

69

 // ... lines 70 - 73

74

 // ... lines 75 - 76

Then, go restart Encore:

yarn watch

When it finishes, move back over and... refresh! No errors! And if I start typing in the

autocomplete box... it works! What black magic is this?!

The .autoProvidejQuery() method... yea... it sorta is black magic. Webpack is already

scanning all of our code. When you enable this feature, each time it finds a jQuery or $

variable- anywhere in any of the code that we use - that is uninitialized, it replaces it with

require('jquery') . It basically rewrites the broken code to be correct.

Including CSS from the Algolia JS

While we're here, there's an organizational improvement I want to make. Look inside

admin_article_form.js . Hmm, we include both the JavaScript file and the CSS file for

Algolia autocomplete:

assets/js/admin_article_form.js

 // ... lines 1 - 4

5

6

 // ... lines 7 - 157

But if you think about it, this CSS file is meant to support the algolia-autocomplete.js

file. To say it differently: the CSS file is a dependency of algolia-autocomplete.js : if that

Encore

 // uncomment if you're having problems with a jQuery plugin

 .autoProvidejQuery()

;

import './components/algolia-autocomplete';

import '../css/algolia-autocomplete.scss';

file was ever used without this CSS file, things wouldn't look right.

Take out the import and move it into algolia-autocomplete.js . Make sure to update

the path:

assets/js/components/algolia-autocomplete.js

1

2

3

 // ... lines 4 - 24

That's nice! If we want to use this autocomplete logic somewhere else, we only need to import

the JavaScript file: it takes care of importing everything else. The result is the same, but cleaner.

Making algolia-autocomplete.js a Proper Module

Well, this file still isn't as clean as I want it. We're importing the algolia-autocomplete.js

file... but it's not really a "module". It doesn't export some reusable function or class: it just runs

code. I really want to start thinking of all of our JavaScript files - except for the entry files

themselves - as reusable components.

Check it out: instead of just "doing" stuff, let's export a new function that can initialize the

autocomplete logic. Replace $(document).ready() with export default function()

with three arguments: the jQuery $elements that we want to attach the autocomplete

behavior to, the dataKey , which will be used down here as a way of a defining where to get

the data from on the Ajax response, and displayKey - another config option used at the

bottom, which is the key on each result that should be displayed in the box:

assets/js/components/algolia-autocomplete.js

 // ... lines 1 - 4

5

 // ... lines 6 - 25

26

Basically, we're taking out all the specific parts and replacing them with generic variables.

Now we can say $elements.each() :

import $ from 'jquery';

import 'autocomplete.js/dist/autocomplete.jquery';

import '../../css/algolia-autocomplete.scss';

export default function($elements, dataKey, displayKey) {

};

assets/js/components/algolia-autocomplete.js

 // ... lines 1 - 4

5

6

 // ... lines 7 - 24

25

26

And for dataKey , we can put a bit of logic: if (dataKey) , then data = data[dataKey] ,

and finally just cb(data) :

assets/js/components/algolia-autocomplete.js

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 22

23

24

25

26

Some of this is specific to exactly how the Autocomplete library itself works - we set that up in

an earlier tutorial. Down at the bottom, set displayKey to displayKey :

export default function($elements, dataKey, displayKey) {

 $elements.each(function() {

 });

};

export default function($elements, dataKey, displayKey) {

 $elements.each(function() {

 var autocompleteUrl = $(this).data('autocomplete-url');

 $(this).autocomplete({hint: false}, [

 {

 source: function(query, cb) {

 $.ajax({

 url: autocompleteUrl+'?query='+query

 }).then(function(data) {

 if (dataKey) {

 data = data[dataKey];

 }

 cb(data);

 });

 },

 }

])

 });

};

assets/js/components/algolia-autocomplete.js

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Beautiful! Instead of doing something, this file returns a reusable function. That should feel

familiar if you come from the Symfony world: we organize code by creating files that contain

reusable classes, instead of files that contain procedural code that instantly does something.

Ok! Back in admin_article_form.js , let's

import autocomplete from './components/algolia-autocomplete' :

assets/js/admin_article_form.js

 // ... lines 1 - 4

5

 // ... lines 6 - 161

Oooo. And then, const $autoComplete = $('.js-user-autocomplete') - to find the

same element we were using before:

export default function($elements, dataKey, displayKey) {

 $elements.each(function() {

 var autocompleteUrl = $(this).data('autocomplete-url');

 $(this).autocomplete({hint: false}, [

 {

 source: function(query, cb) {

 $.ajax({

 url: autocompleteUrl+'?query='+query

 }).then(function(data) {

 if (dataKey) {

 data = data[dataKey];

 }

 cb(data);

 });

 },

 displayKey: displayKey,

 debounce: 500 // only request every 1/2 second

 }

])

 });

};

import autocomplete from './components/algolia-autocomplete';

assets/js/admin_article_form.js

 // ... lines 1 - 8

9

10

 // ... lines 11 - 44

45

 // ... lines 46 - 161

Then, if not $autoComplete.is(':disabled') , call autocomplete() - because that's

the variable we imported - and pass it $autoComplete , users for dataKey and email for

displayKey :

assets/js/admin_article_form.js

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 44

45

 // ... lines 46 - 161

I love it! By the way, the reason I'm added this :disabled logic is that we originally set up our

forms so that the author field that we're adding this autocomplete to is disabled on the edit

form. So, there's no reason to try to add the autocomplete stuff in that case.

Ok, refresh... then type admi ... it works! Double-check that we didn't break the edit page: go

back to /admin/article , edit any article and, yea! Looks good! The field is disabled, but

nothing is breaking.

Hey! We have no more JavaScript files in our public/ directory. Woo! But, we do still have 2

CSS files. Let's handle those next.

$(document).ready(function() {

 const $autoComplete = $('.js-user-autocomplete');

});

$(document).ready(function() {

 const $autoComplete = $('.js-user-autocomplete');

 if (!$autoComplete.is(':disabled')) {

 autocomplete($autoComplete, 'users', 'email');

 }

});

Chapter 15: addStyleEntry(): CSS-Only Entrypoint

There are only two files left in the public/ directory, and they're both CSS files! Celebrate by

crushing your js/ directory.

We have two page-specific CSS files left. Open account/index.html.twig :

templates/account/index.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

 // ... lines 10 - 51

Yep, this has a link tag to the first... and in security/login.html.twig , here's the other:

templates/security/login.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

 // ... lines 10 - 37

Oh, and we also include login.css from register.html.twig :

templates/security/register.html.twig

 // ... lines 1 - 28

29

 // ... lines 30 - 31

32

33

 // ... lines 34 - 78

This is kind of a tricky situation.... because what Webpack wants you to do is always start with a

JavaScript entry file. And of course, if you happen to import some CSS, it'll nicely dump a CSS

file. This comes from the single-page application mindset: if everything in your app is built by

JavaScript, then of course you have a JavaScript file!

{% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('css/account.css') }}">

{% endblock %}

{% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('css/login.css') }}">

{% endblock %}

{% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('css/login.css') }}">

{% endblock %}

So... hmm. I mean, we could leave those files in public/ - we don't need them to go through

Webpack. Though... I would like to use Sass. We could also create account.js and

login.js files... and then just import each CSS file from inside. That would work... but then

Webpack would output empty account.js and login.js files... which isn't horrible, but not

ideal... and kinda weird.

In the Encore world, just like with Webpack, we really do want you to try to do it the "proper"

way: create a JavaScript entry file and "import" any CSS that it needs. But, we also recognize

that this is a legitimate situation. So, Encore has a little extra magic.

First, move both of the files up into our assets/css/ directory. And just because we can,

make both of them scss files.

Next, in webpack.config.js add a special thing called addStyleEntry() . We'll have one

called account pointing to ./assets/css/account.scss and another one called login

pointing to login.scss :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 22

23

24

 // ... lines 25 - 75

76

 // ... lines 77 - 78

Easy enough! Find your Encore build, press Control + C , and restart it:

yarn watch

Awesome! We can see that the account and login entries both only dump CSS files.

And this means that, back in index.html.twig , we can replace the link tag with

{{ encore_entry_link_tags('account') }} :

Encore

 .addStyleEntry('account', './assets/css/account.scss')

 .addStyleEntry('login', './assets/css/login.scss')

;

templates/account/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 51

Copy that and do the same thing in login.html.twig for the login entry:

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 37

And then in register.html.twig , one more time for login :

templates/security/register.html.twig

 // ... lines 1 - 28

29

30

31

32

33

 // ... lines 34 - 78

Ok! Let's double-check that the site doesn't explode. Go to the /account profile page.

Everything looks fine.

So... yea, addStyleEntry() is available for this. But... to pull it off, Encore does some

hacking internally. Really, addStyleEntry() is the same as addEntry() , which means that

Webpack does try to output an empty JavaScript file. Encore basically just deletes that file so

that we don't have to look at it.

Next, oh, we get to talk about one of my favorite things about Webpack and Encore: how to

automatically convert your CSS - and JavaScript - so that it's understood by older browsers.

And how to control exactly which browsers your site needs to support.

{% block stylesheets %}

 {{ parent() }}

 {{ encore_entry_link_tags('account') }}

{% endblock %}

{% block stylesheets %}

 {{ parent() }}

 {{ encore_entry_link_tags('login') }}

{% endblock %}

{% block stylesheets %}

 {{ parent() }}

 {{ encore_entry_link_tags('login') }}

{% endblock %}

Chapter 16: Support any Browser with PostCSS &
Babel

Go back to /admin/article and click to edit one of the articles. View the source and search

for .js . Okay, we have several JavaScript files, because Webpack is splitting them. Click to

look at build/admin_article_form.js , which will probably contain all the non-vendor

code from that entry point.

The top of the file contains some Webpack boootstrap stuff, then our code is below, still mixed

in with some things that makes Webpack work.

Now, check this out: in the original admin_article_form.js file, we created a class called

ReferenceList :

assets/js/admin_article_form.js

 // ... lines 1 - 8

9

10

 // ... lines 11 - 44

45

46

47

48

49

 // ... lines 50 - 134

135

 // ... lines 136 - 161

And we also use the const keyword for const $autoComplete . Back in the compiled file,

search for $autoComplete . Woh! It's not const $autoComplete , it's

var $autoComplete ! And if you search for ReferenceList ... and get down to the class...

there's no class syntax! It's wrapped in some sort of a "pure" function thingy.

Surprise! Something is rewriting our code! But, who? And, why?

Hello Babel

$(document).ready(function() {

 const $autoComplete = $('.js-user-autocomplete');

});

// todo - use Webpack Encore so ES6 syntax is transpiled to ES5

class ReferenceList

{

}

The who is Babel: an amazing library that has the superpower of reading your JavaScript and

rewriting it to older JavaScript that's compatible with older browsers. And this is seriously

important! Because if JavaScript comes out with a new feature, we do not want to wait 10 years

for all of the browsers to support it! Babel solves this: you can use brand new language features

and it compiles it to boring, traditional code.

But... wait. How is Babel deciding which browsers our site needs to support? Different sites

need to support different browsers... and so, in theory, Babel should be able to rewrite the code

differently for different sites. For example, if you need to support super old browsers, you

probably need to rewrite const to var . But if all of your users are awesome... like our

SymfonyCasts users... and all use new browsers, then you don't need to rewrite this. In general,

converting new code to old code makes your JavaScript larger, so avoiding unnecessary

changes is a good thing.

Rewriting CSS for Older Browsers?

Let's answer the question of "how" we can control Babel by talking about something completely

different: CSS. Babel does not rewrite CSS. But, if you think about it, it would sorta make sense.

For example, if you're using a border-radius and need to support older browsers, you need

to add some vendor prefixes, like -webkit-border-radius . You can see one we added

manually down here: we have box-shadow , but we also have -webkit-box-shadow to

make it work in some older browsers... which we might not even need, depending on what

browsers we decide we need to support:

assets/css/account.scss

 // ... lines 1 - 13

14

 // ... lines 15 - 20

21

22

23

 // ... lines 24 - 90

Anyways, forgetting about Webpack and Babel for a minute, in the CSS world, you do not need

to add these vendor prefixes by hand. Nope! There's a wonderful library that can do it for you

called autoprefixer . You write code correctly - like using box-shadow - tell it which

browsers you need to support, and it adds the vendor prefixes for you.

div.user-menu-container {

 -webkit-box-shadow: 0 1px 6px rgba(0, 0, 0, 0.175);

 box-shadow: 0 1px 6px rgba(0, 0, 0, 0.175);

}

Enabling PostCSS

Because that sounds amazing... let's add it! In webpack.config.js , anywhere, but how

about below .enableSassLoader() , add .enablePostCssLoader() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 56

57

 // ... lines 58 - 76

77

 // ... lines 78 - 79

PostCSS is a library that allows you to run things at the "end" of your CSS being processed.

And it's the easiest way to integrate autoprefixer .

Next, because we just changed our webpack.config.js file, go restart Encore:

yarn watch

Hey! This is familiar! Just like when we enabled Sass, this requires us to install a few things.

Copy the command, go to your open terminal and run that!

yarn add postcss-loader@^3.0.0 --dev

Ok, let's try Encore again:

yarn watch

Hmm, another error! This is kinda cool: to use PostCSS, you need to create a

postcss.config.js file. Encore walks you through that process and sets it up to use

autoprefixer to start. Copy that, go to the root of your project, create the

postcss.config.js file and paste:

Encore

 .enablePostCssLoader()

;

postcss.config.js

1

2

3

4

5

Ok, hit Control + C and try that again:

yarn watch

Sheesh! One last error. PostCSS is probably the most involved thing to get running. This error

isn't as obvious:

“loading PostCSS plugin failed: Cannot find module autoprefixer”

We know what that word "module" means! It's trying to find that library. We told PostCSS to use

autoprefixer , but that doesn't exist in our project yet. Run:

yarn add autoprefixer --dev

And now try Encore.

 Tip

If you get an error like true is not a PostCSS plugin , either downgrade autoprefixer

to version 9 or upgrade PostCSS to version 8. Basically, autoprefixer 10 doesn't play nicely

with PostCSS 7 and lower.

yarn watch

No errors! So... it's probably working? Let's see it in action next and learn how we can tell

PostCSS and Babel exactly which browsers we need to support.

module.exports = {

 plugins: {

 'autoprefixer': {},

 }

}

Chapter 17: browserslist: What Browsers do you
need to Support?

PostCSS is running! Let's see what it does! Go back to your browser. We haven't reloaded the

page yet. I'll search for app.css and click to open that. Search for one of the vendor prefixes:

-webkit . Ok, so before adding PostCSS, we have 77 occurrences - coming from our code

and Bootstrap.

In theory, if we told PostCSS that we need to support really old browsers, this number should

get way higher! How can we do that? Some config in postcss.config.js? Actually, no. It's

way cooler than that.

Hello browserslist

In the JavaScript world, there is a wonderful library called browserslist . It's a pretty simple

idea: browserslist allows you to describe which browsers your site needs to support, in a

bunch of useful ways. Then, any tool that needs this information can read it from a central spot.

Check it out: open up your package.json file. Yes, this is where we'll configure what

browsers we need to support. Add a new key: browserslist set to an array:

package.json

1

 // ... lines 2 - 25

26

 // ... line 27

28

29

You can do a ton of things in here - like say that you want to support the last "2" versions of

every browser or any browser that is used by more than 1% of the web or some specific

browser that you know is used a lot on your site. Yea, browserslist uses real-world usage

data to figure out which browsers you should support!

Let's use a simple example: > .05% :

{

 "browserslist": [

]

}

package.json

1

 // ... lines 2 - 25

26

27

28

29

This is actually a pretty unrealistic setting. This says: I want to support all browsers that have at

least .05% of the global browser usage. So this will include some really old browsers that,

maybe only .06% of the world uses!

Stop and restart Webpack to force a rebuild and make sure PostCSS reads the new setting:

yarn watch

Now, go back, refresh app.css , search again for -webkit and woh! 992 results! That's

amazing! By the way, there is also a tool called BrowserList-GA that reads from your Google

Analytics account and dumps a data file with your real-world usage data. You can then use that

in your browserslist config, by saying something like: > 0.5% in my stats , which

literally means: support any browsers that is responsible for more than .5% of traffic from my

site's real-world data. Cool.

Configuring Babel

So what about our JavaScript? Does Babel read this same browserslist config? Totally!

Search for .js and click to open the compiled admin_article_form.js file. Inside, search

for $autocomplete . Yep! We saw earlier that Babel is outputting var $autoComplete ,

even though this was originally const $autoComplete . That makes sense: we said that we

want to support really old browsers.

So... what if we change the browserslist config to > 5%?

{

 "browserslist": [

 "> .05%"

]

}

https://github.com/browserslist/browserslist-ga

package.json

1

 // ... lines 2 - 25

26

27

28

29

That's probably still a bit unrealistic: this will only support the most popular browsers and

versions: pretty much no old stuff. Stop and re-run Encore:

yarn watch

Then move back over to admin_article_form.js and refresh. I'll do a force refresh to be

sure... then search for $autoComplete . And... huh? It's still var? Hmm, that might be right...

but const was added in 2015 - it should be fully supported by all modern browsers by now.

It turns out... it is, and we're not seeing the changes due to a small bug in Babel. Behind the

scenes, Babel uses some smart caching so that it doesn't need to reparse and recompile every

JavaScript file every time Webpack builds. But, at the time of recording, Babel's cache isn't

smart enough to know that it needs invalidate itself when the browserslist config changes.

Once you know this, it's no big deal: anytime you change the browserslist config, you need

to manually clear Babel's cache. In my terminal, I'll run:

rm -rf node_modules/.cache/babel-loader/

Now restart Encore:

yarn watch

Let's check it out! Refresh and search for $autoComplete . There it is:

const $autoComplete . Look also for class ReferenceList . Now that we're only

supporting new browsers, that code doesn't need to be rewritten either.

{

 "browserslist": [

 "> 5%"

]

}

Oh, but there is one type of thing that Babel can't simply rewrite into code that's compatible with

olders browsers. When you use a totally new feature of JavaScript - like the fetch() function

for AJAX calls, you need to include a polyfill library so that old browsers have this. But... even

for this, Babel has a trick up its sleeve. That's next.

Chapter 18: Polyfills & Babel

Babel is pretty amazing. But, it's even doing something else automatically that we haven't

realized yet! Back in admin_article_form.js , and it doesn't matter where, but down in

ReferenceList , I'm going to add var stuff = new WeakSet([]); :

assets/js/admin_article_form.js

 // ... lines 1 - 47

48

49

50

51

 // ... lines 52 - 81

82

 // ... lines 83 - 136

137

 // ... lines 138 - 163

WeakSet is an object that was introduced to JavaScript, um, ECMAScript in 2015. Because the

Encore watch script is running, go over and refresh the built file. Here it is:

var stuff = new WeakSet([]); .

New Features & Polyfills

That's not surprising, right? I mean, we're telling Babel that we only need to support really new

browsers, so there's no need to rewrite this to some old, compatible code... right? Well... it's

more complicated than that. WeakSet is not a new syntax that Babel can simply change to

some old syntax: it's an entirely new feature! There are a bunch of these and some are really

important, like the Promise object and the fetch() function for AJAX calls.

To support totally new features, you need something called a polyfill. A polyfill is a normal

JavaScript library that adds a feature if it's missing. For example, there's a polyfill just for

WeakSet , which you can import if you want to make sure that WeakSet will work in any

browser.

class ReferenceList

{

 constructor($element) {

 var stuff = new WeakSet([]);

 }

}

But, keeping track of whether or not you imported a polyfill... and whether or not you even need

a polyfill - maybe the feature is already available in the browsers you need to support - is a pain!

So... Encore pre-configures Babel to... just do it for us.

Check it out. Go back to package.json and change this to support older browsers:

package.json

1

 // ... lines 2 - 25

26

27

28

29

Then, just like before, go to your terminal and manually clear the Babel cache:

rm -rf node_modules/.cache/babel-loader/

And restart Encore:

yarn watch

Ok, let's go back to the browser, refresh the built JavaScript file and search for WeakSet . It still

looks exactly like our original code. But now, just search for "weak". Woh. This is a bit hard to

read, but it's importing something called core-js/modules/es.weak-set .

This core-js package is a library full of polyfills. Babel realized that we're trying to use

WeakSet and so it automatically added an import statement for the polyfill! This is identical to

us manually going to the top of the file and adding

import 'core-js/modules/es.weak-set' . How cool is that?!

A Polyfill from the Past!

And... this is not the first time Babel has automatically added a polyfill! Open up

build/app.js . Back in the editor, the get_nice_message module used a String method

called repeat() :

{

 "browserslist": [

 "> .05%"

]

}

assets/js/components/get_nice_message.js

1

2

3

Whelp, it turns out that repeat() is a fairly new feature!

Search for "repeat" in the built file. There it is: it's importing

core-js/modules/es.string.repeat . When I used this function, I wasn't even thinking

about whether or not that feature was new and if it was available in the browsers we need to

support! But because Encore has our back, it wasn't a problem. That's a powerful idea.

By the way, this is all configured in webpack.config.js : it's this .configureBabel()

method:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 48

49

50

51

52

53

 // ... lines 54 - 76

77

 // ... lines 78 - 79

Generally-speaking, this is how you can configure Babel. The useBuiltIns: 'usage' and

corejs: 3 are the key parts. Together, these say:

“Please, automatically import polyfills when you see that I'm using a new feature and I've

already installed version 3 of corejs .”

That package was pre-installed in the original package.json we got from the recipe.

Next: let's demystify a feature that we disabled way back at the beginning of this tutorial: the

single runtime chunk.

export default function(exclamationCount) {

 return 'Hello Webpack Encore! Edit me in

assets/js/app.js'+'!'.repeat(exclamationCount);

};

Encore

 // enables @babel/preset-env polyfills

 .configureBabel(() => {}, {

 useBuiltIns: 'usage',

 corejs: 3

 })

;

Chapter 19: The Single Runtime Chunk

Head back to the homepage and click any of the articles. In an earlier tutorial, we added this

heart icon that, when you click it, makes an AJAX request and increases the counter. Well, part

of this is faked on the backend, but you get the idea.

To make this more clear, let's add a Bootstrap tooltip: when the user hovers over the heart, we

can say something like "Click to like". No problem: open up the template:

article/show.html.twig . And I'll remind you that this page has its own entry:

article_show.js :

templates/article/show.html.twig

 // ... lines 1 - 80

81

82

83

84

85

 // ... lines 86 - 92

Go open that: assets/js/article_show.js .

Ok, let's find the anchor tag in the template... there it is... and use multiple lines for sanity. Now

add title="Click to Like" :

{% block javascripts %}

 {{ parent() }}

 {{ encore_entry_script_tags('article_show') }}

{% endblock %}

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

 // ... line 8

9

 // ... lines 10 - 15

16

 // ... line 17

18

19

 // ... lines 20 - 24

25

26

27

 // ... lines 28 - 78

79

 // ... lines 80 - 92

To make this work, all we need to do is copy the js-like-article class, go back to

article_show.js and add $('.js-like-article').tooltip() , which is a function

added by Bootstrap:

assets/js/article_show.js

 // ... lines 1 - 3

4

5

 // ... lines 6 - 19

20

Coolio! Let's try it. Refresh and... of course. It doesn't work:

“...tooltip is not a function”

This may or may not surprise you. Think about it: at the bottom of the page, the app.js

<script> tags are loaded first. And, if you remember, inside of app.js , we import jquery

and then bootstrap , which adds the tooltip() function to jQuery:

{% block content_body %}

 <div class="row">

 <div class="col-sm-12">

 <div class="show-article-title-container d-inline-block pl-3

align-middle">

 <a href="{{ path('article_toggle_heart', {slug:

article.slug}) }}" class="fa fa-heart-o like-article js-like-article"

title="Click to Like!">

 </div>

 </div>

 </div>

{% endblock %}

$(document).ready(function() {

 $('.js-like-article').tooltip();

});

assets/js/app.js

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

Are Modules Shared across Entries?

So, it's reasonable to think that, inside article_show.js , when we import jquery , we will

get the same jQuery object that's already been modified by bootstrap . And... that's almost

true. When two different files import the same module, they do get the exact same object in

memory.

However, by default, Webpack treats different entrypoints like totally separate applications. So if

we import jquery from app.js and also from get_nice_message.js , which is part of the

same entry:

assets/js/app.js

 // ... lines 1 - 10

11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 26

They will get the same jQuery object. But when we import jquery from article_show.js ,

we get a different object in memory. Each entrypoint has an isolated environment. It doesn't

mean that jQuery is downloaded twice, it just means that we are given two different instances.

So the fix is simple: import 'bootstrap' .

Refresh and... this time, it works.

enableSingleRuntimeChunk()

Understanding that modules are not shared across entries is good to know. But this also relates

to a feature I want to talk about: the runtime chunk.

import $ from 'jquery';

import 'bootstrap'; // adds functions to jQuery

import $ from 'jquery';

import 'bootstrap'; // adds functions to jQuery

import getNiceMessage from './components/get_nice_message';

In webpack.config.js , at the very beginning of the tutorial, we commented out

enableSingleRuntimeChunk() and replaced it with disableSingleRuntimeChunk() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 30

31

32

33

34

 // ... lines 35 - 76

77

 // ... lines 78 - 79

Now, let's reverse that:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 30

31

32

33

34

 // ... lines 35 - 76

77

 // ... lines 78 - 79

Because we just modified the Webpack config, come back over, press Control + C and

restart it:

yarn watch

If you watch closely, you'll see an immediate difference. Every single entry now includes a new

file called runtime.js , which means that it's a new file that needs to be included as the first

script tag before any entry. Of course, that's not a detail that we need to worry about because,

when we refresh and view the page source, our Twig functions took care of rendering

everything.

Encore

 // will require an extra script tag for runtime.js

 // but, you probably want this, unless you're building a single-page

app

 //.enableSingleRuntimeChunk()

 .disableSingleRuntimeChunk()

;

Encore

 // will require an extra script tag for runtime.js

 // but, you probably want this, unless you're building a single-page

app

 .enableSingleRuntimeChunk()

 //.disableSingleRuntimeChunk()

;

Ok, so... why? What did this change and why did we care? There are two things.

Single Runtime Chunk & Caching

First, runtime.js contains Webpack's "runtime" code: stuff it needs to get its job done. By

enabling the single runtime chunk you're saying:

“Hey Webpack! Instead of adding this code at the beginning of app.js and at the beginning

of article_show.js and all my other entry files, only add it once to runtime.js ”

The user now has to download an extra file, but all the entry files are a bit smaller. But, there's

more to it than that. The runtime.js file contains something called the "manifest", which is a

fancy name that Webpack gives to code that contains some internal IDs that Webpack uses to

identify different parts of your code. The key this is that those IDs often change between builds.

So, by isolating that code into runtime.js , it means that our other JavaScript files - the ones

that contain our big code - will change less often: when those internal IDs change, it will not

affect their content.

The tl;dr is that the smaller runtime.js will change more often, but our bigger JavaScript files

will change less often. That's great for caching.

Shared Runtime/Modules

The other thing that enableSingleRuntimeChunk() changes may or may not be a good

thing. Go back to article_show.js and comment out import 'bootstrap' . Now, move

over and refresh.

Yea, it works! When you enable the single runtime chunk, it has a side effect: modules are

shared across your entry points: they all work a bit more like one, single application. That's not

necessarily a good or bad thing: just something to be aware of. I still do recommend treating

each entry file like its own independent environment, even if there is some sharing.

Next: it's time to talk about async imports! Have some code that's only used in certain

situations? Make your built files smaller by loading it... effectively, via AJAX.

Chapter 20: Async Imports

Head back to /admin/article . We have a... sort of... "performance" issue here. When you

create a new article, we have an author field that uses a bunch of autocomplete JavaScript and

CSS. The thing is, if you go back and edit an article, this is purposely not used here.

So, what's the problem? Open admin_article_form.js . We import

algolia-autocomplete :

assets/js/admin_article_form.js

 // ... lines 1 - 4

5

 // ... lines 6 - 163

And it imports a third-party library and some CSS:

assets/js/components/algolia-autocomplete.js

1

2

3

 // ... lines 4 - 27

So, it's not a tiny amount of code to get this working. The admin_article_form.js entry file

is included on both the new and edit pages. But really, a big chunk of that file is totally unused

on the edit page. What a waste!

Conditionally Dependencies?

The problem is that you can't conditionally import things: you can't put an if statement around

the import, because Webpack needs to know, at build time, whether or not it should include the

content of that import into the final built admin_article_form.js file.

But, this is a real-world problem! For example, suppose that when a user clicks a specific link on

your site, a dialog screen pops up that requires a lot of JavaScript and CSS. Cool. But what if

most users don't ever click that link? Making all your users download the dialog box JavaScript

import autocomplete from './components/algolia-autocomplete';

import $ from 'jquery';

import 'autocomplete.js/dist/autocomplete.jquery';

import '../../css/algolia-autocomplete.scss';

and CSS when only a few of them will ever need it is a waste! You're slowing down everyone's

experience.

We need to be able to lazily load dependencies. And here's how.

Hello Async/Dynamic import()

Copy the file path then delete the import:

assets/js/admin_article_form.js

 // ... lines 1 - 4

5

 // ... lines 6 - 163

All imports are normally at the top of the file. But now... down inside the if statement, this is

when we know that we need to use that library. Use import() like a function and pass it the

path that we want to import.

This works almost exactly like an AJAX call. It's not instant, so it returns a Promise. Add

.then() and, for the callback, Webpack will pass us the module that we're importing:

autocomplete :

assets/js/admin_article_form.js

 // ... lines 1 - 7

8

9

10

11

 // ... line 12

13

14

 // ... lines 15 - 45

46

 // ... lines 47 - 164

Finish the arrow function, then move the old code inside:

import autocomplete from './components/algolia-autocomplete';

$(document).ready(function() {

 const $autoComplete = $('.js-user-autocomplete');

 if (!$autoComplete.is(':disabled')) {

 import('./components/algolia-autocomplete').then((autocomplete) =>

{

 });

 }

});

assets/js/admin_article_form.js

 // ... lines 1 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 45

46

 // ... lines 47 - 164

So, it will hit our import code, download the JavaScript - just like an AJAX call - and when it

finishes, call our function. And, because the "traditional" import call is gone from the top of the

file, the autocomplete stuff won't be included in admin_article_form.js . That entry file just

got smaller. That's freakin' awesome!

By the way, if we were running the code, like, after a user clicked something, there would be a

small delay while the JavaScript was being downloaded. To make the experience fluid, you

could add a loading animation before the import() call and stop it inside the callback.

Ok, let's try this! Go back to /admin/article/new . And... oh!

“autocomplete is not a function”

Using module_name.default

in article_form.js . So... this is a little bit of a gotcha. If your module uses the newer,

trendier, export default syntax:

assets/js/components/algolia-autocomplete.js

 // ... lines 1 - 4

5

 // ... lines 6 - 25

26

When you use "async" or "dynamic" imports, you need to say autocomplete.default() in

the callback:

$(document).ready(function() {

 const $autoComplete = $('.js-user-autocomplete');

 if (!$autoComplete.is(':disabled')) {

 import('./components/algolia-autocomplete').then((autocomplete) =>

{

 autocomplete($autoComplete, 'users', 'email');

 });

 }

});

export default function($elements, dataKey, displayKey) {

};

assets/js/admin_article_form.js

 // ... lines 1 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 45

46

 // ... lines 47 - 164

Move back over and refresh again. No errors! And it works! But also, look at the Network tab -

filter for "scripts". It downloaded 1.js and 0.js . The 1.js file contains the autocomplete

vendor library and 0.js contains our JavaScript. It loaded this lazily and it's even "code

splitting" our lazy JavaScript into two files... which is kinda crazy. The 0.js also contains the

CSS... well, it says it does... but it's not really there. Because, in the CSS tab, it's loaded via its

own 0.css file.

If you look at the DOM, you can even see how Webpack hacked the script and link tags

into the head of our page: these were not there on page-load.

So... dynamic imports... just work! And you can imagine how powerful this could be in a single

page application where you can asynchronously load the components for a page when the user

goes to that page... instead of having one gigantic JavaScript file for your whole site.

By the way, the dynamic import syntax can be even simpler if you use the await keyword and

some fancy destructuring. You'll also need to install a library called regenerator-runtime .

Check out the code on this page for an example.

// and run: yarn add regenerator-runtime --dev

async function initializeAutocomplete($autoComplete) {

 const { default: autocomplete } = await import('./components/algolia-autoco

 autocomplete($autoComplete, 'users', 'email');

}

$(document).ready(function() {

 const $autoComplete = $('.js-user-autocomplete');

$(document).ready(function() {

 const $autoComplete = $('.js-user-autocomplete');

 if (!$autoComplete.is(':disabled')) {

 import('./components/algolia-autocomplete').then((autocomplete) =>

{

 autocomplete.default($autoComplete, 'users', 'email');

 });

 }

});

 if (!$autoComplete.is(':disabled')) {

 initializeAutocomplete($autoComplete);

 }

 // ...

}

Next: there's just one more thing to talk about: how to build our assets for production, and some

tips on deployment.

Chapter 21: Production Build & Deployment

Ok team: just one more thing to talk about: how the heck can we deploy all of this to

production?

Well, before that, our files aren't even ready for production yet! Open the public/build/

directory. If you open any of these files, you'll notice that they are not minified. And at the

bottom, each has a bunch of extra stuff for "sourcemaps": a bit of config that makes debugging

our code easier in the browser.

Building For Production

We get all of this because we've been creating a development build. Now, at your terminal, run:

yarn build

This is a shortcut for yarn encore production . When we installed Encore, we got a pre-

started package.json file with... this scripts section:

package.json

1

 // ... lines 2 - 19

20

21

22

23

24

25

 // ... lines 26 - 28

29

So, the real command to build for production is encore production , or, really:

{

 "scripts": {

 "dev-server": "encore dev-server",

 "dev": "encore dev",

 "watch": "encore dev --watch",

 "build": "encore production --progress"

 },

}

./node_modules/.bin/encore production

Anyways, that's the key thing: Encore has two main modes: dev and production .

And... done! On a big project, this might take a bit longer - production builds can be much

slower than dev builds.

Now we have a very different build/ directory. First, all of the names are bit obfuscated.

Before, we had names that included things like app~vendor , which kind of exposed the

internal structure of what entry points we had and how they're sharing data. No huge deal, but

that's gone: replaced by these numbered files.

Also, if you look inside any of these, they're now totally minified and won't have the sourcemap

at the bottom. You will still see these license headers - that's there for legal reasons, though you

can configure them to be removed. Those are the only comments that are left in these final files.

And even though all the filenames just changed, we instantly move over, refresh, and... it works:

the Twig helpers are rendering the new filenames.

Free Versioning

In fact, you may have noticed something special about the new filenames: every single one now

has a hash in it. Inside our webpack.config.js file, this is happening thanks to this line:

enableVersioning() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 45

46

47

 // ... lines 48 - 76

77

 // ... lines 78 - 79

And check it out, the first argument - which is a boolean of whether or not we want versioning -

is using a helper called Encore.isProduction() . That disables versioning for our dev

builds, just cause we don't need it, but enables it for production.

Encore

 // enables hashed filenames (e.g. app.abc123.css)

 .enableVersioning(Encore.isProduction())

;

The really awesome thing is that every time the contents of this article_show.css file

changes, it will automatically get a new hash: the hash is built from the contents of the file. Of

course, we don't need to change anything in our code, because the Twig helpers will

automatically render the new filename in the script or link tag. Basically... we get free file

versioning, or browser cache busting.

This also means that you should totally take advantage of something called long-term caching.

This is where you configure your web server - like Nginx - to set an Expires header on every

file it serves from the /build directory with some super-distant value, like 1 year from now:

server {

 # ...

 location ~ ^\/build\/ {

 expires 365d;

 add_header Cache-Control "public";

 }

}

The result is that, once a user has downloaded these files, they will never ask our server for

them again: they'll just use their browser cache. But, as soon as we update a file, it'll have a

new filename and the user's browser will ask for it again. It's just free performance. And if you

got a step further and put something like CloudFlare in front of your site, your server will receive

even less requests for your assets.

Deployment

Now that we have these, optimized, versioned files, how can we deploy them up to production?

Well... it depends. It depends on how sophisticated your deployment is.

If you have a really simple deployment, where you basically, run git pull on production and

then clear the Symfony cache, you're probably going to need to install node on your production

server, run yarn install , and then run yarn build up on production, each time you

deploy. That's not ideal, but if you have a simple deployment system, that keeps it simple.

 Tip

We show this on practice in our Animated Deployment with Ansistrano course.

https://symfonycasts.com/screencast/ansistrano

If you have a slightly more sophisticated system, you can do it better. The key thing to

understand is that, once you've run yarn build , the only thing that needs to go to production

is the public/build directory. So you could literally run yarn build on a different server -

or even locally - and then just make sure that this build/ directory gets copied to production.

That's it! You don't need to have node installed on production and you don't need to run

anything with yarn . If you followed our tutorial on Ansistrano, you would run yarn wherever

you're executing Ansistrano, then use the copy module to copy the directory.

More Features

Ok, that's it! Actually, there are more features inside Encore - many more, like enabling

TypeScript, React or Vue support. But getting those all going should be easy for you now. Go try

them, and report back.

And, like always, if you have any questions, find us in the comments section.

All right friends, seeya next time.

With <3 from SymfonyCasts

